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Québec G1V 0A6

Canada
jmdk@mat.ulaval.ca

Florian Luca
Fundación Marcos Moshinsky

UNAM
Circuito Exterior C.U.
Apdo. Postal 70-543
Mexico D.F. 04510

Mexico
fluca@matmor.unam.mx

Abstract

Given an integer n ≥ 2, let pm(n) denote the middle prime factor of n. We obtain
an estimate for the sum of the reciprocals of pm(n) for n ≤ x.

1 Introduction

Given an integer n ≥ 2, let P (n) stand for its largest prime factor, writing P (1) = 1. The
global behavior of this function is easy to evaluate. For instance, one can easily show that

∑

n≤x

P (n) =
π2

12

x2

log x
+O

(

x2

log2 x

)

.
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This is a well known result and a proof can be found in our recent book ([4, Thm. 9.2]).
Estimating the global behavior of the reciprocal of P (n) is much harder, and it has been

the focus of many papers at the end of the 1970’s and early 1980’s. See, for instance, the
book of De Koninck and Ivić [2] and the papers of Erdős and Ivić [5, 6]. The best estimate
was finally obtained in 1986 by Erdős, Ivić and Pomerance [7]; they proved that

∑

n≤x

1

P (n)
= xδ(x)

(

1 +O

(
√

log2 x

log x

))

,

where δ(x) is some continuous function which decreases to 0 very slowly as x → ∞ and
satisfies

δ(x) = exp{−
√

2 log x log2 x(1 + o(1))} as x → ∞.

Here and in what follows, for an integer k ≥ 2, we write logk x for the k-th fold iterate of
log evaluated at x, and we shall assume that the input x in such an expression is sufficiently
large such that the thus defined iterated logarithm is real and positive.

Interestingly the sum of the reciprocals of the second largest prime factor function P2(n)
defined for those integers n with at least two prime factors, has a totally different asymptotic
value. In fact, the first author proved in 1993 (see De Koninck [1]) that, if Ω(n) stands for
the number of prime factors of n counting their multiplicity,

∑

n≤x
Ω(n)≥2

1

P2(n)
= c2

x

log x
+O

(

x

log2 x

)

,

where c2 =
∞
∑

m=1

1

m

∑

p≥P (m)

1

p2
≈ 1.254. In the same paper, it is shown that, if Pk(n) stands for

the k-largest prime factor of an integer, then

∑

n≤x
Ω(n)≥k

1

Pk(n)
= ck

x(log2 x)
k−2

log x

(

1 +O

(

1

log2 x

))

,

where ck = c2/(k − 2)!.
In 1988, De Koninck and Galambos [3] estimated the sum of the reciprocals of a random

prime factor of an integer. More precisely, for each integer n ≥ 2, let

p1(n) < p2(n) < · · · < pω(n)(n)

be its k = ω(n) distinct prime factors, and then select at random (with equal probability
1/k) one of these prime factors and call it p∗(n). Then, set

R(x) =
∑

2≤n≤x

1

p∗(n)
. (1)
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Note that the total number of sums of the above form is ω(2)ω(3) · · ·ω(⌊x⌋). We shall say
that a property holds for almost all sums in (1) if the number N(x) of sums with the property
in question satisfies

N(x)

ω(2)ω(3) · · ·ω(⌊x⌋) → 1 as x → ∞.

Then they proved that, for almost all sums in (1),

R(x) = c1
x

log2 x
+O

(

x

(log2 x)
2

)

,

where c1 =
∑

p

1

p2
≈ 0.452.

During the 1984 Oberwolfach Conference on Analytic Number Theory, Paul Erdős asked
the first author if he had thought of estimating the sum of the reciprocals of the middle
prime factor of an integer. After almost 30 years, we can now prove an estimate for this
sum.

2 The main result

Given an integer n ≥ 2, write it as n = pα1

1 pα2

2 · · · pαk
k , where p1 < p2 < · · · < pk are its

distinct prime factors and α1, α2, . . . , αk are positive integers. We let pm(n) = pmax(1,⌊k/2⌋)

and say that pm(n) is the “middle” prime factor of n. We will prove the following estimate.

Theorem 1. As x → ∞,

∑

n≤x

1

pm(n)
=

x

log x
exp

(

(c0 + o(1))
√

log2 x log3 x
)

,

where c0 =
√
2.

3 The proof of the upper bound

For the upper bound, we first set

N1(x) = {n ≤ x : Ω(n) > 10 log2 x};
N2(x) = {n ≤ x : pm(n) > log x};
N3(x) = {n ≤ x : ω(n) = 1, 2}.

By Luca and Pomerance [9, Lem. 13], we have

#N1(x) ≪
x log x log2 x

210 log2 x
≪ x

(log x)5
,
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which shows that
∑

n∈N1(x)

1

pm(n)
≪ #N1(x) ≪

x

(log x)5
. (2)

Clearly,
∑

n∈N2(x)

1

pm(n)
≤ #N2(x)

log x
≪ x

log x
. (3)

Finally,

#N3(x) ≪
x log2 x

log x
,

so that
∑

n∈N3(x)

1

pm(n)
≪ x log2 x

log x
. (4)

In light of these estimates for the contributions of the members n from N1(x), N2(x) and
N3(x) to the sum of the reciprocals of pm(n), from now on we assume that n ∈ N4(x) =
{n ≤ x}\ (N1(x) ∪ N2(x) ∪ N3(x)) .

Fix p ∈ [2, log x] and k ∈ [3, 10 log2 x] and consider the set

Np,k(x) = {n ∈ N4(x) : pm(n) = p and ω(n) = k}.

Write k = 2k0 + δ, where δ ∈ {0, 1}. If n ∈ Np,k(x), then n = apαb, where P (a) < p, α ≥ 1,
all prime factors of b exceed p and ω(a) = k0 − 1, and ω(b) = k0 + δ. Fix also a. Then
b ≤ x/apα. Note that

apα ≤ p10 log2 x < (log x)10 log2 x = xo(1) as x → ∞.

Hence, given a and pα, the number of choices for the number b is, by the Hardy-Ramanujan
inequalities (see Hardy and Ramanujan [8] or De Koninck and Luca [4, Thm. 10.1]),

≪ x

apα log(x/apα)
× 1

(k0 + δ − 1)!
× (log2(x/ap

α) +O(1))k0+δ−1

≪ x(log2 x)

apα log x
× 1

(k0 − 1)!
× (log2 x)

k0−1.
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Thus, since k! ≥ (k/e)k, we have

1

p
#Np,k(x) ≤ 1

p

∑

a
ω(a)=k0−1

Ω(a)<10 log
2
x

P (a)<p

∑

α≥1

x(log2 x)

apα log x
× 1

(k0 − 1)!
× (log2 x)

k0−1

≪ x(log2 x)

p2 log x
× (log2 x)

k0−1

(k0 − 1)!

∑

a
ω(a)=k0−1

Ω(a)<10 log2 x
P (a)<p

1

a

≪ x(log2 x)

p2 log x
× (log2 x)

k0−1

(k0 − 1)!
× 1

(k0 − 1)!







∑

q<p
β≥1

1

qβ







k0−1

≪ x(log2 x)

p2 log x
× (log2 x)

k0−1

(k0 − 1)!
× (log2 p)

k0−1

(k0 − 1)!

≪ x(log2 x)
2

p2 log x

(

e2 log2 x log2 p

k2
0

)k0

.

For fixed A > 1, the maximum of the function fA(t) = (e2A/t2)t is attained at t0 =
√
A in

which case fA(t0) = exp(2
√
A). We first take B = exp(2

√

log2 x log3 x) and split the range
of p into values p ≤ B and p > B. Let N5(n) and N6(n) be the subsets of N4(x) for which
p(n) ≤ B and p(n) > B, respectively. Applying the above observation with

A = log2 x log2 B,

we get that

∑

n∈N5(x)

1

pm(n)
≤

∑

p≤B
3≤k<10 log2 x

1

p
#Np,k(x)

≪
∑

p≤B
1≤k0<5 log2 x

x(log2 x)
2

p2 log x

(

e2 log2 x log2 B

k2
0

)k0

≪ x(log2 x)
3

log x
exp(2

√
A)

(

∑

2≤p≤B

1

p2

)

≪ x

log x
exp

(

(c0 + o(1))
√

log2 x log3 x
)

(5)

as x → ∞. For N6(x), we use the fact that p ≤ log x, put C = log2 x log3 x, and use the
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above argument based on the maximum of the function fC(t) to get that

∑

n∈N6(x)

1

pm(n)
≪

∑

B<p<log x
3≤k<10 log2 x

1

p
#Np,k(x)

≪
∑

B<p≤log x
1≤k0<5 log

2
x

x(log2 x)
2

p2 log x

(

e2 log2 x log3 x

k2
0

)k0

≪ x(log2 x)
3

log x
exp(2

√
C)

(

∑

p>B

1

p2

)

≪ x(log2 x)
3

log x
, (6)

because B = exp(2
√
C). Comparing estimates (2), (3), (4), (5) and (6), we get the desired

estimate.

4 The proof of the lower bound

We now turn our attention to the lower bound. For this, we shall select a subset of positive
integers n ≤ x such that the sum of the reciprocals of pm(n) for n’s in this subset already
achieves the desired lower bound. Our n’s will be of the form

n = abpP

such that p ∈ [q0, 2q0], a and b are square free and have k0 and k0 − 1 prime factors,
respectively, with r < p(a) < P (a) ≤ q0 and 2q0 < p(b) < P (b) < x1/(2k0), and P is a prime
in the interval [x/(2pab), x/(pab)]. Here,

q0 = exp

(
√

log2 x

log3 x

)

and k0 = ⌊c−1
0

√

log2 x log3 x⌋, r = log2 x.

Formally,
A = {a : µ2(a) = 1, P (a) ≤ q0, p(a) > r, ω(a) = k0}.

We need to estimate the sum of reciprocals of the members of A. For this, we set

S =
∑

r<q≤q0

1

q
and S1 =

∑

r<q≤q0

∑

β≥1

1

qβ
.

Clearly,

S = log2 q0 − log2 r +O(1) =
1

2
log3 x+O(log4 x), (7)

and

S1 = S +
∑

r<q≤q0

∑

β≥2

1

qβ
= S +O

(

∑

q>r

1

q2

)

= S +O

(

1

r

)

.
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In particular,

Sk0
1 =

(

S +O

(

1

r

))k0

= Sk0 exp

(

O

(

k0
rS

))

= Sk0(1 + o(1)).

Now it is easy to see that

∑

a∈A

1

a
≥ 1

k0!
Sk0 −

∑

r<q<p

1

q2
Sk0−1
1

(k0 − 1)!

≥ Sk0

k0!

(

1 +O

(

k0
S

∑

q>r

1

q2

))

=
Sk0

k0!

(

1 +O

(

k0
rS

))

=
Sk0

k0!
(1 + o(1)). (8)

Observe that if a ∈ A, then ap < (2q0)
k0+1 < (log x)log2 x for all sufficiently large x. Now let

B =
{

b : µ2(b) = 1, p(b) > 2q0, P (b) < x1/(2k0), ω(b) = k0 − 1
}

.

Proceeding as in the estimation of the sum of the reciprocals of a ∈ A, one gets that

∑

b∈B

1

b
≫ 1

(k0 − 1)!
(T +O(1))k0−1 ≫ 1

√

log2 x

T k0

k0!
, (9)

where

T =
∑

2q0<q<x1/2k0

1

q
= log2(x

1/2k0)− log2(2q0) + o(1)

= log2 x+O(log3 x). (10)

Consider now a ∈ A, b ∈ B. Then

apb < (log x)log2 xx(k0−1)/(2k0) < x1/2(log x)log2 x < x2/3

for all sufficiently large x, so that letting P ∈ [x/(2apb), x/(apb)], it follows that

P ≥ x/(2apb) > x1/3 > x1/(2k0)

for large x, implying that given n = Papb, the numbers P, a, b are uniquely determined.
Observe that the number of choices for P is

π

(

x

abp

)

− π

(

x

2abp

)

≫ x

apb log(x/apb)
≫ x

apb log x
. (11)
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Thus, in light of (8), (9) and (11), it follows that the number of positive integers n ≤ x such
constructed and for which pm(n) = p is

≥
∑

a∈A

∑

b∈B

(

π

(

x

apb

)

− π

(

x

2apb

))

≫ x

p log x

(

∑

a∈A

1

a

)(

∑

b∈B

1

b

)

,

so that
1

p

∑

n≤x
pm(n)=p

1 ≫ x

p2 log x
√
log log x

(ST )k0

k0!2
,

which means, in light of (7) and (10), that

1

p

∑

n≤x
pm(n)=p

1 ≫ x

p2(log x)(log2 x)
3/2

×
(

(e2/2 + o(1)) log2 x log3 x

(1/2 + o(1)) log2 x log3 x

)(c−1

0
+o(1))

√
log2 x log3 x

≫ x exp((c0 + o(1))
√

log2 x log3 x)

log x
× 1

p2

implying that

∑

n≤x

1

pm(n)
≫ x

log x
exp((c0 + o(1))

√

log2 x log3 x)
∑

q0<p<2q0

1

p2

≫ x exp((c0 + o(1))
√

log2 x log3 x)

log x

(

π(2q0)− π(q0)

4q20

)

≫ x

q0(log q0)(log x)
exp((c0 + o(1))

√

log2 x log3 x)

≫ x

log x
exp((c0 + o(1))

√

log2 x log3 x) (x → ∞),

as requested.

Remark 2. It would be interesting to obtain bounds on the error terms. One may also ask
about variations of this problem in which one considers the median prime, or the middle
prime taking into account multiplicities, and so on. We leave all such problems for a future
project.
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