Consecutive integers divisible by the square of their largest prime factors

Jean-Marie De Koninck, Nicolas Doyon and Florian Luca

Abstract

Given fixed integers $k \geq 1$ and $\ell \geq 1$, let $E_{k, \ell}$ be the set of those positive integers n such that $P(n+i)^{\ell} \mid n+i$ for each $i=0,1, \ldots, k-1$, where $P(n)$ stands for the largest prime factor of n. We study the counting function given by $E(x)=\#\left\{n \leq x: n \in E_{2,2}\right\}$, showing in particular that $E(x) \gg x^{1 / 4} / \log x$ and that there exists a positive constant c such that $E(x) \ll x \exp \{-c \sqrt{\log x \log \log x}\}$. Then, given an integer $r \geq 2$, we consider the problem of searching for consecutive integers each of which is divisible by a power of its r-th largest prime factor.

Édition du 22 juin 2013, pm

1 Introduction

Let $P(n)$ stand for the largest prime factor of an integer $n \geq 2$. Set $P(1)=1$. Given an arbitrary positive integer ℓ and a finite set of distinct primes, say $\left\{p_{0}, p_{1}, \ldots, p_{k-1}\right\}$, the Chinese Remainder Theorem guarantees the existence of infinitely many integers n such that $p_{i}^{\ell} \mid n+i$ for $i=0,1, \ldots, k-1$. However, this theorem does not guarantee that such integers n will also have the property that $P(n+i)=p_{i}$ for $i=0,1, \ldots, k-1$, although such is the case in some particular instances, for example when $\ell=2, k=3$ and $n=1294298$, in which case we indeed have

$$
\begin{aligned}
1294298 & =2 \cdot 61 \cdot 103^{2} \\
1294299 & =3^{4} \cdot 19 \cdot 29^{2} \\
1294300 & =2^{2} \cdot 5^{2} \cdot 7 \cdot 43^{2}
\end{aligned}
$$

This motivates the following definition. Given fixed positive integers k and ℓ, set

$$
E_{k, \ell}:=\left\{n \in \mathbb{N}: P(n+i)^{\ell} \mid n+i \text { for each } i=0,1, \ldots, k-1\right\} .
$$

Many elements of $E_{2,2}, E_{2,3}, E_{2,4}, E_{2,5}$ and $E_{3,2}$ are given in the book of the first author [2]. However, no elements of $E_{3,3}$ and $E_{4,2}$ are known. In fact, if n belongs to any one of these last two sets, it can be shown that $n>10^{30}$.

Nevertheless, it seems reasonable to conjecture that, given any fixed integers $k \geq 2$ and $\ell \geq 2$, then $\# E_{k, \ell}=\infty$.

This is certainly true in the particular case $k=\ell=2$, as it is an immediate consequence of the fact that the Fermat-Pell equation $x^{2}-2 y^{2}=1$ has infinitely many positive integer solutions (x, y).

Here we focus our attention on the size of

$$
E(x)=E_{2,2}(x):=\#\left\{n \leq x: n \in E_{2,2}\right\} .
$$

Then, for a given integer $r \geq 2$, we consider the problem of searching for consecutive integers each of which is divisible by a power of its r-th largest prime factor.

2 Preliminary results

Theorem 1. Let p and q be two distinct prime numbers. Then, there are only finitely many integers n for which $P(n)^{2} \mid n$ and $P(n+1)^{2} \mid(n+1)$ with $P(n)=p$ and $P(n+1)=q$.

Proof. This follows immediately from the fact that, as n becomes large,

$$
\begin{equation*}
\max (P(n), P(n+1)) \gg \log \log n \tag{2.1}
\end{equation*}
$$

How does one obtain (2.1)? There is a deep theorem in diophantine analysis which asserts that if $f(x) \in \mathbb{Z}[x]$ is a polynomial with at least two distinct roots, then there exists a positive constant $C:=C(f)$ such that $P(f(n))>C \log \log n$ if n is sufficiently large. This result can be found in the book of Shorey and Tijdeman [8] (see inequality (31) on Page 134). Thus, choosing $f(x)=(x+1)(x+2)$, we immediately obtain (2.1).

3 Evaluating the size of $E(x)$

One can obtain the expected size of $E(x)$ as follows. Let us first recall the Ψ function defined as

$$
\Psi(x, y)=\#\{n \leq x: P(n) \leq y\} \quad(2 \leq y \leq x)
$$

It is known that, setting $u=\log x / \log y$, then, keeping u fixed, we have

$$
\Psi(x, y)=(1+o(1)) \rho(u) x \quad(x \rightarrow \infty)
$$

where $\rho(u)$ is the Dickman function, whose behavior is given by

$$
\begin{equation*}
\rho(u)=\exp \{-u(\log u+\log \log u-1+o(1))\} \quad \text { as } \quad(u \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

(see for instance Theorem 9.3 in the book of De Koninck and Luca [4]).
The probability Q that $P(n)^{2} \mid n$ is

$$
Q=\frac{1}{x} \sum_{\substack{n \leq x \\ P^{2}(n) \mid n}} 1=\frac{1}{x} \sum_{\substack{m p^{2} \leq x \\ P(m) \leq p}} 1=\frac{1}{x} \sum_{p \leq x^{1 / 2}} \Psi\left(\frac{x}{p^{2}}, p\right)
$$

$$
\begin{aligned}
& =(1+o(1)) \sum_{p \leq x^{1 / 2}} \frac{1}{p^{2}} \rho\left(\frac{\log x}{\log p}-2\right) \\
& =(1+o(1)) \int_{2}^{\sqrt{x}} \frac{1}{t^{2} \log t} \rho\left(\frac{\log x}{\log t}-2\right) d t \\
& =(1+o(1)) \int_{\log 2}^{\frac{1}{2} \log x} \frac{1}{v e^{v}} \rho\left(\frac{\log x}{v}-2\right) d v \\
& =(1+o(1)) \int_{\log 2}^{\frac{1}{2} \log x} f(v) d v,
\end{aligned}
$$

say, as $x \rightarrow \infty$. Here,

$$
f(v)=\frac{1}{v e^{v}} \rho\left(\frac{\log x}{v}-2\right) \quad(\log 2 \leq v \leq(\log x) / 2)
$$

Define

$$
\eta(x):=\sqrt{\log x \log \log x}
$$

Setting

$$
\begin{equation*}
h(v)=\frac{1}{v} \exp \left\{-v-\left(\frac{\log x}{v}-2\right)\left(\log \left(\frac{\log x}{v}-2\right)+\log \log \left(\frac{\log x}{v}-2\right)\right)\right\} \tag{3.2}
\end{equation*}
$$

so that $f(v)=(1+o(1)) h(v)$ as $x \rightarrow \infty$ in such a way that $v=o(\log x)$ (here, we used estimate (3.1)), we observe that the maximum of $h(v)$ is obtained when $v=(\sqrt{2} / 2+o(1)) \eta(x)$ as $x \rightarrow \infty$. Substituting this value in (3.2), we obtain that

$$
\begin{equation*}
Q=e^{-(1+o(1)) \sqrt{2} \eta(x)} \quad(x \rightarrow \infty) \tag{3.3}
\end{equation*}
$$

Hence, if we could assume that $P^{2}(n) \mid n$ and $P^{2}(n+1) \mid n+1$ are two independent events, the following conditional result would then follow from (3.3):

$$
\begin{equation*}
E(x)=x e^{-(2+o(1)) \sqrt{2} \eta(x)}=x e^{-(2+o(1)) \sqrt{2 \log x \log \log x}} \quad(x \rightarrow \infty) . \tag{3.4}
\end{equation*}
$$

Remark 1. This method can be extended to obtain heuristic estimates for $E_{k, \ell}(x)$ for arbitrary integers $k \geq 2$, $\ell \geq 2$. Let $\alpha(\ell)$ be the real number uniquely defined by

$$
\#\left\{n \leq x: P(n)^{\ell} \mid n\right\}=x \exp (-(1+o(1)) \alpha(\ell) \eta(x))
$$

Ivić [7] has given an unconditional proof of the heuristic estimate (3.3) showing in particular that $\alpha(2)$ exists and $\alpha(2)=\sqrt{2}$. We therefore conjecture that

$$
\#\left\{n \leq x: P(n+i)^{\ell} \mid(n+i), i=0,1, \ldots, k-1\right\}=x \exp (-(1+o(1)) \alpha(\ell) k \eta(x))
$$

as $x \rightarrow \infty$.

4 The quest for a lower bound for $E(x)$

Theorem 2. As x becomes large,

$$
\begin{equation*}
E(x) \gg x^{1 / 4} / \log x \tag{4.1}
\end{equation*}
$$

Proof. For any prime p, we easily check that

$$
\left(2 p^{2}-1\right)^{2}-1=4 p^{2}(p-1)(p+1)
$$

implying that

$$
E(x) \gg x^{1 / 4} / \log x
$$

Under the reasonable conjecture that the set of integers n for which $P(n)>P(n+1)$ and $P(n)>P(n-1)$ is of positive lower density, the denominator on the right hand side of (4.1) can be dropped, in which case we would get $E(x) \gg x^{1 / 4}$.

Remark 2. Another polynomial identity yielding to the same conclusion is

$$
n(4 n+3)^{2}+1=(n+1)(4 n+1)^{2} .
$$

The integers $n(4 n+3)^{2}+1$ will be counted by $E(x)$ whenever the conditions $P(4 n+3)>P(n)$ and $P(4 n+1)>P(n+1)$ are simultaneously satisfied. The set of integers simultaneously satisfying these conditions is believed to be of density $1 / 4$. If one could show that this set is indeed of positive lower density, then we would obtain $E(x) \gg x^{1 / 3}$.

Based on the above heuristics, we strongly believe $E(x)$ to be larger than $x^{1-\varepsilon}$ for any $\varepsilon>0$ once x is large, which would at least support the more ambitious estimate (3.4). The problem of proving stronger lower bounds on $E(x)$ is however intrinsically difficult.

Remark 3. Assuming that for some function f such that $\lim _{x \rightarrow \infty} f(x)=\infty$,

$$
\begin{equation*}
E(x) \gg x / f(x) \tag{4.2}
\end{equation*}
$$

one can show that

$$
\begin{equation*}
\#\left\{n \leq x: P(n(n+1)) \leq f(x)^{1+\varepsilon}\right\} \gg x / f(x) \tag{4.3}
\end{equation*}
$$

This observation follows directly from the fact that

$$
\#\left\{n \leq x: P(n)>f(x)^{1+\varepsilon}, P(n)^{2} \mid n\right\} \ll \frac{x}{f(x)^{1+2 \varepsilon}}
$$

The distribution of $P(n(n+1))$ has been the topic of several studies and has proven to be a very tough nut to crack. In order to hope to improve significantly our lower bound (say to obtain $E(x) \gg x^{1+o(1)}$), one would have to show that inequality (4.3) holds for some function $f(x)$ satisfying $f(x)=x^{o(1)}$ as $x \rightarrow \infty$; however, no tool seems currently available to achieve this. Obtaining a lower bound with the right order of magnitude would imply that inequality (4.3) holds with $f(x) \ll \exp (\eta(x))$, which seems a remote achievement.

5 An upper bound for $E(x)$

Let

$$
\begin{aligned}
\Psi(x, y ; q, a) & =\#\{n \leq x: P(n) \leq y, n \equiv a \quad(\bmod q)\} \\
\Psi_{q}(x, y) & =\#\{n \leq x: P(n) \leq y,(n, q)=1\}
\end{aligned}
$$

Starting from a trivial estimate in the initial range, Granville proved (see formulas (1.2) and (1.3) in [5]) that, for any fixed positive number A and uniformly in the range $x \geq y \geq 2, q \leq \min \left(x, y^{A}\right)$, and $(a, q)=1$, the estimate

$$
\begin{equation*}
\Psi(x, y ; q, a)=\frac{1}{\phi(q)} \Psi_{q}(x, y)\left\{1+O_{A}\left(\frac{\log q}{\log y}\right)\right\} \tag{5.1}
\end{equation*}
$$

holds. By a more delicate argument, in the same paper, Granville proved the following stronger result.

Theorem 3 (Granville). For any fixed $\varepsilon>0$ and uniformly in the range $x \geq y \geq 2$, $1 \leq q \leq y^{1-\varepsilon}$, and $(a, q)=1$, we have

$$
\begin{equation*}
\Psi(x, y ; q, a)=\frac{1}{\phi(q)} \Psi_{q}(x, y)\left\{1+O_{A}\left(\frac{\log q}{u^{c} \log y}+\frac{1}{\log y}\right)\right\} \tag{5.2}
\end{equation*}
$$

where c is some positive constant.
Note that (5.2) implies the lower estimate

$$
\Psi(x, y ; q, a) \gg \frac{1}{\phi(q)} \Psi_{q}(x, y)
$$

provided q is less than a sufficiently small power of y, while (5.1) shows that the corresponding upper bound holds whenever q does not exceed x and is bounded by a fixed, but arbitrarily large power of y.

For one, we have

$$
E(x)<E_{1,2}(x)=x e^{-(\sqrt{2}+o(1)) \eta(x)} \quad(x \rightarrow \infty) .
$$

On the other hand, recall that from the previous section, we expect to have

$$
E(x)=x e^{-(2 \sqrt{2}+o(1)) \eta(x)} \quad(x \rightarrow \infty)
$$

We will now prove an intermediate result.
Theorem 4. The inequality

$$
E(x) \ll x e^{-c \eta(x)}
$$

holds for large x with $c=(25 / 24) \sqrt{2} \in(\sqrt{2}, 2 \sqrt{2})$.

Proof. Let $0<a<\sqrt{2} / 2$ be a constant whose exact value will be determined later, and consider the interval

$$
I_{a}(x):=[\exp ((\sqrt{2} / 2-a) \eta(x)), \exp ((\sqrt{2} / 2+a) \eta(x))] .
$$

We split the positive integers $n \leq x$ counted by $E(x)$ in two categories.
Category 1. Numbers $n \leq x$ for which both $P(n) \in I_{a}(x)$ and $P(n+1) \in I_{a}(x)$ hold.

Category 2. Numbers $n \leq x$ for which $P(n) \notin I_{a}(x)$ or $P(n+1) \notin I_{a}(x)$.
Let $C_{1}(x)$ (resp. $C_{2}(x)$) be the number of integers $n \leq x$ which belong to Category 1 (resp. Category 2).

In order to count the number of integers $n \leq x$ falling into Category 1 we first consider those integers n for which the corresponding largest primes $p=P(n)$ and $q=P(n+1)$ satisfy $p>q$ and let $C_{1}^{\prime}(x)$ be their counting number. Let $C_{1}^{\prime \prime}(x)$ stand for the other $n \leq x$ counted by $C_{1}(x)$.

Writing $n=m p^{2}$ with $P(m) \leq p$ and $m p^{2}+1 \equiv 0\left(\bmod q^{2}\right)$, we then get

$$
\begin{equation*}
C_{1}^{\prime}(x) \leq \sum_{p \in I_{a}(x)} \sum_{q \in I_{a}(x)} \Psi\left(\frac{x}{p^{2}}, p ; q^{2}, r\right), \tag{5.3}
\end{equation*}
$$

where r stands for the inverse of $-p^{2}$ modulo q^{2}. In order to be able to use the Granville estimate (5.2), we choose a small $\varepsilon>0$ and relax (5.3) to

$$
\begin{equation*}
C_{1}^{\prime}(x) \leq \sum_{p \in I_{a}(x)} \sum_{q \in I_{a}(x)} \Psi\left(\frac{x}{p^{2}}, p^{2+\varepsilon} ; q^{2}, r\right) \tag{5.4}
\end{equation*}
$$

Now, using (5.2), we obtain from (5.4) that

$$
\begin{equation*}
C_{1}^{\prime}(x) \ll \sum_{p \in I_{a}(x)} \sum_{q \in I_{a}(x)} \frac{1}{q^{2}} \Psi\left(\frac{x}{p^{2}}, p^{2+\varepsilon}\right) . \tag{5.5}
\end{equation*}
$$

Since

$$
\sum_{q \in I_{a}(x)} \frac{1}{q^{2}} \ll \sum_{n>\exp ((\sqrt{2} / 2-a) \eta(x))} \frac{1}{n^{2}} \ll \exp (-(\sqrt{2} / 2-a) \eta(x))
$$

it follows from (5.5) that

$$
\begin{equation*}
C_{1}^{\prime}(x) \ll \exp (-(\sqrt{2} / 2-a) \eta(x)) \sum_{p \in I_{a}(x)} \Psi\left(\frac{x}{p^{2}}, p^{2+\varepsilon}\right) \tag{5.6}
\end{equation*}
$$

Setting $e^{v}=p$ and proceeding as in Section 3, we easily obtain that

$$
\begin{equation*}
\sum_{p \in I_{a}(x)} \Psi\left(\frac{x}{p^{2}}, p^{2+\varepsilon}\right) \ll x \int_{(\sqrt{2} / 2-a) \eta(x)}^{(\sqrt{2} / 2+a) \eta(x)} \frac{1}{v e^{v}} \rho\left(\frac{\log x}{(2+\varepsilon) v}-\frac{2}{2+\varepsilon}\right) d v \tag{5.7}
\end{equation*}
$$

Bringing together (5.6) and (5.7), recalling the known estimate

$$
\begin{equation*}
\rho(u) \ll \exp (-u \log u) \tag{5.8}
\end{equation*}
$$

(see for instance Corollary 9.18 in the book of De Koninck and Luca [4]), we obtain

$$
\begin{align*}
& C_{1}^{\prime}(x) \ll x \exp (-(\sqrt{2} / 2-a) \eta(x)) \\
& 9) \tag{5.9}\\
& \\
& \quad \times \max _{e^{v} \in I_{a}(x)} \exp \left(\left(-v-\frac{\log x}{(2+\varepsilon) v} \log \left(\frac{\log x}{(2+\varepsilon) v}\right)\right)(1+o(1))\right) .
\end{align*}
$$

Setting $v=c \eta(x)$, we get that

$$
\begin{align*}
& \max _{e^{v} \in I_{a}(x)} \exp \left(-v-\frac{\log x}{(2+\varepsilon) v} \log \left(\frac{\log x}{(2+\varepsilon) v}\right)(1+o(1))\right) \\
& \quad=\max _{\sqrt{2} / 2-a \leq c \leq \sqrt{2} / 2+a} \exp \left(\left(-c-\frac{1}{2(2+\varepsilon) c}+o(1)\right) \eta(x)\right) \\
& =\exp \left(\left(-(\sqrt{2} / 2-a)-\frac{1}{2(2+\varepsilon)(\sqrt{2} / 2-a)}+o(1)\right) \eta(x)\right) \\
& =\exp \left(\left(-(\sqrt{2} / 2-a)-\frac{1}{(2+\varepsilon)(\sqrt{2}-2 a)}+o(1)\right) \eta(x)\right) \tag{5.10}
\end{align*}
$$

Gathering (5.9) and (5.10), we obtain that

$$
\begin{equation*}
C_{1}^{\prime}(x) \leq x \exp \left(\left(-\sqrt{2}+2 a-\frac{1}{(2+\varepsilon)(\sqrt{2}-2 a)}+o(1)\right) \eta(x)\right) \tag{5.11}
\end{equation*}
$$

Since ε can be taken arbitrarily small (it particular, it can be made to tend to zero), (5.11) can be replaced by the simpler estimate

$$
\begin{equation*}
C_{1}^{\prime}(x) \leq x \exp \left(\left(-\sqrt{2}+2 a-\frac{1}{2(\sqrt{2}-2 a)}+o(1)\right) \eta(x)\right) \tag{5.12}
\end{equation*}
$$

The case where $q>p$ can be treated in a similar way, this time by setting $m q^{2}=n+1$ where $m \leq x / q^{2}$ must satisfy a congruence condition modulo p^{2}, in which case we obtain an upper bound for $C_{1}^{\prime \prime}(x)$ similar to the one in (5.12), implying that in the end we have that

$$
\begin{equation*}
C_{1}(x) \ll x \exp \left(\left(-\sqrt{2}+2 a-\frac{1}{2(\sqrt{2}-2 a)}+o(1)\right) \eta(x)\right) . \tag{5.13}
\end{equation*}
$$

As we did in the case of $C_{1}(x)$, we split the counting function $C_{2}(x)$ in two. Let $C_{2}^{\prime}(x)$ (resp. $\left.C_{2}^{\prime \prime}(x)\right)$ be the cardinality of those numbers $n \leq x$ such that $P(n) \notin I_{a}(x)$ (resp. $\left.P(n+1) \notin I_{a}(x)\right)$, so that $C_{2}(x) \leq C_{2}^{\prime}(x)+C_{2}^{\prime \prime}(x)$.

We first deal with $C_{2}^{\prime}(x)$.

We clearly have

$$
\begin{equation*}
C_{2}^{\prime}(x) \leq \#\left\{n \leq x: P(n)^{2} \mid n, P(n) \notin I_{a}(x)\right\} . \tag{5.14}
\end{equation*}
$$

The right hand side of (5.14) can be estimated as we did in Section 3 so that

$$
C_{2}^{\prime}(x) \leq I_{1}(x)+I_{2}(x)
$$

where

$$
I_{1}(x):=x \int_{\log 2}^{(\sqrt{2} / 2-a) \eta(x)} \frac{1}{v e^{v}} \rho\left(\frac{\log x}{v}-2\right) d v
$$

and

$$
I_{2}(x):=x \int_{(\sqrt{2} / 2+a) \eta(x)}^{\frac{1}{2} \log x} \frac{1}{v e^{v}} \rho\left(\frac{\log x}{v}-2\right) d v
$$

Again using (5.8), we easily obtain that

$$
I_{1} \ll x \exp \left(\left(-\left(\frac{\sqrt{2}}{2}-a\right)-\frac{1}{\sqrt{2}-2 a}\right) \eta(x)\right)
$$

and

$$
I_{2} \ll x \exp \left(\left(-\left(\frac{\sqrt{2}}{2}+a\right)-\frac{1}{\sqrt{2}+2 a}\right) \eta(x)\right) .
$$

Combining these upper bounds, we obtain that

$$
\begin{equation*}
C_{2}^{\prime}(x) \ll x \exp \left(\left(-\left(\frac{\sqrt{2}}{2}+a\right)-\frac{1}{\sqrt{2}+2 a}\right) \eta(x)\right) . \tag{5.15}
\end{equation*}
$$

The same reasoning leads to an upper bound for $C_{2}^{\prime \prime}(x)$ similar to the one in (5.15), thus implying that

$$
\begin{equation*}
C_{2}(x) \ll x \exp \left(\left(-\left(\frac{\sqrt{2}}{2}+a\right)-\frac{1}{\sqrt{2}+2 a}\right) \eta(x)\right) . \tag{5.16}
\end{equation*}
$$

The choice of a is optimal when the bounds in (5.13) and (5.16) coincide, that is when

$$
-\sqrt{2}+2 a-\frac{1}{2 \sqrt{2}-4 a}=-\frac{\sqrt{2}}{2}-a-\frac{1}{\sqrt{2}+2 a} .
$$

The above equation simplifies to

$$
-\frac{\sqrt{2}}{2}+3 a=\frac{-\sqrt{2}+6 a}{4-8 a^{2}}
$$

Thus, in the end, a is given by the solution to the third degree equation

$$
24 a^{3}-4 \sqrt{2} a^{2}-6 a+\sqrt{2}=0
$$

Setting a^{*} as the solution of this last equation, we find that $a^{*}=\sqrt{2} / 6$, so that

$$
c:=\sqrt{2}-2 a^{*}+\frac{1}{2 \sqrt{2}-4 a^{*}}=\frac{25}{24} \sqrt{2}
$$

which completes the proof of the theorem.
Remark 4. This method can be extended to show that

$$
E_{k, \ell}(x) \ll x \exp (-\beta(k, \ell) \eta(x)),
$$

where the constants $\beta(k, \ell)$ satisfy the two properties

$$
\alpha(\ell)<\beta(k, \ell)<k \alpha(\ell)
$$

and

$$
\beta(k, \ell) \asymp \sqrt{k} \quad(k \rightarrow \infty)
$$

for any fixed integer ℓ.

6 Consecutive integers divisible by a power of their r-th largest prime factor

In this section, we will use the prime k-tuples Conjecture, namely:
Conjecture 1. (Prime k-tuples Conjecture (weak form)). Let $k \geq 2$ be an integer. Let a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} be integers such that each $a_{i}>00$ and for which there exist no fixed prime number dividing $\left(a_{1} n+b_{1}\right) \cdots\left(a_{k} n+b_{k}\right)$ for all positive integers n. Then there exist infinitely many integers n for which the numbers $a_{i} n+b_{i}$ for $i=1, \ldots, k$ are simultaneously primes.

This conjecture is also believed to hold in the following quantitative form:
Conjecture 2. (Prime k-Tuples Conjecture (strong form)). Let $k \geq 2$ be an integer. Let a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} be integers such that each $a_{i}>00$ and for which there exist no fixed prime number dividing $\left(a_{1} n+b_{1}\right) \cdots\left(a_{k} n+b_{k}\right)$ for all positive integers n. Define $S(x)$ as the set of integers $n \leq x$ for which $a_{i} n+b_{i}$ for $i=1, \ldots, k$, are simultaneously primes. Then there exists a positive constant C depending on $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$ such that

$$
\begin{equation*}
\# S(x)=(1+o(1)) C \frac{x}{(\log x)^{k}} \quad(x \rightarrow \infty) \tag{6.1}
\end{equation*}
$$

The above conjectures can be found in Chapter 2 of our book [4].
The upper bound implied in the above conjecture has been proved unconditionally using sieve methods (see Chapter 2 of [6]). We state it as follows.

Theorem 5. Let $k \geq 2$ be an integer. Let a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} be integers such that each $a_{i}>0$ and such that there exists no fixed prime number which divides $\left(a_{1} n+b_{1}\right) \cdots\left(a_{k} n+b_{k}\right)$ for all positive integers n. Define $S(x)$ as the set of integers $n \leq x$ for which $a_{i} n+b_{i}$ for $i=1, \ldots, k$, are simultaneously primes. Then

$$
\begin{equation*}
\# S(x) \ll \frac{x}{(\log x)^{k}} \tag{6.2}
\end{equation*}
$$

Given an integer $n \geq 2$, let $\omega(n)$ stand for its number of distinct prime factors and let $p(n)$ be its smallest prime factor. Set $\omega(1)=0$ and $p(1)=1$. Given an integer $n \geq 2$ written as $n=q_{1}^{\alpha_{1}} \cdots q_{s}^{\alpha_{s}}$, where $q_{1}<\cdots<q_{s}$ are primes, and given a positive integer $r \leq s:=\omega(n)$, we let $P_{r}(n)$ stand for the r-th largest prime factor of n, that is $P_{r}(n)=q_{s-r+1}$. In particular, $P_{1}(n)=P(n)$.

Finally, given positive integers k, ℓ, r, let

$$
\begin{aligned}
E_{k, \ell}^{(r)} & =\left\{n \in \mathbb{N}: P_{r}^{\ell}(n+i) \mid n+i \text { for } i=0,1, \ldots, k-1\right\}, \\
E_{k, \ell}^{(r)}(x) & =\#\left\{n \leq x: n \in E_{k, \ell}^{(r)}\right\}
\end{aligned}
$$

We will now prove two conditional results and a third unconditional one.
Theorem 6. Assume that the Prime k-tuples Conjecture (weak form) is true. Given integers $r \geq 2, k \geq 1$ and $\ell \geq 1$, then $\# E_{k, \ell}^{(r)}=+\infty$.

Theorem 7. Assume that the Prime k-tuples Conjecture (strong form) is true. Given integers $k \geq 1$ and $\ell \geq 1$, then

$$
E_{k, \ell}^{(2)}(x)=\frac{x}{(\log x)^{k(1+o(1))}} \quad(x \rightarrow \infty)
$$

Theorem 8. Given integers $k \geq 1$ and $\ell \geq 1$, then

$$
E_{k, \ell}^{(2)}(x) \ll \frac{x}{(\log x)^{k}} .
$$

Proof of Theorem 6. In fact, we will prove more, namely that given an arbitrary integer ℓ and any k primes $p_{0}<p_{1}<\cdots<p_{k-1}$ with $p_{0}>k$, there exist infinitely many positive integers n such that $P_{r}^{\ell}(n+i) \mid n+i$ and $P_{r}(n+i)=p_{i}$ for all $i=0,1, \ldots, k-1$.

We will apply a technique used by the first author [3] to prove the existence of infinitely many integers n such that $\beta(n)=\beta(n+1)=\cdots=\beta(n+k-1)$, where $\beta(n)=\sum_{p \mid n, p<P(n)} p$, assuming the Prime k-tuples Conjecture.

Let us first consider the case $r=2$. Set

$$
Q_{i}=p_{i}^{\ell} \quad(i=0,1, \ldots, k-1)
$$

Then let $Q=\prod_{i=0}^{k-1} Q_{i}$ and consider the system of congruences

$$
\left\{\begin{array}{lccc}
n & \equiv & Q_{0} & \left(\bmod Q_{0}^{2}\right) \tag{6.3}\\
n+1 & \equiv & Q_{1} & \left(\bmod Q_{1}^{2}\right) \\
& \vdots & & \\
n+k-1 & \equiv & Q_{k-1} & \left(\bmod Q_{k-1}^{2}\right)
\end{array}\right.
$$

By the Chinese Remainder Theorem, this system of congruences has a positive solution $n=n_{0}<Q^{2}$, all other solutions being given by

$$
n=n_{0}+m Q^{2}, \quad m=0,1,2, \ldots
$$

Observe that

$$
\begin{equation*}
\operatorname{gcd}\left(\frac{n_{0}+i}{Q_{i}}, Q\right)=1 \quad \text { for } \quad i=0,1, \ldots, k-1 \tag{6.4}
\end{equation*}
$$

Then, for each $i=0,1, \ldots, k-1$, we have

$$
n+i=n_{0}+i+m Q^{2}=Q_{i}\left(\frac{n_{0}+i}{Q_{i}}+m \frac{Q^{2}}{Q_{i}}\right)=Q_{i} p_{i}(m)
$$

say. Observe that each $p_{i}(m)$ is a linear polynomial in m of the form $p_{i}(m)=a_{i}+b_{i} m$, where $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$, in light of (6.4). For each $i \in\{0,1, \ldots, k-1\}$, write $a_{i}=a_{i}^{\prime} a_{i}^{\prime \prime}$, where a_{i}^{\prime} is the largest divisor of a_{i} with $P\left(a_{i}^{\prime}\right) \leq k$. Let also $A=\operatorname{lcm}\left[a_{i}^{\prime}: 0 \leq i \leq\right.$ $k-1]$. Note that A is a multiple of all primes $q \leq k$. Indeed, for each $q \leq k$, there exists $i \in\{0,1, \ldots, k-1\}$ such that $q \mid n_{0}+i=Q_{i} a_{i}$, and since q does not divide Q_{i}, it follows that $q \mid a_{i}$. Now take $m=A^{2} \ell$. Then $p_{i}(m)=a_{i}^{\prime}\left(a_{i}^{\prime \prime}+\left(A^{2} / a_{i}^{\prime}\right) \ell\right)=a_{i}^{\prime} q_{i}(\ell)$ for $i=0,1, \ldots, k-1$. If we could find an infinite sequence of positive integers $r_{1}<r_{2}<\cdots$ such that, for each positive integer j, the corresponding number $q_{i}\left(r_{j}\right)$ is a prime number larger than p_{k-1} for $i=0,1, \ldots, k-1$, then our result would be proved for the case $r=2$. Indeed, in this case, we would have that, for each positive integer j and each $i \in\{0,1, \ldots, k-1\}$,

$$
P_{2}(n+i)=P_{2}\left(Q_{i} a_{i}^{\prime} q_{i}\left(r_{j}\right)\right)=p_{i}
$$

and since by construction, we already have $p_{i}^{\ell} \mid n+i$, the result would follow immediately.

But, assuming the Prime k-tuples Conjecture, there exist infinitely many integers ℓ such that $q_{0}(\ell), \ldots, q_{k-1}(\ell)$ are simultaneously primes, provided that we show that the condition that $q_{0}(\ell) \cdots q_{k-1}(\ell)$ is not a multiple of a fixed prime q for all positive integers ℓ. Well, if $q \leq k$, then $q_{i}(\ell) \equiv a_{i}^{\prime \prime}(\bmod q)$ for all $i=0, \ldots, k-1$, so in fact $q_{0}(\ell) \cdots q_{k-1}(\ell)$ is never a multiple of such a q for any ℓ. If $q>k$, then either q is not one of p_{0}, \ldots, p_{k-1}, in which case choosing ℓ to be any residue class different from the residue classes $a_{i}^{\prime \prime}\left(A^{2} / a_{i}^{\prime}\right)^{-1}(\bmod q)$ (in total, at most k of them) will make
$q_{0}(\ell) \cdots q_{k-1}(\ell)$ not a multiple of q, while if $q=p_{j}$ for some $j=0, \ldots, k-1$, then b_{i} is a multiple of q for all $i=0, \ldots, k-1$, so that $q_{i} \equiv a_{i}^{\prime \prime}(\bmod q)$ for $i=0, \ldots, k-1$, and this is nonzero, for if not, then $p_{j} \mid a_{i}$, which is false because $p_{j} \mid b_{i}$ and a_{i} and b_{i} are coprime. This takes care of the case $r=2$.

It remains to consider the case $r \geq 3$. This time, we let $m_{0}, m_{1}, \ldots, m_{k-1}$ be distinct positive integers satisfying the following conditions:
(i) $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ if $i \neq j$;
(ii) $p\left(m_{i}\right)>p_{i}$ for $i=0,1, \ldots, k-1$;
(iii) $\omega\left(m_{i}\right)=r-2$ for $i=0,1, \ldots, k-1$;
(iv) $\operatorname{gcd}\left(m_{i}, p_{j}\right)=1$ for all $i, j \in\{0,1, \ldots, k-1\}$.

Then, set

$$
Q_{i}=p_{i}^{\ell} m_{i} \quad(i=0,1, \ldots, k-1)
$$

and let $Q=\prod_{i=0}^{k-1} Q_{i}$. Now consider the corresponding system of congruences (6.3). Again, by the Chinese Remainder Theorem, this system has a solution $n=n_{0}<Q^{2}$ and all solutions n are of the form $n=n_{0}+m Q^{2}$ for some integer $m \geq 0$. Now, proceeding along the same lines as for the case $r=2$, we obtain that, for each $i=0,1, \ldots, k-1$,

$$
n+i=Q_{i}\left(\frac{n_{0}+i}{Q_{i}}+m \frac{Q^{2}}{Q_{i}}\right)=Q_{i} q_{i}(m)
$$

where each $p_{i}(m)$ is a linear polynomial in m of the form $p_{i}(m)=a_{i}+b_{i} m$, where $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$. And again, taking $m=A^{2} \ell$, writing

$$
p_{i}(m)=a_{i}^{\prime}\left(a_{i}^{\prime \prime}+b_{i}\left(A^{2} / a_{i}^{\prime}\right) \ell\right)=a_{i}^{\prime} q_{i}(\ell)
$$

and applying the Prime k-tuples Conjecture to the polynomials $q_{0}(\ell), \cdots q_{k-1}(\ell)$, we can say that, for some positive integer ℓ, the numbers $q_{0}(\ell), q_{1}(\ell), \ldots, q_{k-1}(\ell)$ are simultaneously primes and in fact that this phenomenon occurs for infinitely many positive integers ℓ, thus completing the proof of Theorem 6 .

Proof of Theorem 7. The proof is similar to the one of Theorem 6. Indeed assume that $P_{2}(n)=p_{1}, P_{2}(n+1)=p_{2}, \ldots, P_{2}(n+k-1)=p_{k}$. Let Q be defined as above. Then, according to the strong from of the Prime k-tuples Conjecture, we obtain that

$$
\# E_{k, \ell}^{(2)}(x)=\sum_{p_{1}, p_{2}, \ldots, p_{k}} \frac{x}{\left(p_{1} p_{2} \cdots p_{k}\right)^{\ell}} \frac{1}{(\log x)^{k}}=\frac{x}{(\log x)^{k(1+o(1))}} \quad(x \rightarrow \infty)
$$

thus establishing our claim.

Proof of Theorem 8. We can proceed exactly as we did with the proof of Theorem 7 except that we replace the conditional equality (6.1) by the unconditional upper bound (6.2).

Remark 5. If we relax our definition of $E_{k, \ell}^{(r)}$ to

$$
E_{k, \ell}^{(r), *}=\left\{n \in \mathbb{N}: P_{j}^{\ell}(n+i) \mid n+i \text { for some } j \leq r \text { and for } i=0,1, \ldots, k-1\right\},
$$

then the argument developed in the proof of Theorem 6 yields unconditionally that the sets $E_{k, \ell}^{(r), *}$ are infinite as long as $r \geq k(\ell-1)+1$.

7 Numerical data

Let $\rho=\rho(x)$ be the unique positive real number satisfying $E(x)=x^{\rho}$, then we have the following table:

x	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}
$E(x)$	1	2	5	13	28	79	204	549	1509	4231	12072
$\rho(x)$	0	0.15	0.233	0.278	0.289	0.316	0.330	0.342	0.353	0.363	0.371

8 Conjectures and related problems

We conjecture that for each pair of positive integers k, ℓ, the set $E_{k, \ell}$ is non empty. In particular, $\# E_{k, \ell}=\infty$.

We also conjecture that, given any two positive integers k and ℓ, there exists a constant $C=C_{k, \ell}$ such that any k-tuples of primes $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ satisfying $\min _{0 \leq i \leq k-1} p_{i}>C$, there exists $n \in E_{k, \ell}$ for which

$$
\begin{equation*}
P(n+i)=p_{i} \quad \text { for } 0 \leq i \leq k-1 . \tag{8.1}
\end{equation*}
$$

However, observe that given fixed positive integers k and ℓ and a particular k-tuples of primes $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ satisfying condition (8.1) for some $n \in E_{k, \ell}$, then, by Theorem 1, the number of such n 's is finite for $k \geq 2$ and $\ell \geq 2$.

While the problem of determining how often consecutive integers are divisible by a given power of their largest prime factor is very hard, it is easy to determine how often consecutive integers are divisible by a power of their smallest prime factors. Indeed, one could easily show that, if $p(n)$ stands for the smallest prime factor of $n \geq 2$, then, as $x \rightarrow \infty$,

$$
\#\left\{n \leq x: p(n+i)^{\ell} \mid(n+i), i=0,1, \ldots, k-1\right\}=(1+o(1)) x F_{k, \ell}
$$

for some positive constant $F_{k, \ell}$ that can be numerically computed for any given values of k and ℓ. This simple observation leads naturally to the two related following problems:

1. What is the asymptotic behavior of $F_{k, \ell}$ as k and/or ℓ tends to infinity?
2. What can one say about the quantity

$$
\#\left\{n \leq x: p_{s}(n+i)^{\ell} \mid(n+i), i=0,1, \ldots, k-1\right\}
$$

where $p_{s}(n)$ stands for the s-th smaller prime factor of n, if s is a function of x and/or of n ? At first glance the problem becomes increasingly difficult when s is a rapidly growing function of n or of x. For instance, setting $s=\lfloor 0.5 \omega(n)\rfloor$, one could try to examine how often consecutive integers are divisible by a power of their middle prime factor.

References

[1] A. Balog, On triplets with descending largest prime factors, Studia Sci. Math. Hungar. 38 (2001), 45-50.
[2] J.M. De Koninck, Those Fascinating Numbers, American Mathematical Society, Providence, RI, 426 pages, 2009.
[3] J.M. De Koninck, Computational results and queries in number theory, Annales Univ. Sci. Budapest 23 (2004), 149-161.
[4] J.M. De Koninck and F. Luca, Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, Vol. 134, American Mathematical Society, Providence, Rhode Island, 2012.
[5] A. Granville, On integers, without large prime factors, in arithmetic progressions II, Philosophical Transactions of the Royal Society 345 (1993), 349-362.
[6] H. Halbertstam and H..-E. Richert, Sieve methods, Academic Press, 1974.
[7] A. Ivić, On certain large additive functions, Paul Erdős and his Mathematics I, Budapest, 2002, 319-331.
[8] T.N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathemnatics 87, Cambridge University Press, Cambridge, 1986.

Jean-Marie De Koninck
Département de mathématiques et de statistique
Université Laval
Québec, Québec G1V 0A6

Canada

jmdk@mat.ulaval.ca

Nicolas Doyon
Département de mathématiques et de statistique
Université Laval
Québec, Québec G1V 0A6
Canada
nicodoyon77@hotmail.com

Florian Luca
Centro de Ciencias Matemáticas, UNAM
Apdo. Postal 61-3 (Xangari)
CP 58089, Morelia
Mexico
fluca@matmor.unam.mx

JMDK, le 22 juin 2013; fichier: DoyonDeKoLucaJCNTJune22pm.tex

