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Abstract

Given fixed integers k ≥ 1 and ` ≥ 1, let Ek,` be the set of those pos-
itive integers n such that P (n + i)` | n + i for each i = 0, 1, . . . , k − 1,
where P (n) stands for the largest prime factor of n. We study the count-
ing function given by E(x) = #{n ≤ x : n ∈ E2,2}, showing in particular
that E(x) � x1/4/ log x and that there exists a positive constant c such that
E(x) � x exp{−c

√
log x log log x}. Then, given an integer r ≥ 2, we consider

the problem of searching for consecutive integers each of which is divisible by
a power of its r-th largest prime factor.
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1 Introduction

Let P (n) stand for the largest prime factor of an integer n ≥ 2. Set P (1) = 1. Given
an arbitrary positive integer ` and a finite set of distinct primes, say {p0, p1, . . . , pk−1},
the Chinese Remainder Theorem guarantees the existence of infinitely many integers
n such that p`i | n+ i for i = 0, 1, . . . , k−1. However, this theorem does not guarantee
that such integers n will also have the property that P (n+i) = pi for i = 0, 1, . . . , k−1,
although such is the case in some particular instances, for example when ` = 2, k = 3
and n = 1 294 298, in which case we indeed have

1 294 298 = 2 · 61 · 1032,

1 294 299 = 34 · 19 · 292,

1 294 300 = 22 · 52 · 7 · 432.

This motivates the following definition. Given fixed positive integers k and `, set

Ek,` := {n ∈ N : P (n+ i)` | n+ i for each i = 0, 1, . . . , k − 1}.

Many elements of E2,2, E2,3, E2,4, E2,5 and E3,2 are given in the book of the first
author [2]. However, no elements of E3,3 and E4,2 are known. In fact, if n belongs to
any one of these last two sets, it can be shown that n > 1030.

Nevertheless, it seems reasonable to conjecture that, given any fixed integers k ≥ 2
and ` ≥ 2, then #Ek,` =∞.

This is certainly true in the particular case k = ` = 2, as it is an immediate
consequence of the fact that the Fermat-Pell equation x2 − 2y2 = 1 has infinitely
many positive integer solutions (x, y).
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Here we focus our attention on the size of

E(x) = E2,2(x) := #{n ≤ x : n ∈ E2,2}.

Then, for a given integer r ≥ 2, we consider the problem of searching for consec-
utive integers each of which is divisible by a power of its r-th largest prime factor.

2 Preliminary results

Theorem 1. Let p and q be two distinct prime numbers. Then, there are only finitely
many integers n for which P (n)2 | n and P (n + 1)2 | (n + 1) with P (n) = p and
P (n+ 1) = q.

Proof. This follows immediately from the fact that, as n becomes large,

(2.1) max(P (n), P (n+ 1))� log log n.

How does one obtain (2.1) ? There is a deep theorem in diophantine analysis which
asserts that if f(x) ∈ Z[x] is a polynomial with at least two distinct roots, then
there exists a positive constant C := C(f) such that P (f(n)) > C log log n if n is
sufficiently large. This result can be found in the book of Shorey and Tijdeman [8] (see
inequality (31) on Page 134). Thus, choosing f(x) = (x+ 1)(x+ 2), we immediately
obtain (2.1).

3 Evaluating the size of E(x)

One can obtain the expected size of E(x) as follows. Let us first recall the Ψ function
defined as

Ψ(x, y) = #{n ≤ x : P (n) ≤ y} (2 ≤ y ≤ x).

It is known that, setting u = log x/ log y, then, keeping u fixed, we have

Ψ(x, y) = (1 + o(1))ρ(u)x (x→∞),

where ρ(u) is the Dickman function, whose behavior is given by

(3.1) ρ(u) = exp{−u(log u+ log log u− 1 + o(1))} as (u→∞)

(see for instance Theorem 9.3 in the book of De Koninck and Luca [4]).

The probability Q that P (n)2 | n is

Q =
1

x

∑
n≤x

P 2(n)|n

1 =
1

x

∑
mp2≤x
P (m)≤p

1 =
1

x

∑
p≤x1/2

Ψ

(
x

p2
, p

)
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= (1 + o(1))
∑
p≤x1/2

1

p2
ρ

(
log x

log p
− 2

)

= (1 + o(1))

∫ √x
2

1

t2 log t
ρ

(
log x

log t
− 2

)
dt

= (1 + o(1))

∫ 1
2
log x

log 2

1

vev
ρ

(
log x

v
− 2

)
dv

= (1 + o(1))

∫ 1
2
log x

log 2

f(v) dv,

say, as x→∞. Here,

f(v) =
1

vev
ρ

(
log x

v
− 2

)
(log 2 ≤ v ≤ (log x)/2).

Define
η(x) :=

√
log x log log x.

Setting
(3.2)

h(v) =
1

v
exp

{
−v −

(
log x

v
− 2

)(
log

(
log x

v
− 2

)
+ log log

(
log x

v
− 2

))}
,

so that f(v) = (1 + o(1))h(v) as x → ∞ in such a way that v = o(log x) (here,
we used estimate (3.1)), we observe that the maximum of h(v) is obtained when
v = (

√
2/2 + o(1))η(x) as x→∞. Substituting this value in (3.2), we obtain that

(3.3) Q = e−(1+o(1))
√
2η(x) (x→∞).

Hence, if we could assume that P 2(n) | n and P 2(n+ 1) | n+ 1 are two independent
events, the following conditional result would then follow from (3.3):

(3.4) E(x) = xe−(2+o(1))
√
2η(x) = xe−(2+o(1))

√
2 log x log log x (x→∞).

Remark 1. This method can be extended to obtain heuristic estimates for Ek,`(x) for
arbitrary integers k ≥ 2, ` ≥ 2. Let α(`) be the real number uniquely defined by

#{n ≤ x : P (n)`|n} = x exp(−(1 + o(1))α(`)η(x)).

Ivić [7] has given an unconditional proof of the heuristic estimate (3.3) showing in
particular that α(2) exists and α(2) =

√
2. We therefore conjecture that

#{n ≤ x : P (n+ i)`|(n+ i), i = 0, 1, . . . , k − 1} = x exp(−(1 + o(1))α(`)kη(x))

as x→∞.
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4 The quest for a lower bound for E(x)

Theorem 2. As x becomes large,

(4.1) E(x)� x1/4/ log x.

Proof. For any prime p, we easily check that

(2p2 − 1)2 − 1 = 4p2(p− 1)(p+ 1),

implying that
E(x)� x1/4/ log x.

Under the reasonable conjecture that the set of integers n for which P (n) > P (n+ 1)
and P (n) > P (n− 1) is of positive lower density, the denominator on the right hand
side of (4.1) can be dropped, in which case we would get E(x)� x1/4.

Remark 2. Another polynomial identity yielding to the same conclusion is

n(4n+ 3)2 + 1 = (n+ 1)(4n+ 1)2.

The integers n(4n + 3)2 + 1 will be counted by E(x) whenever the conditions
P (4n+ 3) > P (n) and P (4n+ 1) > P (n+ 1) are simultaneously satisfied. The set of
integers simultaneously satisfying these conditions is believed to be of density 1/4. If
one could show that this set is indeed of positive lower density, then we would obtain
E(x)� x1/3.

Based on the above heuristics, we strongly believe E(x) to be larger than x1−ε for
any ε > 0 once x is large, which would at least support the more ambitious estimate
(3.4). The problem of proving stronger lower bounds on E(x) is however intrinsically
difficult.

Remark 3. Assuming that for some function f such that limx→∞ f(x) =∞,

(4.2) E(x)� x/f(x),

one can show that

(4.3) #{n ≤ x : P (n(n+ 1)) ≤ f(x)1+ε} � x/f(x).

This observation follows directly from the fact that

#{n ≤ x : P (n) > f(x)1+ε, P (n)2|n} � x

f(x)1+2ε
.

The distribution of P (n(n + 1)) has been the topic of several studies and has
proven to be a very tough nut to crack. In order to hope to improve significantly our
lower bound (say to obtain E(x)� x1+o(1)), one would have to show that inequality
(4.3) holds for some function f(x) satisfying f(x) = xo(1) as x→∞; however, no tool
seems currently available to achieve this. Obtaining a lower bound with the right
order of magnitude would imply that inequality (4.3) holds with f(x) � exp(η(x)),
which seems a remote achievement.
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5 An upper bound for E(x)

Let

Ψ(x, y; q, a) = #{n ≤ x : P (n) ≤ y, n ≡ a (mod q)},
Ψq(x, y) = #{n ≤ x : P (n) ≤ y, (n, q) = 1}.

Starting from a trivial estimate in the initial range, Granville proved (see formulas
(1.2) and (1.3) in [5]) that, for any fixed positive number A and uniformly in the
range x ≥ y ≥ 2, q ≤ min(x, yA), and (a, q) = 1, the estimate

(5.1) Ψ(x, y; q, a) =
1

φ(q)
Ψq(x, y)

{
1 +OA

(
log q

log y

)}
holds. By a more delicate argument, in the same paper, Granville proved the following
stronger result.

Theorem 3 (Granville). For any fixed ε > 0 and uniformly in the range x ≥ y ≥ 2,
1 ≤ q ≤ y1−ε, and (a, q) = 1, we have

(5.2) Ψ(x, y; q, a) =
1

φ(q)
Ψq(x, y)

{
1 +OA

(
log q

uc log y
+

1

log y

)}
,

where c is some positive constant.

Note that (5.2) implies the lower estimate

Ψ(x, y; q, a)� 1

φ(q)
Ψq(x, y)

provided q is less than a sufficiently small power of y, while (5.1) shows that the
corresponding upper bound holds whenever q does not exceed x and is bounded by a
fixed, but arbitrarily large power of y.

For one, we have

E(x) < E1,2(x) = xe−(
√
2+o(1))η(x) (x→∞).

On the other hand, recall that from the previous section, we expect to have

E(x) = xe−(2
√
2+o(1))η(x) (x→∞).

We will now prove an intermediate result.

Theorem 4. The inequality
E(x)� xe−cη(x)

holds for large x with c = (25/24)
√

2 ∈ (
√

2, 2
√

2).
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Proof. Let 0 < a <
√

2/2 be a constant whose exact value will be determined later,
and consider the interval

Ia(x) :=
[
exp

(
(
√

2/2− a)η(x)
)
, exp

(
(
√

2/2 + a)η(x)
)]
.

We split the positive integers n ≤ x counted by E(x) in two categories.

Category 1. Numbers n ≤ x for which both P (n) ∈ Ia(x) and P (n + 1) ∈ Ia(x)
hold.

Category 2. Numbers n ≤ x for which P (n) 6∈ Ia(x) or P (n+ 1) 6∈ Ia(x).

Let C1(x) (resp. C2(x)) be the number of integers n ≤ x which belong to Category
1 (resp. Category 2).

In order to count the number of integers n ≤ x falling into Category 1 we first
consider those integers n for which the corresponding largest primes p = P (n) and
q = P (n+ 1) satisfy p > q and let C ′1(x) be their counting number. Let C ′′1 (x) stand
for the other n ≤ x counted by C1(x).

Writing n = mp2 with P (m) ≤ p and mp2 + 1 ≡ 0 (mod q2), we then get

(5.3) C ′1(x) ≤
∑

p∈Ia(x)

∑
q∈Ia(x)

Ψ

(
x

p2
, p; q2, r

)
,

where r stands for the inverse of −p2 modulo q2. In order to be able to use the
Granville estimate (5.2), we choose a small ε > 0 and relax (5.3) to

(5.4) C ′1(x) ≤
∑

p∈Ia(x)

∑
q∈Ia(x)

Ψ

(
x

p2
, p2+ε; q2, r

)
.

Now, using (5.2), we obtain from (5.4) that

(5.5) C ′1(x)�
∑

p∈Ia(x)

∑
q∈Ia(x)

1

q2
Ψ

(
x

p2
, p2+ε

)
.

Since ∑
q∈Ia(x)

1

q2
�

∑
n>exp((

√
2/2−a)η(x))

1

n2
� exp

(
−(
√

2/2− a)η(x)
)
,

it follows from (5.5) that

(5.6) C ′1(x)� exp
(
−(
√

2/2− a)η(x)
) ∑
p∈Ia(x)

Ψ

(
x

p2
, p2+ε

)
.

Setting ev = p and proceeding as in Section 3, we easily obtain that

(5.7)
∑

p∈Ia(x)

Ψ

(
x

p2
, p2+ε

)
� x

∫ (
√
2/2+a)η(x)

(
√
2/2−a)η(x)

1

vev
ρ

(
log x

(2 + ε)v
− 2

2 + ε

)
dv.
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Bringing together (5.6) and (5.7), recalling the known estimate

(5.8) ρ(u)� exp(−u log u)

(see for instance Corollary 9.18 in the book of De Koninck and Luca [4]), we obtain

C ′1(x) � x exp(−(
√

2/2− a)η(x))

× max
ev∈Ia(x)

exp

((
−v − log x

(2 + ε)v
log

(
log x

(2 + ε)v

))
(1 + o(1))

)
.(5.9)

Setting v = cη(x), we get that

max
ev∈Ia(x)

exp

(
−v − log x

(2 + ε)v
log

(
log x

(2 + ε)v

)
(1 + o(1))

)
= max√

2/2−a≤c≤
√
2/2+a

exp

((
−c− 1

2(2 + ε)c
+ o(1)

)
η(x)

)
= exp

((
−(
√

2/2− a)− 1

2(2 + ε)(
√

2/2− a)
+ o(1)

)
η(x)

)
= exp

((
−(
√

2/2− a)− 1

(2 + ε)(
√

2− 2a)
+ o(1)

)
η(x)

)
.(5.10)

Gathering (5.9) and (5.10), we obtain that

(5.11) C ′1(x) ≤ x exp

((
−
√

2 + 2a− 1

(2 + ε)(
√

2− 2a)
+ o(1)

)
η(x)

)
.

Since ε can be taken arbitrarily small (it particular, it can be made to tend to zero),
(5.11) can be replaced by the simpler estimate

(5.12) C ′1(x) ≤ x exp

((
−
√

2 + 2a− 1

2(
√

2− 2a)
+ o(1)

)
η(x)

)
.

The case where q > p can be treated in a similar way, this time by setting mq2 = n+1
where m ≤ x/q2 must satisfy a congruence condition modulo p2, in which case we
obtain an upper bound for C ′′1 (x) similar to the one in (5.12), implying that in the
end we have that

(5.13) C1(x)� x exp

((
−
√

2 + 2a− 1

2(
√

2− 2a)
+ o(1)

)
η(x)

)
.

As we did in the case of C1(x), we split the counting function C2(x) in two. Let
C ′2(x) (resp. C ′′2 (x)) be the cardinality of those numbers n ≤ x such that P (n) 6∈ Ia(x)
(resp. P (n+ 1) 6∈ Ia(x)), so that C2(x) ≤ C ′2(x) + C ′′2 (x).

We first deal with C ′2(x).
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We clearly have

(5.14) C ′2(x) ≤ #{n ≤ x : P (n)2|n, P (n) 6∈ Ia(x)}.

The right hand side of (5.14) can be estimated as we did in Section 3 so that

C ′2(x) ≤ I1(x) + I2(x),

where

I1(x) := x

∫ (
√
2/2−a)η(x)

log 2

1

vev
ρ

(
log x

v
− 2

)
dv

and

I2(x) := x

∫ 1
2
log x

(
√
2/2+a)η(x)

1

vev
ρ

(
log x

v
− 2

)
dv.

Again using (5.8), we easily obtain that

I1 � x exp

((
−

(√
2

2
− a

)
− 1√

2− 2a

)
η(x)

)
and

I2 � x exp

((
−

(√
2

2
+ a

)
− 1√

2 + 2a

)
η(x)

)
.

Combining these upper bounds, we obtain that

(5.15) C ′2(x)� x exp

((
−

(√
2

2
+ a

)
− 1√

2 + 2a

)
η(x)

)
.

The same reasoning leads to an upper bound for C ′′2 (x) similar to the one in (5.15),
thus implying that

(5.16) C2(x)� x exp

((
−

(√
2

2
+ a

)
− 1√

2 + 2a

)
η(x)

)
.

The choice of a is optimal when the bounds in (5.13) and (5.16) coincide, that is
when

−
√

2 + 2a− 1

2
√

2− 4a
= −
√

2

2
− a− 1√

2 + 2a
.

The above equation simplifies to

−
√

2

2
+ 3a =

−
√

2 + 6a

4− 8a2
.

Thus, in the end, a is given by the solution to the third degree equation

24a3 − 4
√

2a2 − 6a+
√

2 = 0.
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Setting a∗ as the solution of this last equation, we find that a∗ =
√

2/6, so that

c :=
√

2− 2a∗ +
1

2
√

2− 4a∗
=

25

24

√
2,

which completes the proof of the theorem.

Remark 4. This method can be extended to show that

Ek,`(x)� x exp(−β(k, `)η(x)),

where the constants β(k, `) satisfy the two properties

α(`) < β(k, `) < kα(`)

and
β(k, `) �

√
k (k →∞)

for any fixed integer `.

6 Consecutive integers divisible by a power of their

r-th largest prime factor

In this section, we will use the prime k-tuples Conjecture, namely:

Conjecture 1. (Prime k-tuples Conjecture (weak form)). Let k ≥ 2 be an
integer. Let a1, . . . , ak and b1, . . . , bk be integers such that each ai > 00 and for which
there exist no fixed prime number dividing (a1n + b1) · · · (akn + bk) for all positive
integers n. Then there exist infinitely many integers n for which the numbers ain+ bi
for i = 1, . . . , k are simultaneously primes.

This conjecture is also believed to hold in the following quantitative form:

Conjecture 2. (Prime k-tuples Conjecture (strong form)). Let k ≥ 2 be an
integer. Let a1, . . . , ak and b1, . . . , bk be integers such that each ai > 00 and for
which there exist no fixed prime number dividing (a1n + b1) · · · (akn + bk) for all
positive integers n. Define S(x) as the set of integers n ≤ x for which ain + bi
for i = 1, . . . , k, are simultaneously primes. Then there exists a positive constant C
depending on a1, . . . , ak, b1, . . . , bk such that

(6.1) #S(x) = (1 + o(1))C
x

(log x)k
(x→∞).

The above conjectures can be found in Chapter 2 of our book [4].
The upper bound implied in the above conjecture has been proved unconditionally

using sieve methods (see Chapter 2 of [6]). We state it as follows.
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Theorem 5. Let k ≥ 2 be an integer. Let a1, . . . , ak and b1, . . . , bk be integers such
that each ai > 0 and such that there exists no fixed prime number which divides
(a1n+ b1) · · · (akn+ bk) for all positive integers n. Define S(x) as the set of integers
n ≤ x for which ain+ bi for i = 1, . . . , k, are simultaneously primes. Then

(6.2) #S(x)� x

(log x)k
.

Given an integer n ≥ 2, let ω(n) stand for its number of distinct prime factors and
let p(n) be its smallest prime factor. Set ω(1) = 0 and p(1) = 1. Given an integer
n ≥ 2 written as n = qα1

1 · · · qαs
s , where q1 < · · · < qs are primes, and given a positive

integer r ≤ s := ω(n), we let Pr(n) stand for the r-th largest prime factor of n, that
is Pr(n) = qs−r+1. In particular, P1(n) = P (n).

Finally, given positive integers k, `, r, let

E
(r)
k,` = {n ∈ N : P `

r (n+ i) | n+ i for i = 0, 1, . . . , k − 1},

E
(r)
k,` (x) = #{n ≤ x : n ∈ E(r)

k,`}.

We will now prove two conditional results and a third unconditional one.

Theorem 6. Assume that the Prime k-tuples Conjecture (weak form) is true. Given

integers r ≥ 2, k ≥ 1 and ` ≥ 1, then #E
(r)
k,` = +∞.

Theorem 7. Assume that the Prime k-tuples Conjecture (strong form) is true. Given
integers k ≥ 1 and ` ≥ 1, then

E
(2)
k,` (x) =

x

(log x)k(1+o(1))
(x→∞).

Theorem 8. Given integers k ≥ 1 and ` ≥ 1, then

E
(2)
k,` (x)� x

(log x)k
.

Proof of Theorem 6. In fact, we will prove more, namely that given an arbitrary
integer ` and any k primes p0 < p1 < · · · < pk−1 with p0 > k, there exist infinitely
many positive integers n such that P `

r (n + i) | n + i and Pr(n + i) = pi for all
i = 0, 1, . . . , k − 1.

We will apply a technique used by the first author [3] to prove the existence of
infinitely many integers n such that β(n) = β(n + 1) = · · · = β(n + k − 1), where
β(n) =

∑
p|n, p<P (n) p, assuming the Prime k-tuples Conjecture.

Let us first consider the case r = 2. Set

Qi = p`i (i = 0, 1, . . . , k − 1).

10



Then let Q =
∏k−1

i=0 Qi and consider the system of congruences

(6.3)


n ≡ Q0 (mod Q2

0),
n+ 1 ≡ Q1 (mod Q2

1),
...

n+ k − 1 ≡ Qk−1 (mod Q2
k−1).

By the Chinese Remainder Theorem, this system of congruences has a positive solu-
tion n = n0 < Q2, all other solutions being given by

n = n0 +mQ2, m = 0, 1, 2, . . . .

Observe that

(6.4) gcd

(
n0 + i

Qi

, Q

)
= 1 for i = 0, 1, . . . , k − 1.

Then, for each i = 0, 1, . . . , k − 1, we have

n+ i = n0 + i+mQ2 = Qi

(
n0 + i

Qi

+m
Q2

Qi

)
= Qipi(m),

say. Observe that each pi(m) is a linear polynomial in m of the form pi(m) = ai+bim,
where gcd(ai, bi) = 1, in light of (6.4). For each i ∈ {0, 1, . . . , k − 1}, write ai = a′ia

′′
i ,

where a′i is the largest divisor of ai with P (a′i) ≤ k. Let also A = lcm[a′i : 0 ≤ i ≤
k − 1]. Note that A is a multiple of all primes q ≤ k. Indeed, for each q ≤ k, there
exists i ∈ {0, 1, . . . , k− 1} such that q | n0 + i = Qiai, and since q does not divide Qi,
it follows that q | ai. Now take m = A2`. Then pi(m) = a′i(a

′′
i + (A2/a′i)`) = a′iqi(`)

for i = 0, 1, . . . , k − 1. If we could find an infinite sequence of positive integers
r1 < r2 < · · · such that, for each positive integer j, the corresponding number qi(rj)
is a prime number larger than pk−1 for i = 0, 1, . . . , k − 1, then our result would be
proved for the case r = 2. Indeed, in this case, we would have that, for each positive
integer j and each i ∈ {0, 1, . . . , k − 1},

P2(n+ i) = P2(Qia
′
i qi(rj)) = pi,

and since by construction, we already have p`i |n+ i, the result would follow immedi-
ately.

But, assuming the Prime k-tuples Conjecture, there exist infinitely many integers
` such that q0(`), . . . , qk−1(`) are simultaneously primes, provided that we show that
the condition that q0(`) · · · qk−1(`) is not a multiple of a fixed prime q for all positive
integers `. Well, if q ≤ k, then qi(`) ≡ a′′i (mod q) for all i = 0, . . . , k − 1, so in
fact q0(`) · · · qk−1(`) is never a multiple of such a q for any `. If q > k, then either q
is not one of p0, . . . , pk−1, in which case choosing ` to be any residue class different
from the residue classes a′′i (A

2/a′i)
−1 (mod q) (in total, at most k of them) will make

11



q0(`) · · · qk−1(`) not a multiple of q, while if q = pj for some j = 0, . . . , k − 1, then bi
is a multiple of q for all i = 0, . . . , k− 1, so that qi ≡ a′′i (mod q) for i = 0, . . . , k− 1,
and this is nonzero, for if not, then pj | ai, which is false because pj | bi and ai and bi
are coprime. This takes care of the case r = 2.

It remains to consider the case r ≥ 3. This time, we let m0,m1, . . . ,mk−1 be
distinct positive integers satisfying the following conditions:

(i) gcd(mi,mj) = 1 if i 6= j;

(ii) p(mi) > pi for i = 0, 1, . . . , k − 1;

(iii) ω(mi) = r − 2 for i = 0, 1, . . . , k − 1;

(iv) gcd(mi, pj) = 1 for all i, j ∈ {0, 1, . . . , k − 1}.

Then, set
Qi = p`imi (i = 0, 1, . . . , k − 1)

and let Q =
∏k−1

i=0 Qi. Now consider the corresponding system of congruences (6.3).
Again, by the Chinese Remainder Theorem, this system has a solution n = n0 < Q2

and all solutions n are of the form n = n0 + mQ2 for some integer m ≥ 0. Now,
proceeding along the same lines as for the case r = 2, we obtain that, for each
i = 0, 1, . . . , k − 1,

n+ i = Qi

(
n0 + i

Qi

+m
Q2

Qi

)
= Qi qi(m),

where each pi(m) is a linear polynomial in m of the form pi(m) = ai + bim, where
gcd(ai, bi) = 1. And again, taking m = A2`, writing

pi(m) = a′i(a
′′
i + bi(A

2/a′i)`) = a′iqi(`)

and applying the Prime k-tuples Conjecture to the polynomials q0(`), · · · qk−1(`), we
can say that, for some positive integer `, the numbers q0(`), q1(`), . . . , qk−1(`) are
simultaneously primes and in fact that this phenomenon occurs for infinitely many
positive integers `, thus completing the proof of Theorem 6.

Proof of Theorem 7. The proof is similar to the one of Theorem 6. Indeed assume
that P2(n) = p1, P2(n+ 1) = p2, . . . , P2(n+ k− 1) = pk. Let Q be defined as above.
Then, according to the strong from of the Prime k-tuples Conjecture, we obtain that

#E
(2)
k,` (x) =

∑
p1,p2,...,pk

x

(p1p2 · · · pk)`
1

(log x)k
=

x

(log x)k(1+o(1))
(x→∞),

thus establishing our claim.

12



Proof of Theorem 8. We can proceed exactly as we did with the proof of Theorem
7 except that we replace the conditional equality (6.1) by the unconditional upper
bound (6.2).

Remark 5. If we relax our definition of E
(r)
k,` to

E
(r),∗
k,` = {n ∈ N : P `

j (n+ i) | n+ i for some j ≤ r and for i = 0, 1, . . . , k − 1},

then the argument developed in the proof of Theorem 6 yields unconditionally that the
sets E

(r),∗
k,` are infinite as long as r ≥ k(`− 1) + 1.

7 Numerical data

Let ρ = ρ(x) be the unique positive real number satisfying E(x) = xρ, then we have
the following table:

x 10 102 103 104 105 106 107 108 109 1010 1011

E(x) 1 2 5 13 28 79 204 549 1509 4231 12072
ρ(x) 0 0.15 0.233 0.278 0.289 0.316 0.330 0.342 0.353 0.363 0.371

8 Conjectures and related problems

We conjecture that for each pair of positive integers k, `, the set Ek,` is non empty.
In particular, #Ek,` =∞.

We also conjecture that, given any two positive integers k and `, there exists
a constant C = Ck,` such that any k-tuples of primes (p0, p1, . . . , pk−1) satisfying
min0≤i≤k−1 pi > C, there exists n ∈ Ek,` for which

(8.1) P (n+ i) = pi for 0 ≤ i ≤ k − 1.

However, observe that given fixed positive integers k and ` and a particular k-tuples
of primes (p0, p1, . . . , pk−1) satisfying condition (8.1) for some n ∈ Ek,`, then, by
Theorem 1, the number of such n’s is finite for k ≥ 2 and ` ≥ 2.

While the problem of determining how often consecutive integers are divisible by
a given power of their largest prime factor is very hard, it is easy to determine how
often consecutive integers are divisible by a power of their smallest prime factors.
Indeed, one could easily show that, if p(n) stands for the smallest prime factor of
n ≥ 2, then, as x→∞,

#{n ≤ x : p(n+ i)`|(n+ i), i = 0, 1, . . . , k − 1} = (1 + o(1))xFk,`

for some positive constant Fk,` that can be numerically computed for any given values
of k and `. This simple observation leads naturally to the two related following
problems:
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1. What is the asymptotic behavior of Fk,` as k and/or ` tends to infinity ?

2. What can one say about the quantity

#{n ≤ x : ps(n+ i)`|(n+ i), i = 0, 1, . . . , k − 1},

where ps(n) stands for the s-th smaller prime factor of n, if s is a function of x
and/or of n ? At first glance the problem becomes increasingly difficult when s
is a rapidly growing function of n or of x. For instance, setting s = b0.5ω(n)c,
one could try to examine how often consecutive integers are divisible by a power
of their middle prime factor.
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