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Abstract

Given an integer q ≥ 2, a q-normal number is an irrational number
η such that any preassigned sequence of k digits occurs in the q-ary
expansion of η at the expected frequency, namely 1/qk. Given an
integer q ≥ 3, we consider the sequence of primes reduced modulo
q and examine various possibilities of constructing normal numbers
using this sequence. We create a sequence of independent random
variables that mimics the sequence of primes and then show that for
almost all outcomes this allows to obtain a normal number.
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1 Introduction

Given an integer q ≥ 2, a q-normal number, or simply a normal number,
is an irrational number whose q-ary expansion is such that any preassigned
sequence, of length k ≥ 1, of base q digits from this expansion, occurs at
the expected frequency, namely 1/qk.

In earlier papers [3], [4], [5], [6], we used the complexity of the factoriza-
tion of integers to create large families of normal numbers. In this paper,
given an integer q ≥ 3, we consider the sequence of primes reduced modulo
q and examine various possibilities of constructing normal numbers using
this sequence.

Let Aq := {0, 1, . . . , q − 1}. Given an integer t ≥ 1, an expression of
the form i1i2 . . . it, where each ij ∈ Aq, is called a finite word of length t.
The symbol Λ will denote the empty word. We let Atq stand for the set of
all words of length t and A∗q stand for the set of all the words regardless of
their length. An infinite sequence of digits a1a2 . . ., where each ai ∈ Aq, is
called an infinite word.

An infinite sequence of base q digits a1a2 . . . will be said to be a normal
sequence if any preassigned sequence of k digits occurs at the expected
frequency of 1/qk.

1Research supported in part by a grant from NSERC.
2Research supported by ELTE IK.
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Given a fixed integer q ≥ 3, let

fq(n) =

{
Λ if (n, q) 6= 1,
` if n ≡ ` (mod q), (`, q) = 1.

Further, letting ϕ stand for the Euler function, set

Bϕ(q) = {`1, . . . , `ϕ(q)}

be the set of reduced residues modulo q.
Let ℘ stand for the set of all primes, writing p1 < p2 < · · · for the

sequence of consecutive primes, and consider the infinite word

ξq = fq(p1)fq(p2)fq(p3) . . .

We first state the following conjecture.

Conjecture 1. The word ξq is a normal sequence over Bϕ(q) in the sense
that given any integer k ≥ 1 and any word β = r1 . . . rk ∈ Bk

ϕ(q), then,
setting

ξ(N)
q = fq(p1)fq(p2) . . . fq(pN) for each N ∈ N

and
MN(ξq|β) := #{(γ1, γ2)|ξ(N)

q = γ1βγ2},

we have

lim
N→∞

MN(ξq|β)

N
=

1

ϕ(q)k
.

Now, with the above notation, consider the following weaker conjecture.

Conjecture 2. For every finite word β, there exists a positive integer N
such that MN(ξq|β) > 0.

Remark 1. Observe that, in 2000, Shiu [10] provided some hope in the
direction of a proof of this last conjecture by proving that given any positive
integer k, there exists a string of congruent primes of length k, that is a set
of consecutive primes pn+1 < pn+2 < · · · < pn+k (where pi stands for the
i-th prime) such that

pn+1 ≡ pn+2 ≡ · · · ≡ pn+k ≡ a (mod q),

for some positive integer n, for any given modulus q and positive integer a
relatively prime with q.
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Let εn be a real function which tends monotonically to 0 as n→∞ but
in such a way that (log log n)εn →∞ as n→∞. Letting p(n) stand for the
smallest prime factor of n, consider the set

(1.1) N (εn) := {n ∈ N : p(n) > nεn} = {n1, n2, . . .}.

We then have the following conjecture.

Conjecture 3. Let n1 < n2 < · · · be the sequence defined in (1.1). Then
the infinite word

ξq := fq(n1)fq(n2) . . .

is a normal sequence over the set {` mod q : (`, q) = 1}.

Although the problem of generating normal numbers using the sequence
of primes does seem inaccessible, we will nevertheless manage to create large
families of normal numbers, in the direction of Conjectures 1, 2 and 3, but
this time using prime-like sequences.

2 Main results

Theorem 1. Let n1 < n2 < · · · be the sequence defined in (1.1). Then the
infinite word

ηq := resq(n1)resq(n2) . . . ,

where resq(n) = ` if n ≡ ` (mod q), contains every finite word whose digits
belong to Bϕ(q) infinitely often.

Remark 2. It is now convenient to recall a famous conjecture concerning
the distribution of primes.

Let F1, . . . , Fg be distinct irreducible polynomials in Z[x] (with positive
leading coefficients) and assume that the product F := F1 · · ·Fg has no fixed
prime divisor. Then the famous Hypothesis H of Schinzel and Sierpinski [9]
states that there exist infinitely many integers n such that each Fi(n) (i =
1, . . . , g) is a prime number. The following quantitative form of Hypothesis
H was later given by Bateman and Horn ([1],[2]):

(Bateman-Horn Hypothesis) If Q(F1, . . . , Fg;x) stands for
the number of positive integers n ≤ x such that each Fi(n) (i =
1, . . . , g) is a prime number, then

Q(F1, . . . , Fg;x) = (1 + o(1))
C(F1, . . . , Fg)

h1 · · ·hg
x

logg x
(x→∞),

where hi = degFi and

C(F1, . . . , Fg) =
∏
p

((
1− 1

p

)−g (
1− ρ(p)

p

))
,
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with ρ(p) denoting the number of solutions of F1(n) · · ·Fg(n) ≡ 0
(mod p).

Theorem 2. Let β be an arbitrary word belonging to Bk
ϕ(q) and let ξq be

defined as in Conjecture 3. If the Bateman-Horn Hypothesis holds, then

MN(ξq|β)→∞ as N →∞.

Let

λm =

{
0 if m = 1, 2, . . . , 10,
1/ logm if m ≥ 11.

Let ξm be a sequence of independent random variables defined by P (ξm =
1) = λm and P (ξm = 0) = 1− λm. Let Ω be the set of all possible events ω
in this probability space.

Let ω be a particular outcome, say m1,m2, . . ., that is one for which
ξmj = 1 for j = 1, 2, . . . and ξ` = 0 if ` 6∈ {m1,m2, . . .}. Now, for a fixed
integer q ≥ 3, set resq(m) = ` if m ≡ ` (mod q), with ` ∈ Aq. Then, let
ηq(ω) be the real number whose q-ary expansion is given by

ηq(ω) = 0.resq(m1)resq(m2) . . .

We then have the following result.

Theorem 3. The number ηq(ω) is a q-normal number for almost all out-
comes ω.

3 Preliminary results

For here on, the letter c will be used to denote a positive constant, but not
necessarily the same at each occurrence.

Lemma 1. Let q ≥ 2, k ≥ 1 and M ≥ 1 be fixed integers. Given any
nonnegative integer n < qM , write its q-ary expansion as

n =
M−1∑
j=0

εj(n)qj, εj(n) ∈ Aq

and, given any word α = b1 . . . bk ∈ Akq , set

Eα(n) := #{j ∈ {0, 1, . . . ,M − k} : εj(n) . . . εj+k−1(n) = α}.

Then, there exists a constant c = c(k, q) such that∑
0≤n<qM

(
Eα(n)− M

qk

)2

≤ c qM M.
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Proof. Let

f(c1, . . . , ck) =

{
1 if (c1, . . . , ck) = (b1, . . . , bk),
0 otherwise.

Then,

Σ1 :=
∑

0≤n<qM
Eα(n) =

∑
0≤n<qM

M−k−1∑
j=0

f(εj(n), . . . , εj+k−1(n)) = qM−k(M−k).

Similarly,

Σ2 :=
∑

0≤n<qM
Eα(n)2

=
∑

0≤n<qM

M−k−1∑
j1=0

M−k−1∑
j2=0

f(εj1(n), . . . , εj1+k−1(n)) · f(εj2(n), . . . , εj2+k−1(n))

=
∑

0≤n<qM

∑
|j1−j2|≤k

f(εj1(n), . . . , εj1+k−1(n)) · f(εj2(n), . . . , εj2+k−1(n))

+
∑

0≤n<qM

∑
|j1−j2|>k

f(εj1(n), . . . , εj1+k−1(n)) · f(εj2(n), . . . , εj2+k−1(n))

= Σ2,1 + Σ2,2,

say.
On the one hand, it is clear that

(3.1) 0 ≤ Σ2,1 ≤ (2k + 1)qM−k(M − k) ≤ cqMM.

On the other hand, to estimate Σ2,2, first observe that for fixed j1, j2 with
|j1 − j2| > k, we have to sum 1 over those n ∈ [0, qM − 1[ for which

εj1(n) . . . εj1+k−1(n) = α = εj2(n) . . . εj2+k−1(n).

But this occurs exactly for qM−2k many n’s. Thus,

(3.2) Σ2,2 = qM−2k
∑

|j1−j2|>k
0≤j1,j2≤M−k−1

1 = qM−2kM2 +O(qMM).

In light of (3.1) and (3.2), it follows that∑
0≤n<qM

(
Eα(n)− M

qk

)2

= Σ2 − 2
M

qk
Σ1 +

M2

q2k
qM

= qM−2kM2 +O(qMM)− 2
M2

q2k
qM +

M2

q2k
qM

= O(qMM),

thus completing the proof of the lemma.
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Lemma 2. Given a fixed positive integer R, consider the word κ = c1 . . . cR ∈
ARq . Fix another word α = b1 . . . bk ∈ Akq , with k ≤ R. Let K1 stand for the
number of solutions (γ1, γ2) of κ = γ1αγ2, that is the number of those j’s
for which cj+1 . . . cj+k = α. Then, given fixed indices i1, . . . , iH , let K2 be
the number of solutions of cj+1 . . . cj+k = α for which {j + 1, . . . , j + k} ∩
{i1, . . . , iH} = ∅ holds. Then,

0 ≤ K1 −K2 ≤ 2kH.

Proof. The proof is obvious.

Lemma 3 (Borel-Cantelli Lemma). Let {En}n∈N be an infinite sequence of
events in some probability space. Assuming that the sum of the probabilities

of the En’s is finite, that is,
∞∑
n=1

P (En) < +∞, then the probability that

infinitely many of them occur is 0.

Proof. For a proof of this result, see the book of Janos Galambos [8].

Lemma 4. Let F1, . . . , Fg be distinct irreducible polynomials in Z[x] (with
positive leading coefficients) and set F := F1 · · ·Fg. Let ρ(p) stand for the
number of solutions of F (n) ≡ 0 (mod p) and assume that ρ(p) < p for all
primes p. Write p(n) for the smallest prime factor of the integer n ≥ 2 and
assume that u and x are real numbers satisfying u ≥ 1 and x1/u ≥ 2. Then,

#{n ≤ x : Fi(n) = qi for i = 1, . . . , k}

= x
∏

p<x1/u

(
1− ρ(p)

p

)
×
{

1 +OF (exp(−u(log u− log log 3u− log k − 2))) +OF (exp(−
√

log x))
}
.

Proof. This is Theorem 2.6 in the book of Halbertsam and Richert [7].

4 Proof of Theorem 1

Theorem 1 is essentially a consequence of Lemma 4. Indeed, letting a1 <
. . . < ak be positive integers coprime to q and considering the product of
linear polynomials

F (n) := (qn+ a1) · · · (qn+ ak),

we have that
(4.1)

#{n ∈ [x, 2x] : p(F (n)) > (2qx+ ak)
εx} = (1 + o(1))x

∏
p<xεx

(
1− ρ(p)

p

)
.
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If n is counted in (4.1), we certainly have that p(qn+aj) > (qn+aj)
εqn+aj for

j = 1, . . . , k. On the other hand, the desired numbers qn+ aj, j = 1, . . . , k,
are consecutive integers with no small prime factors for all but a negligible
number. Indeed, if they were not consecutive, then there would be an integer
b ∈ (a1, ak) such that p(qn+ b) > xεx . Set Gb(n) := qn+ b. Then we would
have
(4.2)

#{n ∈ [x, 2x] : p(F (n)Gb(n)) > xεx} = (1 + o(1))x
∏
p<xεx

(
1− ρb(p)

p

)
,

where ρb(p) stands for the number of solutions of F (n)Gb(n) ≡ 0 (mod p).
Since ρ(p) = k (recall that the Fi’s are linear) and ρb(p) = k + 1 if p - q,
p > ak, it follows that we have the following two “opposite” inequalities:∏

p<xεx

(
1− ρ(p)

p

)
≥ C(a1, . . . , ak) (εx log x)−k ,

∏
p<xεx

(
1− ρb(p)

p

)
≤ C(a1, . . . , ak) (εx log x)−k−1 .

Now, for the choice of b, we clearly have ak − a1 + 1 − k possible values.
We have thus proved that for every large number x, there is at least one
n ∈ [x, 2x] for which the numbers qn+a1, . . . , qn+ak are consecutive integers
without small prime factors, that is for which p(qn+ aj) > (qn+ aj)

εqn+aj ,
thus completing the proof of Theorem 1.

5 Proof of Theorem 2

The proof of Theorem 2 is almost similar to the one of Theorem 1. Indeed
assume that the Bateman-Horn Hypothesis holds (see Remark 2 above).
Then, let a1 be a positive integer such that a1 ≡ b1 (mod q) and a1 ≡ 0

(mod D), where D =
∏
π≤k
π-q

π, where π are primes. Similarly, let a2 be a

positive integer such that a2 ≡ b2 (mod q) and a2 ≡ 0 (mod D), with
a2 > a1. Continuing in this manner, that is if a1, . . . , a`−1 have been chosen,
we let a` ≡ b` (mod q) with D|a` and a` > a`−1. Then, applying the
Bateman-Horn Hypothesis, we get that if 0 < a1 < · · · < ak are k integers
satisfying (aj, q) = 1 for j = 1, . . . , k, then for each positive integer n,
setting

F (n) = (qn+ a1) · · · (qn+ ak),

letting
ρ(m) = #{ν (mod m) : F (ν) ≡ 0 (mod m)},
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so that ρ(m) = 0 if (m, q) > 1 and ρ(p) < p for each prime p, and further
setting

Πx :=
∏
p∈℘

p≤
√
qx+ak

p,

we have that, as x→∞, letting µ stand for the Moebius function,∑
n≤x

(F (n),Πx)=1

1 =
∑
n≤x

∑
δ|(F (n),Πx)

µ(δ) =
∑
δ|Πx

µ(δ)
∑
n≤x

F (n)≡0 (mod δ)

1

= (1 + o(1))x
∑
δ|Πx

µ(δ)ρ(δ)

δ
= (1 + o(1))x

∏
p≤
√
qx+ak

(
1− ρ(p)

p

)
= (1 + o(1))c

x

logk x
,(5.1)

where c is a positive constant which depends only on a1, . . . , ak.
Now, we can show that almost all prime solutions π1 < · · · < πk repre-

sent a chain of consecutive primes. To see this, assume the contrary, that
is that the primes π1 < · · · < πk are not consecutive, meaning that there
exists a prime π satisfying π1 < π < πk and π 6∈ {π2, . . . , πk−1}. Assume
that π` < π < π`+1 for some ` ∈ {1, . . . , k − 1}. We then have

π2 = π1 + a2 − a1,

π3 = π1 + a3 − a1,
... =

...

π` = π1 + a` − a1,
... =

...

πk = π1 + ak − a1,

π = π1 + d, where a` − a1 < d < a`+1 − a1.

We can now find an upper bound for the number of such k + 1 tuples.
Indeed, by using the Brun-Selberg sieve, one can obtain that the number

of such solutions up to x is no larger than c
x

logk+1 x
, which in light of (5.1)

proves our claim, thus completing the proof of Theorem 2.

6 Proof of Theorem 3

Let N ≥ 3. Choose a positive integer R which is such that S := qN + qR <
qN+1. Then, set

YN,S =
∑

qN≤n<S

ξn and θN,S =
∑

qN≤n<S

ξn(ξn+1 + · · ·+ ξn+q−1).
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Then

E(YN,S) =
∑

qN≤n<S

1

log n
=

(
S

logS
− qN

log qN

)
+O

(
qN

N2

)
,

while

E(YN,S − E(YN,S))2 ≤ c
∑

qN≤n<S

λn ≤ c
qN

N
.

From the Tchebyshev inequality, we then get that

(6.1) P

(
|YN,S − E(YN,S)| >

√
qN+1

log qN+1

)
<

c

N2
.

Similarly

(6.2) P

(
θN,S > c1

qN

N2

)
<

1

N2
.

Now, given T integers n1 < · · · < nT located in the interval [qN , S − 1],
consider the set

Bn1,...,nT = {ω : ξnj = 1 for j = 1, . . . , T and

ξm = 0 if m 6∈ {n1, . . . , nT}, m ∈ [qN , S − 1]}.

Further set

σn =
λn

1− λn
=

1

log(n/e)
and WN,S =

∏
qN≤n<S

(1− λn).

From the above definitions of Bn1,...,nT , σn and WN,S, it follows that

(6.3) P (Bn1,...,nT ) = σn1 · · ·σnTWN,S.

Let us now introduce the intervals

Ja = [qN + aq, qN + (a+ 1)q − 1] (a = 0, 1, . . . , R− 1),

so that

[qN , S] =

qN−qN−1−1⋃
a=0

Ja.

Given n1, . . . , nT , let JM1 , . . . ,JMH
be those intervals which contain

at least two elements (say, JMj
contains kj ≥ 2 elements) from the set

{n1, . . . , nT}.
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Then it follows from (6.2) that∑
∑H
j=1 kj≥cqN/N2

P (Bn1,...,nT ) <
c1

N2
.

Let us now consider those n1, . . . , nT for which
∑H

j=1 kj < cqN/N2. Con-
sider those elements amongst n1, . . . , nT which have kj ≥ 2 fixed elements
in JMj

(j = 1, . . . , H) and exactly one element in the intervals Ja1 , . . . ,JaU .
Define the quantities L and U by

H∑
j=1

kj = L and U = T − L.

Here 0 ≤ a1 < · · · < aU ≤ R− 1 are such that

{a1, . . . , aU} ∩ {M1, . . . ,MH} = ∅.

We shall denote that particular set of n1, . . . , nT by D(a1, . . . , aUN ), that is
a set that contains exactly qU disjoint sets.

Since, for j = 1, . . . , q − 1, we have

0 ≤ σn − σn+j ≤
c

n log2 n
≤ c1

qNN2
,

it follows from (6.3) that

P (Bn1,...,nT ) =
U∏
j=1

σqN+ajq ·
H∏
`=1

σqN+M`q ·WN,S

(
1 +O

(
1

N2qN

))T
.

Since T/N2qN → 0 as N →∞, it follows that(
1 +O

(
1

N2qN

))T
= 1 + o(1) as N →∞.

All this means that

(6.4) P (Bn1,...,nT ) = (1 + o(1))P (Bn′1,...,n
′
T
)

if n1, . . . , nT and n′1, . . . , n
′
T belong to the same set D(a1, . . . , aU).

For a given outcome ω, we now consider

(6.5) η(N,S)
q (ω) := resq(n1) . . . resq(nT )

and we let Fβ(η
(N,S)
q (ω)) be the number of occurrences of the word β as a

subword in η
(N,S)
q (ω). Now, setting

ZN,S :=

{
ω : |YN,S − E(YN,S)| > N

√
qN+1

log qN+1

}
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and

VN,S :=

{
ω : θN,S > c1

qN

N2

}
,

it follows from (6.1) and (6.2) that

P (ZN,S) + P (VN,S) <
c

N2
.

Now, assume that ω 6∈ ZN,S ∪ VN,S. Then, recall definition (6.5) and set

Sβ(n1, . . . , nT ) = #{η(N,S)
q = γ1βγ2 : γ1, γ2 ∈ A∗q}.

In the set D(n1, . . . , nT ), the elements from Jaj can be written as qN +
qaj + `j, where `j ∈ Aq (j = 1, . . . , U). Furthermore, write each integer
µ ≤ qU − 1 as

µ = `1 + `2q + · · ·+ `Uq
U−1.

Then we get

Eβ(µ) = #{(γ1, γ2) ∈ A∗q × A∗q : `1 . . . `U = γ1βγ2}.

Using Lemma 2, we then obtain that

|Sβ(n1, . . . , nT )− Eβ(µ)| ≤ 2k(H + 1).

Now D(a1, . . . , aU) is characterized by choosing all possible values `1 . . . `U ∈
AUq . Hence, letting δN = 1/N , we can apply Lemma 1 and obtain that the
number of those `1 . . . `U for which∣∣∣∣Eβ(µ)− U

qk

∣∣∣∣ > UδN

is less than
cqN

Uδ2
N

. Hence, from (6.4), we obtain that

(6.6) ∑
(n1,...,nT )∈D(a1,...,aU )∣∣∣∣Eβ(µ)− U

qk

∣∣∣∣>UδN
P (Bn1,...,nT ) <

c1

E(YN,S)δ2
N

∑
(n1,...,nT )∈D(a1,...,aU )

P (Bn1,...,nT ).

Now, summing the inequality (6.6) over all possible values of n1, . . . , nT
for which ω 6∈ ZN,S ∪ VN,S, the “new” right hand side of (6.6) is then no

larger than
c1

E(YN,S)
N2.

Collecting the above inequalities, we obtain that if

KN,S :=

{
ω : ω 6∈ ZN,S,

∣∣∣∣Eβ(η(N,S)
q )− T

qk

∣∣∣∣ ≥ 2T

N

}
,
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then
P (KN,S) <

c

N2
.

Hence, if we let

Sj = qN + qN · j

blogNc
(j = 1, . . . ,mN),

where mN = (q2 − q)blogNc, we then have

(6.7) P

(
mN⋃
j=1

(
KN,Sj ∪ ZN,Sj ∪ VN,Sj

))
<
c logN

N2
.

Let Q be the set of those ω which belong to infinitely many of the sets
KN,Sj ∪ ZN,Sj ∪ VN,Sj . Now, summing (6.7) on N = 1, . . . ,∞, we obtain a
finite sum. We may therefore apply the Borel-Cantelli Lemma (Lemma 3)
and conclude that P (Q) = 0.

Now let M1 < M2 < · · · be the sequence of integers which are the mem-

bers of the set

{
qN +

a

blogNc
qN−1 : a = 0, . . . ,mN , N = 3, 4, . . .

}
, and let

ω 6∈ Q. Then, regarding the sequence

ξR = resq(m1) . . . resq(mR),

we have that

(6.8)
Fβ(ξMj

(ω))

Mj

→ 1

qk
(j →∞).

Since 1 ≤ Mj+1

Mj

→ 1 as j →∞, it follows from (6.8) that the relation

Fβ(ξn(ω))

n
→ 1

qk
(n→∞)

also holds. Since this assertion is true for every finite word β, the proof of
the theorem is complete.
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