Prime-like sequences leading to the construction of normal numbers

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai ${ }^{2}$

Abstract

Given an integer $q \geq 2$, a q-normal number is an irrational number η such that any preassigned sequence of k digits occurs in the q-ary expansion of η at the expected frequency, namely $1 / q^{k}$. Given an integer $q \geq 3$, we consider the sequence of primes reduced modulo q and examine various possibilities of constructing normal numbers using this sequence. We create a sequence of independent random variables that mimics the sequence of primes and then show that for almost all outcomes this allows to obtain a normal number.

AMS Subject Classification numbers: 11K16, 11A41, 11N13
Key words: normal numbers, primes, arithmetic progression
Édition du 11 septembre 2012

1 Introduction

Given an integer $q \geq 2$, a q-normal number, or simply a normal number, is an irrational number whose q-ary expansion is such that any preassigned sequence, of length $k \geq 1$, of base q digits from this expansion, occurs at the expected frequency, namely $1 / q^{k}$.

In earlier papers [3], [4], [5], [6], we used the complexity of the factorization of integers to create large families of normal numbers. In this paper, given an integer $q \geq 3$, we consider the sequence of primes reduced modulo q and examine various possibilities of constructing normal numbers using this sequence.

Let $A_{q}:=\{0,1, \ldots, q-1\}$. Given an integer $t \geq 1$, an expression of the form $i_{1} i_{2} \ldots i_{t}$, where each $i_{j} \in A_{q}$, is called a finite word of length t. The symbol Λ will denote the empty word. We let A_{q}^{t} stand for the set of all words of length t and A_{q}^{*} stand for the set of all the words regardless of their length. An infinite sequence of digits $a_{1} a_{2} \ldots$, where each $a_{i} \in A_{q}$, is called an infinite word.

An infinite sequence of base q digits $a_{1} a_{2} \ldots$ will be said to be a normal sequence if any preassigned sequence of k digits occurs at the expected frequency of $1 / q^{k}$.

[^0]Given a fixed integer $q \geq 3$, let

$$
f_{q}(n)= \begin{cases}\Lambda & \text { if }(n, q) \neq 1 \\ \ell & \text { if } n \equiv \ell \quad(\bmod q), \quad(\ell, q)=1\end{cases}
$$

Further, letting φ stand for the Euler function, set

$$
B_{\varphi(q)}=\left\{\ell_{1}, \ldots, \ell_{\varphi(q)}\right\}
$$

be the set of reduced residues modulo q.
Let \wp stand for the set of all primes, writing $p_{1}<p_{2}<\cdots$ for the sequence of consecutive primes, and consider the infinite word

$$
\xi_{q}=f_{q}\left(p_{1}\right) f_{q}\left(p_{2}\right) f_{q}\left(p_{3}\right) \ldots
$$

We first state the following conjecture.
Conjecture 1. The word ξ_{q} is a normal sequence over $B_{\varphi(q)}$ in the sense that given any integer $k \geq 1$ and any word $\beta=r_{1} \ldots r_{k} \in B_{\varphi(q)}^{k}$, then, setting

$$
\xi_{q}^{(N)}=f_{q}\left(p_{1}\right) f_{q}\left(p_{2}\right) \ldots f_{q}\left(p_{N}\right) \quad \text { for each } \quad N \in \mathbb{N}
$$

and

$$
M_{N}\left(\xi_{q} \mid \beta\right):=\#\left\{\left(\gamma_{1}, \gamma_{2}\right) \mid \xi_{q}^{(N)}=\gamma_{1} \beta \gamma_{2}\right\}
$$

we have

$$
\lim _{N \rightarrow \infty} \frac{M_{N}\left(\xi_{q} \mid \beta\right)}{N}=\frac{1}{\varphi(q)^{k}}
$$

Now, with the above notation, consider the following weaker conjecture.
Conjecture 2. For every finite word β, there exists a positive integer N such that $M_{N}\left(\xi_{q} \mid \beta\right)>0$.

Remark 1. Observe that, in 2000, Shiu [10] provided some hope in the direction of a proof of this last conjecture by proving that given any positive integer k, there exists a string of congruent primes of length k, that is a set of consecutive primes $p_{n+1}<p_{n+2}<\cdots<p_{n+k}$ (where p_{i} stands for the i-th prime) such that

$$
p_{n+1} \equiv p_{n+2} \equiv \cdots \equiv p_{n+k} \equiv a \quad(\bmod q),
$$

for some positive integer n, for any given modulus q and positive integer a relatively prime with q.

Let ε_{n} be a real function which tends monotonically to 0 as $n \rightarrow \infty$ but in such a way that $(\log \log n) \varepsilon_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Letting $p(n)$ stand for the smallest prime factor of n, consider the set

$$
\begin{equation*}
\mathcal{N}^{\left(\varepsilon_{n}\right)}:=\left\{n \in \mathbb{N}: p(n)>n^{\varepsilon_{n}}\right\}=\left\{n_{1}, n_{2}, \ldots\right\} \tag{1.1}
\end{equation*}
$$

We then have the following conjecture.
Conjecture 3. Let $n_{1}<n_{2}<\cdots$ be the sequence defined in (1.1). Then the infinite word

$$
\xi_{q}:=f_{q}\left(n_{1}\right) f_{q}\left(n_{2}\right) \ldots
$$

is a normal sequence over the set $\{\ell \bmod q:(\ell, q)=1\}$.
Although the problem of generating normal numbers using the sequence of primes does seem inaccessible, we will nevertheless manage to create large families of normal numbers, in the direction of Conjectures 1,2 and 3, but this time using prime-like sequences.

2 Main results

Theorem 1. Let $n_{1}<n_{2}<\cdots$ be the sequence defined in (1.1). Then the infinite word

$$
\eta_{q}:=\operatorname{res}_{q}\left(n_{1}\right) \operatorname{res}_{q}\left(n_{2}\right) \ldots,
$$

where $\operatorname{res}_{q}(n)=\ell$ if $n \equiv \ell(\bmod q)$, contains every finite word whose digits belong to $B_{\varphi(q)}$ infinitely often.

Remark 2. It is now convenient to recall a famous conjecture concerning the distribution of primes.

Let F_{1}, \ldots, F_{g} be distinct irreducible polynomials in $\mathbb{Z}[x]$ (with positive leading coefficients) and assume that the product $F:=F_{1} \cdots F_{g}$ has no fixed prime divisor. Then the famous Hypothesis H of Schinzel and Sierpinski [9] states that there exist infinitely many integers n such that each $F_{i}(n)(i=$ $1, \ldots, g)$ is a prime number. The following quantitative form of Hypothesis H was later given by Bateman and Horn ([1],[2]):
(Bateman-Horn Hypothesis) If $Q\left(F_{1}, \ldots, F_{g} ; x\right)$ stands for the number of positive integers $n \leq x$ such that each $F_{i}(n)(i=$ $1, \ldots, g$) is a prime number, then

$$
Q\left(F_{1}, \ldots, F_{g} ; x\right)=(1+o(1)) \frac{C\left(F_{1}, \ldots, F_{g}\right)}{h_{1} \cdots h_{g}} \frac{x}{\log ^{g} x} \quad(x \rightarrow \infty)
$$

where $h_{i}=\operatorname{deg} F_{i}$ and

$$
C\left(F_{1}, \ldots, F_{g}\right)=\prod_{p}\left(\left(1-\frac{1}{p}\right)^{-g}\left(1-\frac{\rho(p)}{p}\right)\right)
$$

with $\rho(p)$ denoting the number of solutions of $F_{1}(n) \cdots F_{g}(n) \equiv 0$ $(\bmod p)$.

Theorem 2. Let β be an arbitrary word belonging to $B_{\varphi(q)}^{k}$ and let ξ_{q} be defined as in Conjecture 3. If the Bateman-Horn Hypothesis holds, then

$$
M_{N}\left(\xi_{q} \mid \beta\right) \rightarrow \infty \quad \text { as } N \rightarrow \infty
$$

Let

$$
\lambda_{m}= \begin{cases}0 & \text { if } m=1,2, \ldots, 10 \\ 1 / \log m & \text { if } m \geq 11\end{cases}
$$

Let ξ_{m} be a sequence of independent random variables defined by $P\left(\xi_{m}=\right.$ $1)=\lambda_{m}$ and $P\left(\xi_{m}=0\right)=1-\lambda_{m}$. Let Ω be the set of all possible events ω in this probability space.

Let ω be a particular outcome, say m_{1}, m_{2}, \ldots, that is one for which $\xi_{m_{j}}=1$ for $j=1,2, \ldots$ and $\xi_{\ell}=0$ if $\ell \notin\left\{m_{1}, m_{2}, \ldots\right\}$. Now, for a fixed integer $q \geq 3$, set $\operatorname{res}_{q}(m)=\ell$ if $m \equiv \ell(\bmod q)$, with $\ell \in A_{q}$. Then, let $\eta_{q}(\omega)$ be the real number whose q-ary expansion is given by

$$
\eta_{q}(\omega)=0 \cdot \operatorname{res}_{q}\left(m_{1}\right) \operatorname{res}_{q}\left(m_{2}\right) \ldots
$$

We then have the following result.
Theorem 3. The number $\eta_{q}(\omega)$ is a q-normal number for almost all outcomes ω.

3 Preliminary results

For here on, the letter c will be used to denote a positive constant, but not necessarily the same at each occurrence.

Lemma 1. Let $q \geq 2, k \geq 1$ and $M \geq 1$ be fixed integers. Given any nonnegative integer $n<q^{M}$, write its q-ary expansion as

$$
n=\sum_{j=0}^{M-1} \varepsilon_{j}(n) q^{j}, \quad \varepsilon_{j}(n) \in A_{q}
$$

and, given any word $\alpha=b_{1} \ldots b_{k} \in A_{q}^{k}$, set

$$
E_{\alpha}(n):=\#\left\{j \in\{0,1, \ldots, M-k\}: \varepsilon_{j}(n) \ldots \varepsilon_{j+k-1}(n)=\alpha\right\}
$$

Then, there exists a constant $c=c(k, q)$ such that

$$
\sum_{0 \leq n<q^{M}}\left(E_{\alpha}(n)-\frac{M}{q^{k}}\right)^{2} \leq c q^{M} M
$$

Proof. Let

$$
f\left(c_{1}, \ldots, c_{k}\right)= \begin{cases}1 & \text { if }\left(c_{1}, \ldots, c_{k}\right)=\left(b_{1}, \ldots, b_{k}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Then,
$\Sigma_{1}:=\sum_{0 \leq n<q^{M}} E_{\alpha}(n)=\sum_{0 \leq n<q^{M}} \sum_{j=0}^{M-k-1} f\left(\varepsilon_{j}(n), \ldots, \varepsilon_{j+k-1}(n)\right)=q^{M-k}(M-k)$.
Similarly,

$$
\begin{aligned}
\Sigma_{2}:= & \sum_{0 \leq n<q^{M}} E_{\alpha}(n)^{2} \\
= & \sum_{0 \leq n<q^{M}} \sum_{j_{1}=0}^{M-k-1} \sum_{j_{2}=0}^{M-k-1} f\left(\varepsilon_{j_{1}}(n), \ldots, \varepsilon_{j_{1}+k-1}(n)\right) \cdot f\left(\varepsilon_{j_{2}}(n), \ldots, \varepsilon_{j_{2}+k-1}(n)\right) \\
= & \sum_{0 \leq n<q^{M}} \sum_{\left|j_{1}-j_{2}\right| \leq k} f\left(\varepsilon_{j_{1}}(n), \ldots, \varepsilon_{j_{1}+k-1}(n)\right) \cdot f\left(\varepsilon_{j_{2}}(n), \ldots, \varepsilon_{j_{2}+k-1}(n)\right) \\
& \quad+\sum_{0 \leq n<q^{M}} \sum_{\left|j_{1}-j_{2}\right|>k} f\left(\varepsilon_{j_{1}}(n), \ldots, \varepsilon_{j_{1}+k-1}(n)\right) \cdot f\left(\varepsilon_{j_{2}}(n), \ldots, \varepsilon_{j_{2}+k-1}(n)\right) \\
= & \Sigma_{2,1}+\Sigma_{2,2},
\end{aligned}
$$

say.
On the one hand, it is clear that

$$
\begin{equation*}
0 \leq \Sigma_{2,1} \leq(2 k+1) q^{M-k}(M-k) \leq c q^{M} M . \tag{3.1}
\end{equation*}
$$

On the other hand, to estimate $\Sigma_{2,2}$, first observe that for fixed j_{1}, j_{2} with $\left|j_{1}-j_{2}\right|>k$, we have to sum 1 over those $n \in\left[0, q^{M}-1[\right.$ for which

$$
\varepsilon_{j_{1}}(n) \ldots \varepsilon_{j_{1}+k-1}(n)=\alpha=\varepsilon_{j_{2}}(n) \ldots \varepsilon_{j_{2}+k-1}(n)
$$

But this occurs exactly for $q^{M-2 k}$ many n 's. Thus,

$$
\begin{equation*}
\Sigma_{2,2}=q^{M-2 k} \sum_{\substack{\text { ij } \\ 0 \leq j_{1}-j_{2} \mid>k \\ 0 \leq M-k-1}} 1=q^{M-2 k} M^{2}+O\left(q^{M} M\right) . \tag{3.2}
\end{equation*}
$$

In light of (3.1) and (3.2), it follows that

$$
\begin{aligned}
\sum_{0 \leq n<q^{M}}\left(E_{\alpha}(n)-\frac{M}{q^{k}}\right)^{2} & =\Sigma_{2}-2 \frac{M}{q^{k}} \Sigma_{1}+\frac{M^{2}}{q^{2 k}} q^{M} \\
& =q^{M-2 k} M^{2}+O\left(q^{M} M\right)-2 \frac{M^{2}}{q^{2 k}} q^{M}+\frac{M^{2}}{q^{2 k}} q^{M} \\
& =O\left(q^{M} M\right)
\end{aligned}
$$

thus completing the proof of the lemma.

Lemma 2. Given a fixed positive integer R, consider the word $\kappa=c_{1} \ldots c_{R} \in$ A_{q}^{R}. Fix another word $\alpha=b_{1} \ldots b_{k} \in A_{q}^{k}$, with $k \leq R$. Let K_{1} stand for the number of solutions $\left(\gamma_{1}, \gamma_{2}\right)$ of $\kappa=\gamma_{1} \alpha \gamma_{2}$, that is the number of those j 's for which $c_{j+1} \ldots c_{j+k}=\alpha$. Then, given fixed indices i_{1}, \ldots, i_{H}, let K_{2} be the number of solutions of $c_{j+1} \ldots c_{j+k}=\alpha$ for which $\{j+1, \ldots, j+k\} \cap$ $\left\{i_{1}, \ldots, i_{H}\right\}=\emptyset$ holds. Then,

$$
0 \leq K_{1}-K_{2} \leq 2 k H
$$

Proof. The proof is obvious.
Lemma 3 (Borel-Cantelli Lemma). Let $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ be an infinite sequence of events in some probability space. Assuming that the sum of the probabilities of the E_{n} 's is finite, that is, $\sum_{n=1}^{\infty} P\left(E_{n}\right)<+\infty$, then the probability that infinitely many of them occur is 0 .

Proof. For a proof of this result, see the book of Janos Galambos [8].
Lemma 4. Let F_{1}, \ldots, F_{g} be distinct irreducible polynomials in $\mathbb{Z}[x]$ (with positive leading coefficients) and set $F:=F_{1} \cdots F_{g}$. Let $\rho(p)$ stand for the number of solutions of $F(n) \equiv 0(\bmod p)$ and assume that $\rho(p)<p$ for all primes p. Write $p(n)$ for the smallest prime factor of the integer $n \geq 2$ and assume that u and x are real numbers satisfying $u \geq 1$ and $x^{1 / u} \geq 2$. Then,

$$
\begin{aligned}
& \#\left\{n \leq x: F_{i}(n)=q_{i} \text { for } i=1, \ldots, k\right\} \\
& =x \prod_{p<x^{1 / u}}\left(1-\frac{\rho(p)}{p}\right) \\
& \quad \times\left\{1+O_{F}(\exp (-u(\log u-\log \log 3 u-\log k-2)))+O_{F}(\exp (-\sqrt{\log x}))\right\} .
\end{aligned}
$$

Proof. This is Theorem 2.6 in the book of Halbertsam and Richert [7].

4 Proof of Theorem 1

Theorem 1 is essentially a consequence of Lemma 4. Indeed, letting $a_{1}<$ $\ldots<a_{k}$ be positive integers coprime to q and considering the product of linear polynomials

$$
F(n):=\left(q n+a_{1}\right) \cdots\left(q n+a_{k}\right)
$$

we have that

$$
\begin{equation*}
\#\left\{n \in[x, 2 x]: p(F(n))>\left(2 q x+a_{k}\right)^{\varepsilon_{x}}\right\}=(1+o(1)) x \prod_{p<x^{\varepsilon_{x}}}\left(1-\frac{\rho(p)}{p}\right) . \tag{4.1}
\end{equation*}
$$

If n is counted in (4.1), we certainly have that $p\left(q n+a_{j}\right)>\left(q n+a_{j}\right)^{\varepsilon_{q n+a_{j}}}$ for $j=1, \ldots, k$. On the other hand, the desired numbers $q n+a_{j}, j=1, \ldots, k$, are consecutive integers with no small prime factors for all but a negligible number. Indeed, if they were not consecutive, then there would be an integer $b \in\left(a_{1}, a_{k}\right)$ such that $p(q n+b)>x^{\varepsilon_{x}}$. Set $G_{b}(n):=q n+b$. Then we would have

$$
\begin{equation*}
\#\left\{n \in[x, 2 x]: p\left(F(n) G_{b}(n)\right)>x^{\varepsilon_{x}}\right\}=(1+o(1)) x \prod_{p<x^{\varepsilon_{x}}}\left(1-\frac{\rho_{b}(p)}{p}\right), \tag{4.2}
\end{equation*}
$$

where $\rho_{b}(p)$ stands for the number of solutions of $F(n) G_{b}(n) \equiv 0(\bmod p)$. Since $\rho(p)=k$ (recall that the F_{i} 's are linear) and $\rho_{b}(p)=k+1$ if $p \nmid q$, $p>a_{k}$, it follows that we have the following two "opposite" inequalities:

$$
\begin{aligned}
\prod_{p<x^{\varepsilon_{x}}}\left(1-\frac{\rho(p)}{p}\right) & \geq C\left(a_{1}, \ldots, a_{k}\right)\left(\varepsilon_{x} \log x\right)^{-k} \\
\prod_{p<x^{\varepsilon_{x}}}\left(1-\frac{\rho_{b}(p)}{p}\right) & \leq C\left(a_{1}, \ldots, a_{k}\right)\left(\varepsilon_{x} \log x\right)^{-k-1}
\end{aligned}
$$

Now, for the choice of b, we clearly have $a_{k}-a_{1}+1-k$ possible values. We have thus proved that for every large number x, there is at least one $n \in[x, 2 x]$ for which the numbers $q n+a_{1}, \ldots, q n+a_{k}$ are consecutive integers without small prime factors, that is for which $p\left(q n+a_{j}\right)>\left(q n+a_{j}\right)^{\varepsilon_{q n+a_{j}}}$, thus completing the proof of Theorem 1.

5 Proof of Theorem 2

The proof of Theorem 2 is almost similar to the one of Theorem 1. Indeed assume that the Bateman-Horn Hypothesis holds (see Remark 2 above). Then, let a_{1} be a positive integer such that $a_{1} \equiv b_{1}(\bmod q)$ and $a_{1} \equiv 0$ $(\bmod D)$, where $D=\prod_{\substack{\pi \leq k \\ \pi \nmid q}} \pi$, where π are primes. Similarly, let a_{2} be a positive integer such that $a_{2} \equiv b_{2}(\bmod q)$ and $a_{2} \equiv 0(\bmod D)$, with $a_{2}>a_{1}$. Continuing in this manner, that is if $a_{1}, \ldots, a_{\ell-1}$ have been chosen, we let $a_{\ell} \equiv b_{\ell}(\bmod q)$ with $D \mid a_{\ell}$ and $a_{\ell}>a_{\ell-1}$. Then, applying the Bateman-Horn Hypothesis, we get that if $0<a_{1}<\cdots<a_{k}$ are k integers satisfying $\left(a_{j}, q\right)=1$ for $j=1, \ldots, k$, then for each positive integer n, setting

$$
F(n)=\left(q n+a_{1}\right) \cdots\left(q n+a_{k}\right),
$$

letting

$$
\rho(m)=\#\{\nu \quad(\bmod m): F(\nu) \equiv 0 \quad(\bmod m)\},
$$

so that $\rho(m)=0$ if $(m, q)>1$ and $\rho(p)<p$ for each prime p, and further setting

$$
\Pi_{x}:=\prod_{\substack{p \in \mathfrak{\varphi} \\ p \leq \sqrt{q x+a_{k}}}} p
$$

we have that, as $x \rightarrow \infty$, letting μ stand for the Moebius function,

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
\left(F(n), \Pi_{x}\right)=1}} 1 & =\sum_{n \leq x} \sum_{\delta \mid\left(F(n), \Pi_{x}\right)} \mu(\delta)=\sum_{\delta \mid \Pi_{x}} \mu(\delta) \sum_{\substack{n \leq x \\
F(n) \equiv 0^{(\bmod \delta)}}} 1 \\
& =(1+o(1)) x \sum_{\delta \mid \Pi_{x}} \frac{\mu(\delta) \rho(\delta)}{\delta}=(1+o(1)) x \prod_{p \leq \sqrt{q x+a_{k}}}\left(1-\frac{\rho(p)}{p}\right) \\
(5.1) \quad & =(1+o(1)) c \frac{x}{\log ^{k} x},
\end{aligned}
$$

where c is a positive constant which depends only on a_{1}, \ldots, a_{k}.
Now, we can show that almost all prime solutions $\pi_{1}<\cdots<\pi_{k}$ represent a chain of consecutive primes. To see this, assume the contrary, that is that the primes $\pi_{1}<\cdots<\pi_{k}$ are not consecutive, meaning that there exists a prime π satisfying $\pi_{1}<\pi<\pi_{k}$ and $\pi \notin\left\{\pi_{2}, \ldots, \pi_{k-1}\right\}$. Assume that $\pi_{\ell}<\pi<\pi_{\ell+1}$ for some $\ell \in\{1, \ldots, k-1\}$. We then have

$$
\begin{aligned}
\pi_{2} & =\pi_{1}+a_{2}-a_{1} \\
\pi_{3} & =\pi_{1}+a_{3}-a_{1} \\
\vdots & =\vdots \\
\pi_{\ell} & =\pi_{1}+a_{\ell}-a_{1} \\
\vdots & =\vdots \\
\pi_{k} & =\pi_{1}+a_{k}-a_{1} \\
\pi & =\pi_{1}+d, \text { where } a_{\ell}-a_{1}<d<a_{\ell+1}-a_{1}
\end{aligned}
$$

We can now find an upper bound for the number of such $k+1$ tuples. Indeed, by using the Brun-Selberg sieve, one can obtain that the number of such solutions up to x is no larger than $c \frac{x}{\log ^{k+1} x}$, which in light of (5.1) proves our claim, thus completing the proof of Theorem 2.

6 Proof of Theorem 3

Let $N \geq 3$. Choose a positive integer R which is such that $S:=q^{N}+q R<$ q^{N+1}. Then, set

$$
Y_{N, S}=\sum_{q^{N} \leq n<S} \xi_{n} \quad \text { and } \quad \theta_{N, S}=\sum_{q^{N} \leq n<S} \xi_{n}\left(\xi_{n+1}+\cdots+\xi_{n+q-1}\right) .
$$

Then

$$
E\left(Y_{N, S}\right)=\sum_{q^{N} \leq n<S} \frac{1}{\log n}=\left(\frac{S}{\log S}-\frac{q^{N}}{\log q^{N}}\right)+O\left(\frac{q^{N}}{N^{2}}\right),
$$

while

$$
E\left(Y_{N, S}-E\left(Y_{N, S}\right)\right)^{2} \leq c \sum_{q^{N} \leq n<S} \lambda_{n} \leq c \frac{q^{N}}{N} .
$$

From the Tchebyshev inequality, we then get that

$$
\begin{equation*}
P\left(\left|Y_{N, S}-E\left(Y_{N, S}\right)\right|>\sqrt{\frac{q^{N+1}}{\log q^{N+1}}}\right)<\frac{c}{N^{2}} \tag{6.1}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
P\left(\theta_{N, S}>c_{1} \frac{q^{N}}{N^{2}}\right)<\frac{1}{N^{2}} . \tag{6.2}
\end{equation*}
$$

Now, given T integers $n_{1}<\cdots<n_{T}$ located in the interval $\left[q^{N}, S-1\right]$, consider the set

$$
\begin{aligned}
& B_{n_{1}, \ldots, n_{T}}=\left\{\omega: \xi_{n_{j}}=1 \text { for } j=1, \ldots, T\right. \text { and } \\
& \left.\quad \xi_{m}=0 \text { if } m \notin\left\{n_{1}, \ldots, n_{T}\right\}, m \in\left[q^{N}, S-1\right]\right\} .
\end{aligned}
$$

Further set

$$
\sigma_{n}=\frac{\lambda_{n}}{1-\lambda_{n}}=\frac{1}{\log (n / e)} \quad \text { and } \quad W_{N, S}=\prod_{q^{N} \leq n<S}\left(1-\lambda_{n}\right)
$$

From the above definitions of $B_{n_{1}, \ldots, n_{T}}, \sigma_{n}$ and $W_{N, S}$, it follows that

$$
\begin{equation*}
P\left(B_{n_{1}, \ldots, n_{T}}\right)=\sigma_{n_{1}} \cdots \sigma_{n_{T}} W_{N, S} . \tag{6.3}
\end{equation*}
$$

Let us now introduce the intervals

$$
\mathcal{J}_{a}=\left[q^{N}+a q, q^{N}+(a+1) q-1\right] \quad(a=0,1, \ldots, R-1),
$$

so that

$$
\left[q^{N}, S\right]=\bigcup_{a=0}^{q^{N}-q^{N-1}-1} \mathcal{J}_{a}
$$

Given n_{1}, \ldots, n_{T}, let $\mathcal{J}_{M_{1}}, \ldots, \mathcal{J}_{M_{H}}$ be those intervals which contain at least two elements (say, $\mathcal{J}_{M_{j}}$ contains $k_{j} \geq 2$ elements) from the set $\left\{n_{1}, \ldots, n_{T}\right\}$.

Then it follows from (6.2) that

$$
\sum_{\sum_{j=1}^{H} k_{j} \geq c q^{N} / N^{2}} P\left(B_{n_{1}, \ldots, n_{T}}\right)<\frac{c_{1}}{N^{2}} .
$$

Let us now consider those n_{1}, \ldots, n_{T} for which $\sum_{j=1}^{H} k_{j}<c q^{N} / N^{2}$. Consider those elements amongst n_{1}, \ldots, n_{T} which have $k_{j} \geq 2$ fixed elements in $\mathcal{J}_{M_{j}}(j=1, \ldots, H)$ and exactly one element in the intervals $\mathcal{J}_{a_{1}}, \ldots, \mathcal{J}_{a_{U}}$.

Define the quantities L and U by

$$
\sum_{j=1}^{H} k_{j}=L \quad \text { and } \quad U=T-L
$$

Here $0 \leq a_{1}<\cdots<a_{U} \leq R-1$ are such that

$$
\left\{a_{1}, \ldots, a_{U}\right\} \cap\left\{M_{1}, \ldots, M_{H}\right\}=\emptyset
$$

We shall denote that particular set of n_{1}, \ldots, n_{T} by $D\left(a_{1}, \ldots, a_{U_{N}}\right)$, that is a set that contains exactly q^{U} disjoint sets.

Since, for $j=1, \ldots, q-1$, we have

$$
0 \leq \sigma_{n}-\sigma_{n+j} \leq \frac{c}{n \log ^{2} n} \leq \frac{c_{1}}{q^{N} N^{2}}
$$

it follows from (6.3) that

$$
P\left(B_{n_{1}, \ldots, n_{T}}\right)=\prod_{j=1}^{U} \sigma_{q^{N}+a_{j} q} \cdot \prod_{\ell=1}^{H} \sigma_{q^{N}+M_{\ell} q} \cdot W_{N, S}\left(1+O\left(\frac{1}{N^{2} q^{N}}\right)\right)^{T}
$$

Since $T / N^{2} q^{N} \rightarrow 0$ as $N \rightarrow \infty$, it follows that

$$
\left(1+O\left(\frac{1}{N^{2} q^{N}}\right)\right)^{T}=1+o(1) \quad \text { as } \quad N \rightarrow \infty
$$

All this means that

$$
\begin{equation*}
P\left(B_{n_{1}, \ldots, n_{T}}\right)=(1+o(1)) P\left(B_{n_{1}^{\prime}, \ldots, n_{T}^{\prime}}\right) \tag{6.4}
\end{equation*}
$$

if n_{1}, \ldots, n_{T} and $n_{1}^{\prime}, \ldots, n_{T}^{\prime}$ belong to the same set $D\left(a_{1}, \ldots, a_{U}\right)$.
For a given outcome ω, we now consider

$$
\begin{equation*}
\eta_{q}^{(N, S)}(\omega):=\operatorname{res}_{q}\left(n_{1}\right) \ldots \operatorname{res}_{q}\left(n_{T}\right) \tag{6.5}
\end{equation*}
$$

and we let $F_{\beta}\left(\eta_{q}^{(N, S)}(\omega)\right)$ be the number of occurrences of the word β as a subword in $\eta_{q}^{(N, S)}(\omega)$. Now, setting

$$
Z_{N, S}:=\left\{\omega:\left|Y_{N, S}-E\left(Y_{N, S}\right)\right|>N \sqrt{\frac{q^{N+1}}{\log q^{N+1}}}\right\}
$$

and

$$
V_{N, S}:=\left\{\omega: \theta_{N, S}>c_{1} \frac{q^{N}}{N^{2}}\right\}
$$

it follows from (6.1) and (6.2) that

$$
P\left(Z_{N, S}\right)+P\left(V_{N, S}\right)<\frac{c}{N^{2}} .
$$

Now, assume that $\omega \notin Z_{N, S} \cup V_{N, S}$. Then, recall definition (6.5) and set

$$
S_{\beta}\left(n_{1}, \ldots, n_{T}\right)=\#\left\{\eta_{q}^{(N, S)}=\gamma_{1} \beta \gamma_{2}: \gamma_{1}, \gamma_{2} \in A_{q}^{*}\right\}
$$

In the set $D\left(n_{1}, \ldots, n_{T}\right)$, the elements from $\mathcal{J}_{a_{j}}$ can be written as $q^{N}+$ $q a_{j}+\ell_{j}$, where $\ell_{j} \in A_{q}(j=1, \ldots, U)$. Furthermore, write each integer $\mu \leq q^{U}-1$ as

$$
\mu=\ell_{1}+\ell_{2} q+\cdots+\ell_{U} q^{U-1}
$$

Then we get

$$
E_{\beta}(\mu)=\#\left\{\left(\gamma_{1}, \gamma_{2}\right) \in A_{q}^{*} \times A_{q}^{*}: \ell_{1} \ldots \ell_{U}=\gamma_{1} \beta \gamma_{2}\right\}
$$

Using Lemma 2, we then obtain that

$$
\left|S_{\beta}\left(n_{1}, \ldots, n_{T}\right)-E_{\beta}(\mu)\right| \leq 2 k(H+1)
$$

Now $D\left(a_{1}, \ldots, a_{U}\right)$ is characterized by choosing all possible values $\ell_{1} \ldots \ell_{U} \in$ A_{q}^{U}. Hence, letting $\delta_{N}=1 / N$, we can apply Lemma 1 and obtain that the number of those $\ell_{1} \ldots \ell_{U}$ for which

$$
\left|E_{\beta}(\mu)-\frac{U}{q^{k}}\right|>U \delta_{N}
$$

is less than $\frac{c q^{N}}{U \delta_{N}^{2}}$. Hence, from (6.4), we obtain that

$$
\begin{equation*}
\sum_{\substack{\left(n_{1}, \ldots, n_{T}\right) \in D\left(a_{1}, \ldots, a_{U}\right) \\\left|E_{\beta}(\mu)-\frac{U}{q^{k}}\right|>U \delta_{N}}} P\left(B_{n_{1}, \ldots, n_{T}}\right)<\frac{c_{1}}{E\left(Y_{N, S}\right) \delta_{N}^{2}} \sum_{\left(n_{1}, \ldots, n_{T}\right) \in D\left(a_{1}, \ldots, a_{U}\right)} P\left(B_{n_{1}, \ldots, n_{T}}\right) \tag{6.6}
\end{equation*}
$$

Now, summing the inequality (6.6) over all possible values of n_{1}, \ldots, n_{T} for which $\omega \notin Z_{N, S} \cup V_{N, S}$, the "new" right hand side of (6.6) is then no larger than $\frac{c_{1}}{E\left(Y_{N, S}\right)} N^{2}$.

Collecting the above inequalities, we obtain that if

$$
K_{N, S}:=\left\{\omega: \omega \notin Z_{N, S},\left|E_{\beta}\left(\eta_{q}^{(N, S)}\right)-\frac{T}{q^{k}}\right| \geq \frac{2 T}{N}\right\}
$$

then

$$
P\left(K_{N, S}\right)<\frac{c}{N^{2}} .
$$

Hence, if we let

$$
S_{j}=q^{N}+q^{N} \cdot \frac{j}{\lfloor\log N\rfloor} \quad\left(j=1, \ldots, m_{N}\right)
$$

where $m_{N}=\left(q^{2}-q\right)\lfloor\log N\rfloor$, we then have

$$
\begin{equation*}
P\left(\bigcup_{j=1}^{m_{N}}\left(K_{N, S_{j}} \cup Z_{N, S_{j}} \cup V_{N, S_{j}}\right)\right)<\frac{c \log N}{N^{2}} . \tag{6.7}
\end{equation*}
$$

Let Q be the set of those ω which belong to infinitely many of the sets $K_{N, S_{j}} \cup Z_{N, S_{j}} \cup V_{N, S_{j}}$. Now, summing (6.7) on $N=1, \ldots, \infty$, we obtain a finite sum. We may therefore apply the Borel-Cantelli Lemma (Lemma 3) and conclude that $P(Q)=0$.

Now let $M_{1}<M_{2}<\cdots$ be the sequence of integers which are the members of the set $\left\{q^{N}+\frac{a}{\lfloor\log N\rfloor} q^{N-1}: a=0, \ldots, m_{N}, N=3,4, \ldots\right\}$, and let $\omega \notin Q$. Then, regarding the sequence

$$
\xi_{R}=\operatorname{res}_{q}\left(m_{1}\right) \ldots \operatorname{res}_{q}\left(m_{R}\right),
$$

we have that

$$
\begin{equation*}
\frac{F_{\beta}\left(\xi_{M_{j}}(\omega)\right)}{M_{j}} \rightarrow \frac{1}{q^{k}} \quad(j \rightarrow \infty) \tag{6.8}
\end{equation*}
$$

Since $1 \leq \frac{M_{j+1}}{M_{j}} \rightarrow 1$ as $j \rightarrow \infty$, it follows from (6.8) that the relation

$$
\frac{F_{\beta}\left(\xi_{n}(\omega)\right)}{n} \rightarrow \frac{1}{q^{k}} \quad(n \rightarrow \infty)
$$

also holds. Since this assertion is true for every finite word β, the proof of the theorem is complete.

References

[1] P.T. Bateman and R.A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363-367.
[2] P.T. Bateman and R.A. Horn, Primes represented by irreducible polynomials in one variable, Proc. Sympos. Pure Math. 8 (1965), 119-135.
[3] J.M. De Koninck and I. Kátai, Construction of normal numbers by classified prime divisors of integers, Functiones et Approximatio 45.2 (2011), 231-253.
[4] J.M. De Koninck and I. Kátai, Construction of normal numbers by classified prime divisors of integers II, Functiones et Approximatio (to appear).
[5] J.M. De Koninck and I. Kátai, Normal numbers created from primes and polynomials, Uniform Distribution Theory 7 (2012), no.2, 1-20.
[6] J.M. De Koninck and I. Kátai, Some new methods for constructing normal numbers, Annales des Sciences Mathématiques du Québec (to appear).
[7] H. Halberstam and H.E. Richert, Sieve Methods, Academic Press, New York, 1974.
[8] J. Galambos, Introductory Probability Theory, Marcel Dekker, New York, 1984.
[9] A. Schinzel and W. Sierpinski, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208; Corrigendum: ibid. 5 (1959), 259.
[10] D. Shiu, Strings of congruent primes, J. London Math. Soc. (2) 61 (2000), no.2, 359-363.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

JMDK, le 11 septembre 2012; fichier: normal-primes-2012-fea.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.
 ${ }^{2}$ Research supported by ELTE IK.

