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Abstract

Given an integer ¢ > 2, a g-normal numberis an irrational number
7 such that any preassigned sequence of k digits occurs in the g-ary
expansion of 7 at the expected frequency, namely 1/¢*. Given an
integer ¢ > 3, we consider the sequence of primes reduced modulo
g and examine various possibilities of constructing normal numbers
using this sequence. We create a sequence of independent random
variables that mimics the sequence of primes and then show that for
almost all outcomes this allows to obtain a normal number.
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1 Introduction

Given an integer ¢ > 2, a g-normal number, or simply a normal number,
is an irrational number whose ¢g-ary expansion is such that any preassigned
sequence, of length £ > 1, of base ¢ digits from this expansion, occurs at
the expected frequency, namely 1/¢*.

In earlier papers [3], [4], [5], [6], we used the complexity of the factoriza-
tion of integers to create large families of normal numbers. In this paper,
given an integer q > 3, we consider the sequence of primes reduced modulo
g and examine various possibilities of constructing normal numbers using
this sequence.

Let A, :={0,1,...,¢ — 1}. Given an integer ¢ > 1, an expression of
the form 445 ... %, where each i; € Ay, is called a finite word of length t.
The symbol A will denote the empty word. We let Al stand for the set of
all words of length ¢ and A} stand for the set of all the words regardless of
their length. An infinite sequence of digits ajas ..., where each a; € A, is
called an infinite word.

An infinite sequence of base ¢ digits ajas ... will be said to be a normal
sequence if any preassigned sequence of k digits occurs at the expected
frequency of 1/¢*.
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Given a fixed integer ¢ > 3, let

A it (n,q) #
fq<n):{€ ifn=14¢ (mon) (¢,q) =1.

Further, letting ¢ stand for the Euler function, set

B<p(q) = {El’ s 7€so(q)}

be the set of reduced residues modulo q.
Let p stand for the set of all primes, writing p; < ps < --- for the
sequence of consecutive primes, and consider the infinite word

& = fo(p1) fo(p2) fo(p3) - -

We first state the following conjecture.

Conjecture 1. The word &, is a normal sequence over B, in the sense
that given any integer k > 1 and any word 3 = r1...1, € B* then,
setting

»(q)’

géN) = fo(p1)fy(p2) ... fy(pn) for each N €N

and
My (&18) = #{(n1, 1) €V = 1B},
we have
L My(ElB) 1
N—oo N p(q)*

Now, with the above notation, consider the following weaker conjecture.

Conjecture 2. For every finite word (3, there exists a positive integer N
such that My(&,|8) > 0.

Remark 1. Observe that, in 2000, Shiu [10] provided some hope in the
direction of a proof of this last conjecture by proving that given any positive
integer k, there exists a string of congruent primes of length k, that is a set
of consecutive primes ppi1 < Ppiz < -+ < Pnik (Where p; stands for the
i-th prime) such that

Pnt1 =Pn+2 =" =Pntk = @ (mOd Q)7

for some positive integer n, for any given modulus q and positive integer a
relatively prime with q.



Let &, be a real function which tends monotonically to 0 as n — co but
in such a way that (loglogn)e, — oo as n — co. Letting p(n) stand for the
smallest prime factor of n, consider the set

(1.1) NED = fneN:p(n)>n"} ={n,n,...}.
We then have the following conjecture.

Conjecture 3. Let ny < ng < --- be the sequence defined in (1.1). Then
the infinite word

&g = fq(n1) fo(na) ...

is a normal sequence over the set {¢ mod q: (¢,q) = 1}.

Although the problem of generating normal numbers using the sequence
of primes does seem inaccessible, we will nevertheless manage to create large
families of normal numbers, in the direction of Conjectures 1, 2 and 3, but
this time using prime-like sequences.

2 Main results

Theorem 1. Let ny < ng < --- be the sequence defined in (1.1). Then the
infinite word

Ng = resy(ny)resy(na) . . .,
where resy(n) = £ if n = ¢ (mod q), contains every finite word whose digits
belong to B, infinitely often.

Remark 2. [t is now convenient to recall a famous conjecture concerning
the distribution of primes.

Let Fy, ..., F, be distinct irreducible polynomials in Zlx] (with positive
leading coefficients) and assume that the product F := F} - - - F, has no fized
prime divisor. Then the famous Hypothesis H of Schinzel and Sierpinski [9]
states that there exist infinitely many integers n such that each Fy(n) (i =
1,...,9) is a prime number. The following quantitative form of Hypothesis
H was later given by Bateman and Horn ([1],[2]):

(BATEMAN-HORN HYPOTHESIS) If Q(F1,. .., Fy;x) stands for
the number of positive integers n < x such that each F;(n) (i =
1,...,9) is a prime number, then

C(Fl,...,Fg) T
hy---hg logfx

QUF, ..., Fyx)=(140(1)) (x — 00),

where h; = deg F; and

C(Fl,...,Fg):E[ ((1—%)_g (1—%»,

3



with p(p) denoting the number of solutions of Fi(n)--- Fy(n) =0
(mod p).

Theorem 2. Let 3 be an arbitrary word belonging to Bg(q) and let &, be
defined as in Conjecture 3. If the Bateman-Horn Hypothesis holds, then

My (&,|8) — o0 as N — o0.
Let

{0 ifm =12 .10,
™ 1/logm  if m > 11.

Let &, be a sequence of independent random variables defined by P(&,, =
1) = A\ and P(&, =0) =1 — \,,. Let Q be the set of all possible events w
in this probability space.

Let w be a particular outcome, say mq,mao, ..., that is one for which
§my = 1for j =1,2,...and § = 0if £ & {my,my,...}. Now, for a fixed
integer ¢ > 3, set res,(m) = ¢ if m = ¢ (mod q), with ¢ € A,. Then, let
ny(w) be the real number whose ¢g-ary expansion is given by

ng(w) = 0.res,(my)resy(ma) . ..
We then have the following result.

Theorem 3. The number n,(w) is a g-normal number for almost all out-
comes w.

3 Preliminary results

For here on, the letter ¢ will be used to denote a positive constant, but not
necessarily the same at each occurrence.

Lemma 1. Let ¢ > 2, k > 1 and M > 1 be fized integers. Given any
nonnegative integer n < g™, write its q-ary expansion as

M—

n=S ), &) €A,

J=

[y

and, given any word o = by ... b € A’;, set
E,(n) =#{j€{0,1,... .M —k} :¢;(n)...cj4x-1(n) = a}.

Then, there ezists a constant ¢ = c(k, q) such that

3 (Ea(n) - q—]‘f)Q <eq' M.

0<n<gM



Proof. Let

. 1 if(Cl,...,Ck):(bl,...,bk),
e, e) = { 0 otherwise.

Then,
M—k—1
S B = Y S Fem) () = ¢ R,
0<n<qgM 0<n<gM j=0
Similarly,
Yo = Z E,(n)?
0<n<qM
M—k—1 M—k—1
- ) flenn), - gjian1(n)) - fgjo(n), - €jarr—1(n))
0<n<gM j1=0  j2=0
- > Z fleqn (), spn—1(n) - fen(n), ... gjppn-1(n))
0<n<gM |j1—j2|<k
+ Z Z f € n)? T 7€j1+k—1(n>> ’ f(gjz(n)a ce 7€j2+k—1<n))
0<n<gM |j1—j2[>k
= Y1+ a2,
say.
On the one hand, it is clear that
(3.1) 0< Y < 2k+ 1) (M —k) <cg™ M.

On the other hand, to estimate X, 5, first observe that for fixed j;, jo with
|j1 — j2| > k, we have to sum 1 over those n € [0,¢™ — 1[ for which

en(0) . Epia(n) = a = e(n) ... st ().

But this occurs exactly for ¢™—2¥ many n’s. Thus,

(32) 22?2 — qM—2k: Z 1= qM—2kM2 + O(QMM)
|51 —d21>k

0<j1,j2<M—k—1

In light of (3.1) and (3.2), it follows that

M\?2 M M2,
> <Ea<n)——) = T-2 B4 —q"

0<n<q ¢
= MM+ O M) - 2q%2q + ];;qM
= 0(¢"M),
thus completing the proof of the lemma. O

b}



Lemma 2. Given a fixed positive integer R, consider the word k = ¢ ...cgr €
Af. Fixz another word o =by...b; € A’q“, with k < R. Let Ky stand for the
number of solutions (v1,72) of kK = Y1y, that is the number of those j’s
for which cji1...cjy = . Then, given fized indices iy, ..., ig, let Ky be
the number of solutions of cjt1...cjx = o for which {j +1,...,j+k} N
{i1,...,ig} =0 holds. Then,

0< Ky — Ky, <2kH.
Proof. The proof is obvious. O]

Lemma 3 (Borel-Cantelli Lemma). Let {E,}nen be an infinite sequence of
events in some probability space. Assummg that the sum of the probabilities

of the E,’s is finite, that is, ZP ) < 400, then the probability that

infinitely many of them occur is 0
Proof. For a proof of this result, see the book of Janos Galambos [8]. [

Lemma 4. Let Fi,..., F, be distinct irreducible polynomials in Z[x] (with
positive leading coefficients) and set F' := Fy---F,. Let p(p) stand for the
number of solutions of F\(n) =0 (mod p) and assume that p(p) < p for all
primes p. Write p(n) for the smallest prime factor of the integer n > 2 and
assume that w and = are real numbers satisfying w > 1 and x'/* > 2. Then,

#{n <ux:Fin ):quorizl,...,k}

_mH< )

p<x1/u
X {1 + Op(exp(—u(logu — loglog 3u — log k — 2))) + Op(exp(—+/log x))} :

Proof. This is Theorem 2.6 in the book of Halbertsam and Richert [7]. [

4 Proof of Theorem 1

Theorem 1 is essentially a consequence of Lemma 4. Indeed, letting a; <
. < ag be positive integers coprime to ¢ and considering the product of
linear polynomials

F(n):=(qn+a)---(gn + ),

we have that
(4.1)

#{n € [z,2z] : p(F(n)) > (2qx + ar)*} = (1 + o(1))z H (1 — %) :

p<xcz



If n is counted in (4.1), we certainly have that p(¢gn+a;) > (gn+a;)""** for
Jj =1,...,k. On the other hand, the desired numbers gn+a;, 7 =1,...,k,
are consecutive integers with no small prime factors for all but a negligible
number. Indeed, if they were not consecutive, then there would be an integer
b € (a1, ax) such that p(¢gn+b) > 2. Set Gy(n) := gn +b. Then we would
have

(4.2)

#{n € [x.22] : p(F(n)Gy(n)) > 2} = (1 + (1) [] (“M),

p<zET p

where p,(p) stands for the number of solutions of F'(n)Gy(n) =0 (mod p).
Since p(p) = k (recall that the F;’s are linear) and py(p) = k+ 1 if p { g,
p > ag, it follows that we have the following two “opposite” inequalities:

1T (1—@) > COlas,...,a) (0 log ) ™",

p<zc® b
11 (1—M) < Clo, - ) (e ogw)
p<zEw b

Now, for the choice of b, we clearly have ay — a; + 1 — k possible values.
We have thus proved that for every large number z, there is at least one
n € [z, 2z] for which the numbers gn+ay, . . ., gn+ay are consecutive integers
without small prime factors, that is for which p(¢gn + a;) > (qn + a;)*"+,
thus completing the proof of Theorem 1.

5 Proof of Theorem 2

The proof of Theorem 2 is almost similar to the one of Theorem 1. Indeed
assume that the Bateman-Horn Hypothesis holds (see Remark 2 above).
Then, let a; be a positive integer such that a; = b; (mod ¢) and a; = 0
(mod D), where D = Hw, where 7 are primes. Similarly, let a; be a

<k
g

positive integer such that as = by (mod ¢q) and ay = 0 (mod D), with
as > a;. Continuing in this manner, that is if a, ..., ay_1 have been chosen,
we let ay = by (mod ¢) with Dla, and a; > ay—;. Then, applying the
Bateman-Horn Hypothesis, we get that if 0 < a; < --- < ay are k integers
satisfying (aj,q) = 1 for j = 1,...,k, then for each positive integer n,
setting

F(n) = (gn+ ) (gn+a),

letting
p(m)=#{v (mod m): F(v) =0 (modm)},



so that p(m) = 0 if (m,q) > 1 and p(p) < p for each prime p, and further

setting
Hm::: II b,

PEP

p<y/qz+ay,
we have that, as x — oo, letting p stand for the Moebius function,

21=ZZ @O=>u6 > 1

(F(n),IIz)=1 F(n)=0 (mod §)
= (1+o(1 Z“ = (1+o1)z ] (—@)
e p<vaz+ay b
(5.1) = (I+o(1))c—,
log" x
where ¢ is a positive constant which depends only on ay, ..., a.

Now, we can show that almost all prime solutions m; < --- < 7 repre-
sent a chain of consecutive primes. To see this, assume the contrary, that
is that the primes m; < --- < 7, are not consecutive, meaning that there
exists a prime 7 satisfying m < 7 < 7 and 7 & {ma, ..., m_1}. Assume

that m, < m < mpyq for some ¢ € {1,...,k —1}. We then have

Ty = T+ as — ag,
m3 = T+ a3 —ag,
Ty = T+ ag—an,
T = T+ ap —a,
m = m +d, where aj —a; < d < agq — ay.

We can now find an upper bound for the number of such k& + 1 tuples.
Indeed, by using the Brun-Selberg sieve, one can obtain that the number

of such solutions up to z is no larger than ¢ which in light of (5.1)

x
]ng+1x’
proves our claim, thus completing the proof of Theorem 2.

6 Proof of Theorem 3

Let N > 3. Choose a positive integer R which is such that S := ¢ +¢R <
gV *1. Then, set

Yns = Z & and Ong = Z En(lngr + -+ Enrg1)-

gV <n<S N <n<S



Then

E(Yus) = S —— = S _ 4" Y,o
Nss logn  \logS logq¢™

N <n<S
while
ol
E<YN,S — E(YN75))2 S C )\n S CN.
gV <n<S
From the Tchebyshev inequality, we then get that
6.1 P |Yys— E(Y; " :

. — > | < .
(61) Vs = EGs) > |t ) < 7
Similarly

N
q 1
(62) P (9]\7’5 > Clm> < ﬁ
Now, given T integers n; < --- < ng located in the interval [¢"V,S — 1],

consider the set

gm:Oifmg{nly--'anT}7 m e [qN7S_1]}
Further set

|
1—X, log(n/e)

Op =

and  Wys= [ (1-x)

gV <n<S

From the above definitions of B, ., 0, and Wy g, it follows that

,,,,,

(6.3) P(By,..ng) = Ony - O Wi s.

.....

Let us now introduce the intervals

ja:[qN+GQ7qN+(a+1)q_1] (a:O,l,...,R—l),

so that
gV —gN-1_1
8= U T
a=0
Given nq,...,np, let Jap, ..., Ju, be those intervals which contain

at least two elements (say, Ju;, contains k; > 2 elements) from the set
{nl, ce ,7’LT}.



Then it follows from (6.2) that

> P(Bu,,..nr) < 355

Zf:l kj>cqN /N2

Let us now consider those nq, ..., ny for which Z]H:1 k; < cg™ /N?. Con-
sider those elements amongst n4,...,ny which have k; > 2 fixed elements
in Ju, (7 =1,..., H) and exactly one element in the intervals 7,,, ..., Ja, -

Define the quantities L and U by

H
> kj=L and U=T-L.

j=1
Here 0 < ay < --- < ay < R —1 are such that
{al,...,aU}ﬂ{Ml,...,MH}:(7).

We shall denote that particular set of ny,...,nr by D(ay,...,ay,), that is
a set that contains exactly ¢ disjoint sets.
Since, for j =1,...,q — 1, we have

IN

0< o0, —0nyy

it follows from (6.3) that

U H T
1
P(Bm ,,,,, TLT) = HUQN+ajq ) HUQNJrMeq ’ Wst <1 +0 <N2qN)> :
/=1

J=1

Since T'/N?¢™ — 0 as N — oo, it follows that

1 T

All this means that

(6.4) P(Bp,,..nr) = (14 0(1)) P(By n’T)

77777777

if ny,...,nr and 0}, ..., n’ belong to the same set D(ay,...,ay).
For a given outcome w, we now consider

(6.5) 'r]C(IN’S) (w) :=resy(n1) .. .res,(nr)

and we let Fﬁ(néN’S) (w)) be the number of occurrences of the word /3 as a

subword in néN’S) (w). Now, setting

qN—i-l
ZN,S = w |YN,S - E(YN,S)| >N logq—NH
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and

ol
Vs = {w 1Ons > Clﬁ} ,

it follows from (6.1) and (6.2) that

C
P(ZN,S) + P(VN’S) < m

Now, assume that w & Zy ¢ U Vi g. Then, recall definition (6.5) and set

Sp(ni,...,nr) = #{RSN’S) =MB72 7,72 € Ayt

In the set D(ny,...,nr), the elements from J,, can be written as v+
qaj + ¢;, where {; € A, (j = 1,...,U). Furthermore, write each integer
p<q”—1as

p=">+bog+ -+ Lyg”

Then we get
Eg(p) = ##{(n1,72) € Ay x Ay 1 by by = 1By}
Using Lemma 2, we then obtain that
|Ss(na,...,np) — Eg(p)| < 2k(H +1).

Now D(ay, ..., ay) is characterized by choosing all possible values ¢; ... 0y €
AqU. Hence, letting dy = 1/N, we can apply Lemma 1 and obtain that the
number of those /¢; ... ¢y for which

U
Eali) - S| > Ut
. cq™ .
is less than s Hence, from (6.4), we obtain that
N
(6.6)
C1
> P(By,, . nr) < EVns)0% > P(Bu,,...ng)-
(n1sees np)eD(ay,..., ayy) N.SJ°N (n1 ..... nT)ED(a1 ..... aU)
‘Eﬂ(qu% SUSN
Now, summing the inequality (6.6) over all possible values of nq, ..., ny

for which w ¢ Zys U Vg, the “new” right hand side of (6.6) is then no

larger than N~<.
& E(Yvs)

Collecting the above inequalities, we obtain that if

T

EB(TISN’S)) T

KN,S = {w LW ¢ ZN,37

QT}
> )
- N

11



then

C
P(KN,S> < m
Hence, if we let
7 q +q UOgNJ (j 3 7mN)7

where my = (¢> — ¢q)|log N |, we then have

N log N
(67) P (U (Kstj U ZN,Sj U VN,Sj)> < ¢ ?\52 .

J=1

Let @ be the set of those w which belong to infinitely many of the sets
Kns; U Zns, UVys,. Now, summing (6.7) on N = 1,..., 00, we obtain a
finite sum. We may therefore apply the Borel-Cantelli Lemma (Lemma 3)
and conclude that P(Q) = 0.

Now let M7 < M, < --- be the sequence of integers which are the mem-

" lia=0,...,my, N—3,4,...},andlet

bers of the set {qN -+ [log V]

w & Q. Then, regarding the sequence

Er = resg(mq) ... resy(mpg),

we have that

Bean() |1

6.8
(6:8) M; q*

M
Since 1 < ﬁ — 1 as j — o0, it follows from (6.8) that the relation
J

BG) L1 (o

also holds. Since this assertion is true for every finite word 3, the proof of
the theorem is complete.
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