
Uniform Distribution Theory 7 (2012), no.2, 1–20

uniform
distribution

theory

NORMAL NUMBERS CREATED FROM PRIMES

AND POLYNOMIALS

Jean-Marie De Koninck - Imre Kátai

ABSTRACT. Given an integer D ≥ 2, a D-normal number, or simply a normal
number, is a real number whose D-ary expansion is such that any preassigned
sequence, of length k ≥ 1, of base D digits from this expansion, occurs at the
expected frequency, namely 1/Dk . We construct large families of normal numbers
using primes and polynomials.

Communicated by Florian Luca

1. Introduction

The concept of a normal number goes back to 1909: it was first introduced by

Émile Borel [1]. Given an integerD ≥ 2, a D-normal number, or simply a normal
number, is a real number whose D-ary expansion is such that any preassigned
sequence, of length k ≥ 1, of base D digits from this expansion, occurs at the
expected frequency, namely 1/Dk. Equivalently, given a positive real number
η < 1 whose expansion is η = 0.a1a2 . . . , where each aj ∈ {0, 1, . . . , D− 1}, that

is, η =

∞
∑

j=1

aj
Dj

, we say that η is a normal number if the sequence {Dmη}, m =

1, 2, . . . (here {y} stands for the fractional part of y), is uniformly distributed in
the interval [0, 1[. Clearly, both definitions are equivalent, because the sequence
{Dmη}, m = 1, 2, . . ., is uniformly distributed in [0, 1[ if and only if for every
integer k ≥ 1 and b1 . . . bk ∈ {0, 1, . . . , D − 1}k, we have

lim
N→∞

1

N
#{j < N : aj+1 . . . aj+k = b1 . . . bk} =

1

Dk
.
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Identifying if a given real number is a normal number is unresolved. For in-
stance, classical numbers such as π, e,

√
2, log 2 as well as the famous Apéry

constant ζ(3), have not yet been proven to be normal numbers, although nu-
merical evidence clearly indicates that they are. It is interesting to observe that
Borel [1] showed one century ago that almost all numbers are normal.

Even constructing specific normal numbers is no small challenge.

Several authors studied the problem of constructing normal numbers. One of
the first was Champernowne [2] who, in 1933, was able to prove that the number
made up of the concatenation of the natural numbers, namely the number

0.123456789101112131415161718192021 . . . ,

is normal in base 10. In 1946, Copeland and Erdős [3] showed that the same is
true if one replaces the sequence of natural numbers by the sequence of primes,
namely for the number

0.23571113171923293137 . . .

In the same paper, they conjectured that if f(x) is any nonconstant polyno-
mial whose values at x = 1, 2, 3, . . . are positive integers, then the number
0.f(1)f(2)f(3) . . ., where f(n) is written in base 10, is a normal number. In
1952, Davenport and Erdős [4] proved this conjecture.

In 1997, Nakai and Shiokawa [13] showed that if f(x) is any nonconstant
polynomial taking only positive integral values for positive integral arguments,
then the number 0.f(2)f(3)f(5)f(7) . . . f(p) . . ., where p runs through the prime
numbers, is normal. In 2008, Madritsch, Thuswaldner and Tichy [12] extended
the results of Nakai and Shiokawa by showing that, if f is an entire function of
logarithmic order, then the numbers

0.[f(1)]D[f(2)]D[f(3)]D . . . and 0.[f(2)]D[f(3)]D[f(5)]D[f(7)]D . . . ,

where [f(n)]D stands for the base D expansion of the integer part of f(n), are
normal.

In this paper, we use a totally different approach to create large families of
normal numbers. Indeed, in order to compare the above approaches with our
new approach, let us introduce the notion of typical number (which is not a
mathematical concept !). Let us say that a large positive integer n is typical
if, given an arbitrary positive integer k, one can establish that the number of
occurrences of the various subsequences of consecutive digits of length k in the
D-ary expansion of n are essentially the same. In other words, n is typical if,
given arbitrary positive integers β1, β2, . . . , βs, every one of them made up of k
digits, they each occur at the same frequency in the D-ary expansion of n. Then,
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all the results mentioned above are based on the fact that f(n), f(p), and so on,
are typical integers for almost all n.

In 1995 (see [6]), we observed that one can map the set of positive integers
n into the set of D-ary integers by using the multiplicative structure of the
positive integers n. Indeed, we proved that if we subdivide the set of primes
℘ into D distinct subsets ℘j , j = 0, 1, . . . , D − 1, of essentially the same size,
and if p1 < · · · < pr are the prime divisors of n with pj ∈ ℘ℓj for certain
ℓj ∈ {0, 1, . . . , D− 1}, then, for almost all n, the corresponding number ℓ1 . . . ℓr
is typical. Using this result, we recently constructed (see [5]) large families of
normal numbers.

In this paper, we further expand on this approach but this time using the
prime factorization of the values taken by primitive irreducible polynomials de-
fined on the set of positive integers.

2. Notation

Given a set of positive integers B, we let N (B) stand for the multiplicative
semigroup generated by B.

Let D ≥ 2 be a fixed integer. Given an integer t ≥ 1, an expression of the
form i1i2 . . . it, where each ij is one of the numbers 0, 1, . . . , D − 1, is called a
word of length t. Given a word α, we shall write λ(α) = t to indicate that α is a
word of length t. We shall also use the symbol Λ to denote the empty word and
write λ(Λ) = 0.

Let E = ED = {0, 1, 2, . . . , D − 1}. Then, Ek will stand for the set of words
of length k over E, while E∗ = E∗

D will stand for the set of finite words over
ED, including the empty word Λ. The operation on E∗

D is the concatenation αβ
for α, β ∈ E∗

D. It is clear that λ(αβ) = λ(α) + λ(β). Also, we will say that α is
a prefix of a word γ if for some δ, we have γ = αδ.

Given n ∈ N, we shall write its D-ary expansion as

n = ε0(n) + ε1(n)D + ε2(n)D
2 + . . .+ εt(n)D

t,

where εi(n) ∈ E for 0 ≤ i ≤ t and εt(n) 6= 0. To this representation, we associate
the word n = ε0(n)ε1(n) . . . εt(n) ∈ Et+1.

Let k be a fixed positive integer. For each word β = b1 . . . bk ∈ Ek, we let
νβ(n) stand for the number of occurrences of β in the D-ary expansion of the
positive integer n, that is, the number of times that εj(n) . . . εj+k−1(n) = β as
j varies from 0 to t− (k − 1).

3



JEAN-MARIE DE KONINCK - IMRE KÁTAI

Given η∞ = ε1ε2ε3 . . ., where each εi is an element of ED and, for each pos-
itive integer N , we let ηN = ε1ε2 . . . εN . Moreover, for each β = δ1 . . . δk ∈ Ek

D

and integer N ≥ 2, let M(N, β) stand for the number of occurrences of β as a
subsequence of consecutive digits of ηN , that is

M(N, β) = #{(α, γ) : ηN = αβγ, α, γ ∈ E∗
D}.

We will say that η∞ is a normal sequence if

lim
N→∞

M(N, β)

N
=

1

Dλ(β)
for all β ∈ E∗

D. (2.1)

Let ξ < 1 be a positive real number whose D-ary expansion is

ξ = 0.ε1ε2ε3 . . .

and, for each integer N ≥ 1, set

ξN = 0.ε1ε2 . . . εN .

With β and M(N, β) as above, we will say that ξ is normal if (2.1) holds.

Let Q1, Q2, . . . , Qh ∈ Z[x] be distinct irreducible primitive monic polynomials
each of degree no larger than 3. Recall that a polynomial with integer coeffi-
cients is said to be primitive if the greatest common divisor of its coefficients

is 1. For each ν = 0, 1, 2, . . . , D − 1, let c
(ν)
1 , c

(ν)
2 , . . . , c

(ν)
h be distinct integers,

Fν(x) =
∏h

j=1 Qj(x + c
(ν)
j ), with Fν(0) 6= 0 for each ν. Moreover, assume that

the integers c
(ν)
i are chosen in such a way that Fν(x) are squarefree polynomials

and gcd(Fν(x), Fµ(x)) = 1 when ν 6= µ.

Let ℘0 be the set of prime numbers p for which there exist µ 6= ν and m ∈ N

such that p|gcd(Fν(m), Fµ(m)). It follows from Lemma 1 below that ℘0 is a
finite set. Now let

U(n) = F0(n)F1(n) · · ·FD−1(n) = ϑ qa1
1 qa2

2 · · · qar
r ,

where ϑ ∈ N (℘0) and q1 < q2 < · · · < qr are primes not belonging to N (℘0)
with positive integers ai. Then, let hn be defined on the prime powers qa of U(n)
by

hn(q
a) = hn(q) =

{

Λ if q|ϑ,
ℓ if q|Fℓ(n), q 6∈ ℘0

and further define αn as

αn = hn(q
a1
1 )hn(q

a2
2 ) . . . hn(q

ar
r ),

where on the right hand side we omit Λ when hn(q
ai

i ) = Λ for some i. Finally,
we let η be the real number whose D-ary expansion is

η = 0.α1α2α3 . . . (2.2)
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As a simple example, take h = 1, Q1(x) = x, Fν(x) = x + ν for ν =
0, 1, . . . , D − 1, in which case we have ℘0 = {p : p ≤ D − 1}. Then,

U(n) = n(n+ 1) · · · (n+D − 1) = e(n)qa1
1 · · · qar

r ,

where e(n) :=
∏

qα‖U(n)
q≤D−1

qα, so that

hn(q
a) = hn(q) =

{

Λ if q|e(n),
ℓ if q|n+ ℓ, q 6∈ ℘0

and
αn = hn(q

a1
1 )hn(q

a2
2 ) . . . hn(q

ar
r ),

thus giving rise to the number

η = 0.α1α2α3 . . .

In the particular case D = 5, we get U(n) = n(n + 1)(n + 2)(n + 3)(n + 4) so
that ℘0 = {2, 3} and

hn(q
a) = hn(q) =

{

Λ if q ∈ {2, 3},
ℓ if q|n+ ℓ, q ≥ 5, where ℓ ∈ {0, 1, 2, 3, 4}.

In this case, one can check that

η = 0.α1α2α3α4α5 . . . = 0.43241302 . . .

Given an integer n ≥ 2, we let ω(n) stand for the number of distinct prime
divisors of n and set ω(1) = 0. We let ϕ stand for the Euler function. Also,
given a real number x ≥ 2, we let π(x) stand for the number of primes p ≤ x,
while for coprime integers k, ℓ, we let π(x; k, ℓ) stand for the number of prime
numbers p ≤ x such that p ≡ ℓ (mod k). For each real number x ≥ 2, we set

li(x) :=

∫ x

2

dt

log t
, a function often called the logarithmic integral. From here on,

the letters p and q, with or without subscript, always denote primes, while the
letter c always denotes a positive constant, but not necessarily the same at each
occurrence. Finally, it will be convenient at times to write x1 instead of log x,
and x2 for log x1.
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3. Main resultsTheorem 1. The number η defined by (2.2) is a normal number.Theorem 2. With the notations of Section 2 and assuming that deg(Qj) ≤ 2
for j = 1, 2, . . . , h, then the number

ξ = 0.α2α3α5 . . . αp . . .

(where the above subscripts run over primes p) is a normal number.

4. Preliminary lemmasLemma 1. Given F1, F2 ∈ Z[x], which are relatively prime, then the congruences

F1(m) ≡ 0 (mod a) and F2(m) ≡ 0 (mod a)

have common roots for at most finitely many a’s.

P r o o f. A proof of this result was established by Tanaka [14]. �Lemma 2. Let F be an arbitrary primitive polynomial with integer coefficients
and of degree ν. Let D be the discriminant of F and assume that D 6= 0. Let ρ(m)
be the number of solutions n of F (n) ≡ 0 (mod m). Then ρ is a multiplicative
function whose values on the prime powers pα satisfy

ρ(pα)

{

= ρ(p) if p 6 |D,
≤ 2D2 if p|D.

Moreover, there exists a positive constant c = c(F ) such that ρ(pα) ≤ c for all
prime powers pα.

P r o o f. This assertion is well known. �Lemma 3. If g ∈ Q[x] is an irreducible polynomial and ρ(m) stands for the
number of residue classes mod m for which g(n) ≡ 0 (mod m), then

(i)
∑

p≤x

ρ(p) =
x

log x
+O

(

x

log2 x

)

;

(ii)
∑

p≤x

ρ(p)

p
= log log x+ c+O

(

1

log x

)

.

P r o o f. This result is due to Landau [11]. �
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NORMAL NUMBERS CREATED FROM PRIMES AND POLYNOMIALSLemma 4. (Brun-Titchmarsh Inequality) There exists a positive constant
c such that

π(x; k, ℓ) < c
x

ϕ(k) log(x/k)
for all k < x.

P r o o f. For a proof, see the book of Halberstam and Richert [8]. �Lemma 5. (Bombieri-Vinogradov Theorem) Given any fixed number A >
0, there exists a number B = B(A) > 0 such that

∑

k≤√
x/(logB x)

max
(k,ℓ)=1

max
y≤x

∣

∣

∣

∣

π(y; k, ℓ)− li(y)

ϕ(k)

∣

∣

∣

∣

= O

(

x

logA x

)

.

Moreover, an appropriate choice for B(A) is 2A+ 6.

P r o o f. For a proof, see the book of Iwaniec and Kowalski [10]. �Lemma 6. Let F be a squarefree polynomial with integer coefficients and of
positive degree such that the degree of each of its irreducible factors is of degree
no larger than 3. Let Y (x) be a function which tends to +∞ as x → +∞. Then

lim
x→∞

1

x
#{n ≤ x : p2|F (n) for some p > Y (x)} = 0.

P r o o f. For a proof, see the book of Hooley [9] (pp. 62-69). �Lemma 7. Let F and Y be as in Lemma 6. Assume that each of the irreducible
factors of F is of degree no larger than 2 and that F (0) 6= 0. Then

lim
x→∞

1

π(x)
#{p ≤ x : q2|F (p) for some q > Y (x)} = 0.

P r o o f. For a proof, see the book of Hooley [9] (pp. 69-72). �Lemma 8. Let f(n) be a real valued non negative arithmetic function. Let an,
n = 1, . . . , N , be a sequence of integers. Let r be a positive real number, and let
p1 < p2 < · · · < ps ≤ r be prime numbers. Set Q = p1 · · · ps. If d|Q, then let

N
∑

n=1
an≡0 (mod d)

f(n) = κ(d)X +R(N, d), (4.1)

where X and R are real numbers, X ≥ 0, and κ(d1d2) = κ(d1)κ(d2) whenever
d1 and d2 are co-prime divisors of Q.
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Assume that for each prime p, 0 ≤ κ(p) < 1. Setting

I(N,Q) :=

N
∑

n=1
(an,Q)=1

f(n),

then the estimate

I(N,Q) = {1 + 2θ1H}X
∏

p|Q
(1− κ(p)) + 2θ2

∑

d|Q

d≤z3

3ω(d)|R(N, d)|

holds uniformly for r ≥ 2, max(log r, S) ≤ 1
8 log z, where |θ1| ≤ 1, |θ2| ≤ 1, and

H = exp

(

− log z

log r

{

log

(

log z

S

)

− log log

(

log z

S

)

− 2S

log z

})

and

S =
∑

p|Q

κ(p)

1− κ(p)
log p.

When these conditions are satisfied, there exists an absolute positive constant c
such that 2H ≤ c < 1.

P r o o f. This result is Lemma 2.1 in the book of Elliott [7]. �Lemma 9. There exists a positive constant c = c(h,D) such that

1

x

∑

n≤x

|ω(U(n))− hD log log x|2 ≤ c log log x, (4.2)

1

x

∑

n≤x

ω(U(n))>hDx2+cx
3/4
2

ω(U(n)) ≪
√

log log x (4.3)

and
1

x

∑

n≤x

ω(U(n))<hDx2−cx
3/4
2

ω(U(n)) ≪
√

log log x. (4.4)

P r o o f. First observe that

ω(U(n)) =

D−1
∑

j=0

ω(Fj(n)) +O(1), (4.5)

where the term O(1) accounts for the possible common prime divisors of Fν(n)
and Fµ(n), which as we saw are in finite number.
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From the Turán-Kubilius inequality,

1

x

∑

n≤x



ω(Fν(n))−
∑

p≤x

ρFν (p)

p





2

< c



1 +
∑

p≤x

ρFν (p)

p



 . (4.6)

On the other hand, it follows from Lemma 3 (ii) that

∑

p≤x

ρFν (p)

p
=

h−1
∑

j=0

∑

p≤x

ρ
Qj(x+c

(ν)
j )

(p)

p
= h log log x+O(1). (4.7)

Combining (4.5), (4.6) and (4.7), inequality (4.2) follows.

Setting

ΣA :=
∑

n≤x

ω(U(n))>hDx2+cx
3/4
2

1

and using the Cauchy-Schwarz inequality, we have
∑

n≤x

ω(U(n))>hDx2+cx
3/4
2

ω(U(n))

=
∑

n≤x

ω(U(n))>hDx2+cx
3/4
2

(ω(U(n))− hDx2) + hDx2

∑

n≤x

ω(U(n))>hDx2+cx
3/4
2

1

≤ Σ
1/2
A ×









∑

n≤x

ω(U(n))>hDx2+cx
3/4
2

|ω(U(n))− hDx2|2









1/2

+ hDx2 ΣA. (4.8)

Now, it follows from (4.2) that

ΣA ≤ x√
x2

. (4.9)

Hence, in light of (4.2) and (4.9), estimate (4.8) yields
∑

n≤x

ω(U(n))>hDx2+cx
3/4
2

ω(U(n)) ≪ Σ
1/2
A

√
x · x1/2

2 + x2ΣA ≪ xx
1/4
2 + xx

1/2
2 ≪ xx

1/2
2 ,

thereby completing the proof of inequality (4.3). Clearly, (4.4) can be obtained
in a similar way.

�
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JEAN-MARIE DE KONINCK - IMRE KÁTAILemma 10. There exists a positive constant c = c(h,D) such that

1

li(x)

∑

p≤x

|ω(U(p))− hD log log x|2 ≤ c log log x, (4.10)

1

li(x)

∑

p≤x

ω(U(p))>hDx2+cx
3/4
2

ω(U(p)) ≪
√

log log x (4.11)

and
1

li(x)

∑

p≤x

ω(U(p))<hDx2−cx
3/4
2

ω(U(p)) ≪
√

log log x. (4.12)

P r o o f. The proof follows essentially by observing that

max
p≤x

∑

q|U(p)

q>x1/4

1 = O(1)

and then using Lemma 5 and the Turán-Kubilius inequality. �

Let εx = 1/
√
x2, Yx = exp{xεx

1 } and Zx = exp{x1−εx
1 }. Also, let

℘1 = {p : p ≤ Yx, p 6∈ ℘0}, ℘2 = {p : Yx < p < Zx}, ℘3 = {p : p ≥ Zx}.

Finally, for each j = 0, 1, 2, 3, set ωj(n) =
∑

p|n
p∈℘j

1.Lemma 11. With the above notation, we have
∑

n≤x

ω1(U(n)) ≪ x
∑

p≤Yx

1

p
≪ xεxx2 = x

√
x2, (4.13)

∑

n≤x

ω3(U(n)) ≪ x
∑

Zx≤p<x1/4

1

p
+ O(x) ≪ x

√
x2, (4.14)

∑

p≤x

ω1(U(p)) ≪ li(x)
√
x2, (4.15)

∑

p≤x

ω3(U(p)) ≪ li(x)
√
x2. (4.16)

P r o o f. Estimates (4.13) and (4.14) are straightforward. The other two esti-
mates follow using Lemma 4. �
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Let us write each positive integer n as n = A(n)B(n)C(n), where A(n) ∈
N (℘0 ∪ ℘1), B(n) ∈ N (℘2) and C(n) ∈ N (℘3). Observe that ρFν (n) = ρFµ(n)
for every ν, µ.Lemma 12. Let m0,m1, . . . ,mD−1 be squarefree coprime numbers belonging to
N (℘2), with M = m0m1 · · ·mD−1 ≤ √

x. Let T (x|m0,m1, . . . ,mD−1) be the
number of those integers n ≤ x for which B(Fj(n)) = mj for j = 0, 1, . . . , D−1.
Then,

∣

∣

∣

∣

∣

T (x|m0,m1, . . . ,mD−1)−
xρ(M)ϕ(M)

M2

∏

p∈℘2

(

1− DρF (p)

p

)

K(M)

∣

∣

∣

∣

∣

≪ xρ(M)

M
exp{−xεx

1 }, (4.17)

where

K(M) =
∏

p|M

(

1− DρF (p)

p

)−1

.Remark 1. Observe that K(M) = 1 + o(1).

P r o o f. Observe that M is squarefree. For convenience, let ρ = ρFν . It is clear
that the congruences

B(Fj(m)) ≡ 0 (mod mj) (j = 0, 1, . . . , D − 1)

hold for n ≡ ℓi (mod M), i = 1, 2, . . . , ρ(M).

Let us now consider ℓ = ℓi for a fixed i ∈ [1, ρ(M)] and define

ϕj(k) =
Fj(ℓ + kM)

mj
(j = 0, 1, . . . , D − 1),

Φ(k) = ϕ0(k)ϕ1(k) · · ·ϕD−1(k). (4.18)

Finally, let Q =
∏

p∈℘2
p.

We now apply Lemma 8 with f(k) = 1, ak = Φ(k) and X = x/M , and obtain
an estimate for each corresponding Ii(X,Q) for the particular choice ℓ = ℓi.
With this set up, we have

T (x|m0,m1, . . . ,mD−1) =

ρ(M)
∑

i=1

Ii(X,Q). (4.19)

Observe that η(pα) = η(p) = 0 if p ∈ ℘1. On the other hand, for p ∈ ℘2 ∪ ℘3,
we have ρϕj (p

α) = ρϕj (p) and also that if p|mj, then ρϕj(p) = 1 and ρϕℓ
(p) = 0

for ℓ 6= j, while on the other hand if (p,M) = 1, then ρϕj(p) = ρ(p) for j =
0, 1, . . . , D − 1.

11
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Now we denote by η(M) the number of those k mod M such that Φ(k) ≡ 0
(mod M). Then one can easily show that

η(pα) = η(p) =







0 if p ∈ ℘1,
ρϕj(p) = 1 if p|mj ,
ρ(p) if p ∈ ℘2 ∪ ℘3, (p,M) = 1.

(4.20)

It is also clear that the error term in (4.1) satisfies

|R(x, d)| ≤ Dρ(d). (4.21)

It follows from Lemma 8 that

Ii(X,Q) = (1 +O(H))
x

M

∏

p|Q

(

1− η(p)

p

)

+O







∑

d|Q

d≤z3

3ω(d)|R(X, d)|






. (4.22)

Using the notation of Lemma 8, we have

S =
∑

p|Q

η(p)

p− η(p)
log p,

and one can show that there exist two positive constants c1 < c2 such that

c1 <
S

(log x)εx
< c2. (4.23)

Moreover, we have that log r = (log x)εx . So, we choose log z = (log x)δx , with
0 < εx < δx, where δx is a function which tends to 0 as x → ∞ and which will
be determined later.

We can prove that for z ≥ 2,
∑

d|Q

d≤z3

3ω(d)η(d) ≤ cz3(log z)K , (4.24)

for a suitable large constant K. Indeed,
∑

d≤Y

3ω(d)η(d)|µ(d)| log d ≤
∑

pu≤Y

3ω(pu)(log p)η(p)η(u)|µ(u)|

≤ 3
∑

u≤Y

3ω(u)η(u)|µ(u)|
∑

p≤Y/u

η(p) log p. (4.25)

12
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Since
∑

p≤Y/u

η(p) log p ≤ c
Y

u
, (4.25) becomes

∑

d≤Y

3ω(d)η(d)|µ(d)| log d ≤ cY
∑

u≤Y

3ω(u)η(u)

u
|µ(u)|

≤ cY
∏

p≤Y

(

1 +
3η(p)

p

)

≤ cY exp







3
∑

p≤Y

η(p)

p







≤ cY exp(3h log log Y ) = cY (log Y )3h. (4.26)

Let us write
∑

d≤Y

3ω(d)η(d)|µ(d)| =
∑

d≤
√
Y

+
∑

√
Y <d≤Y

= S1 + S2, (4.27)

say. Clearly we have

S1 ≪
√
Y · Y ε, (4.28)

where ε > 0 can be taken arbitrarily small. On the other hand, in light of (4.26),
we have

S2 ≤ 2

log Y
· cY (log Y )3h ≪ Y (log Y )3h−1. (4.29)

Setting Y = z3 and using (4.28) and (4.29) in (4.27) proves (4.24).

Coming back to our choice of z and to the size of S given by (4.23), we have

log z

(log x)εx
= xδx−εx

1 ,
log z

S
≈ xδx−εx

1 .

Therefore, by choosing δx = 2εx, we obtain

H ≤ C exp

{

−1

2
(δx − εx)x2 · xδx−εx

1 )

}

,

that is,

H ≤ C exp{−εx · x2 · xεx
1 }. (4.30)

Moreover,

∏

p|Q

(

1− η(p)

p

)

=
∏

p∈℘2
(p,M)=1

(

1− DρF (p)

p

)

∏

p|M

(

1− 1

p

)

=
ϕ(M)

M
K(M)

∏

p∈℘2

(

1− DρF (p)

p

)

. (4.31)

13
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Using (4.24), (4.30) and (4.31) in (4.22), and then using this in (4.19), we obtain
that inequality (4.17) follows immediately, thus completing the proof of Lemma
12.

�

As a corollary of Lemma 12, we have the following.Lemma 13. Let εx = 1/
√
x2. Let M squarefree, M ∈ N (℘2), M ≤ √

x. Now
assume that m0,m1, . . . ,mD−1 and m′

0,m
′
1, . . . ,m

′
D−1 are so chosen that

M = m0m1 · · ·mD−1 = m′
0m

′
1 · · ·m′

D−1.

Then,

∣

∣T (x|m0,m1, . . . ,mD−1)− T (x|m′
0,m

′
1, . . . ,m

′
D−1)

∣

∣ ≪ xρ(M)

M
exp{−xεx

1 },

while

T (x|m0,m1, . . . ,mD−1) ≫
xρ(M)ϕ(M)

M2
exp{−c

√
x2}.

We want to estimate the number of primes p ≤ x such that

B(Fν(p)) = mν (ν = 0, 1, 2, . . . , D − 1).

Let

M = m0m1 · · ·mD−1, M ∈ N (℘2) and µ2(M) = 1.

Let the solutions of

Fν(n) ≡ 0 (mod mν) (ν = 0, 1, . . . , D − 1)

modulo M be ℓ1, . . . , ℓρ(M). It is clear that (ℓi,M) = 1 for each i. Indeed, assume
that p∗|(ℓi,M). Then, p∗|ℓi + kM for some k, while p∗|mν for some ν, thereby
implying that 0 ≡ Fν(ℓi+km) ≡ Fν(0) (mod p∗), which in turn yields p∗|Fν(0),
which is not possible since Fν(0) 6= 0 and p∗ ≥ Yx.

We now fix an integer ℓ ∈ {ℓ1, . . . , ℓρ(M)}, consider the function Φ(k) defined
in (4.18) and define the function

fℓ(k) =

{

1 if ℓ + kM ∈ ℘,
0 otherwise.

We shall now estimate
∑

kM+ℓ≤x
(Φ(k),Q)=1

fℓ(k).

14
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First we consider the sum
∑

kM+ℓ≤x
Φ(k)≡0 (mod d)

fℓ(k). Assume that Φ(k) ≡ 0 (mod d)

holds for k = k1, . . . , kρΦ . For a fixed k = k∗, we need to count the number of
primes p = ℓ+ k∗M + νdM ≤ x. We will now make use of Lemma 6. Letting

∆(x,H) = sup
(ℓ,H)=1

∣

∣

∣

∣

π(x;H, ℓ)− li(x)

ϕ(H)

∣

∣

∣

∣

,

we have
ρΦ
∑

j=1

π(x; dM, ℓ + kjM) =
li(x)

ϕ(dM)

ρΦ
∑

j=1

∑

(ℓ+kjM,d)=1

1 +O (∆(x, dM)) .

Let κ(d) :=

ρΦ
∑

j=1
(ℓ+kjM,d)=1

1

ϕ(dM)
and set

V :=
∑

d|Q
µ(d)κ(d) =

ρΦ
∑

j=1

∑

d|Q
(ℓ+kjM,d)=1

µ(d)

ϕ(dM)
.

Moreover, let d = d1d2, where d1|M , (d2,M) = 1. Since (M, ℓ + kjM) = 1,
then (d1, ℓ+ kjM) = 1 holds. Therefore,

V =

ρΦ
∑

j=1

1

ϕ(M)
·
∑

d1|M

µ(d1)

d1
·

∑

d2|Q
(d2,(ℓ+kjM)M)=1

µ(d2)

ϕ(d2)

=

ρΦ
∑

j=1

1

M

∑

d2|Q
(d2,(ℓ+kjM)M)=1

µ(d2)

ϕ(d2)

=

ρΦ
∑

j=1

1

M

∏

p|Q

(

1− 1

p− 1

)

·Rℓ,j ,

where Rℓ,j =
∏

p|Q
p|(ℓ+kjM)M

(

1− 1

p− 1

)−1

.

Since Rℓ,j ≥ 1 and

logRℓ,j ≤ 2
∑

p|Q
p|(ℓ+kjM)M

1

p
≤ logM + log(ℓ+ kjM)

Yx log Yx
≤ c

e(log x)εx · (log x)εx ,

15
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it follows that

Rℓ,j = 1 +O
(

e−(log x)εx
)

.

On the other hand,

∑

d|Q

d≤z3

∆(x, d) · 3ω(d) ≤
∑

d|Q
ω(d)>Ax2

c
3ω(d)li(x)

ϕ(d)
+

∑

d|Q
ω(d)≤Ax2

c3Ax2 |∆(x, d)|

≤ c li(x)
∑

d|Q
ω(d)>Ax2

3ω(d)

ϕ(d)
+ c3Ax2

∑

d≤√
x

|∆(x, d)|

≤ c li(x)3−Ax2

∏

p|Q

(

1 +
32

p− 1

)

+ c
3Ax2 li(x)

logB x

≤ c li(x)

(log x)C
, (4.32)

where C is an arbitrary constant. Indeed, let A = C. Since z3 ≤ x1/4, we may
apply Lemma 6 for an arbitrary constant B, thereby yielding (4.32).

Hence, with

M = m0m1 · · ·mD−1 ∈ N (℘2), µ2(M) = 1

and

K(x|m0,m1, . . . ,mD−1) = #{p ≤ x : B(Fν(p)) = mν , ν = 0, 1, . . . , D − 1},
we have

∣

∣

∣

∣

∣

∣

K(x|m0,m1, . . . ,mD−1)−
x

M

∏

p|Q

(

1− 1

p− 1

)

∑

ℓ,j

Rℓ,j

∣

∣

∣

∣

∣

∣

≪ li(x)
ρ(M)

M
(log x)−B ,

where B is an arbitrary constant.

This setup will now facilitate the proofs of our theorems.

5. Proof of Theorem 1

Recall that given a word β = b1b2 . . . bk ∈ Ek
D, νβ(δ) stands for the number

of occurrences of β in δ, that is the number of solutions τ1, τ2 ∈ E∗
D such that

16
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δ = τ1βτ2. Note that it is clear that, given any γ1, γ2 ∈ Ek
D,

νβ(γ1) + νβ(γ2) ≤ νβ(γ1γ2) ≤ νβ(γ1) + νβ(γ2) + k.

Let N be a large integer and let θN be the prefix of length N of the infinite
sequence α1α2 . . .. Moreover, let x be the largest integer for which

λ(α1 . . . αx) ≤ N < λ(α1 . . . αxαx+1).

Since λ(αx+1) ≤ ω(U(x+ 1)) ≤ c log x, we have

N +O(log x) =
∑

n≤x

λ(αn) =
∑

n≤x

(ω(U(n)) +O(1)) = O(x) + hDx log log x.

Therefore,

x =
N

hD log logN
+O

(

N

(log logN)2

)

.

Let θN = α1 . . . αx. For each n ∈ [1, x], let αn = γnκnδn, where γn is the
word composed from hn(q) where q runs over those prime divisors of U(n) which
belong to the set ℘1 and similarly δn is composed from those hn(q) where q runs
over the prime divisors of U(n) which belong to ℘3.

We have λ(γn) ≤ ω1(U(n)) and λ(δn) ≤ ω3(U(n)), so that by (4.13) and
(4.14), we obtain that

∑

n≤x

λ(γn) ≪ x
√
x2 and

∑

n≤x

λ(δn) ≪ x
√
x2,

thereby implying that

νβ(θN ) =
x
∑

n=1

νβ(κn) +O(x
√
x2). (5.1)

Using estimates (4.3) and (4.4) of Lemma 9, it follows from (5.1) that

νβ(θN ) =

x
∑

n=1
n∈J

νβ(κn) +O(x
√
x2), (5.2)

where
J := {n : |ω(U(n))− hDx2| ≤ cx

3/4
2 }.

Now, let
J ′ := {n ∈ J : q2|U(n) for q ∈ ℘2}.

We claim that we can drop from the sum in (5.2) those n ∈ J ′, since one can
show by Lemma 6 that

∑

n≤x

n∈J′

νβ(κn) = o(x log log x) (x → ∞).

17
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For the remaining integers n ≤ x, n ∈ J \ J ′, we have

B(Fν(n)) = mν (ν = 0, 1, . . . , D − 1),

with M = m0m1 · · ·mD−1, M squarefree, |ω(M) − hD log log x| ≤ Cx
3/4
2 . We

then have

M ≤ Z2hDx2
x ≤ xεx ,

say.

Now, let M ∈ N (℘2), squarefree, M ≤ xεx , M = q1 · · · qS for primes q1 <

. . . < qS , |S − hDx2| ≤ cx
3/4
2 .

With M = m0m1 · · ·mD−1 being any representation, we have by Lemma 12,

T (x|m0,m1, . . . ,mD−1) = x
ρ(M)ϕ(M)

M

∏

p∈℘2

(

1− DρF (p)

p

)

·K(M)

+ O

(

x
ρ(M)

M
exp{−xεx}

)

.

For a fixed M , consider all m0,m1, . . . ,mD−1 for which M = m0m1 · · ·mD−1.
Let τD(M) be the number of solutions ofM = m0m1 · · ·mD−1. It is clear that τD
is a multiplicative function and that τD(p) = p. If m0,m1, . . . ,mD−1 run over
all the possible choices, then the corresponding βn’s run over all the possible
words of length S in Ek

D. Indeed, let ε1 . . . εS ∈ ES
D and let mj =

∏

εℓ=j qℓ
(j = 0, 1, . . . , S − 1). We then have

νβ(θN ) = x
∑

M≤xεx

M squarefree∈N(℘2)

|ω(M)−hDx2 |≤cx
3/4
2

ρ(M)ϕ(M)

M2
K(M)

∏

p∈℘2

(

1− DρF (p)

p

)

∑

ρ∈ES
D

νβ(ρ)

+O





∑

M≤xεx

x
ρ(M)ω(M)τD(M)

M
exp{−xεx

1 }



+O
(

x · x3/4
2

)

.

Let Σ0 be the second error term above.

It is easy to see that
∑

ρ∈ES
D

νβ(ρ) = (s− k + 1)Ds−k.

Hence, it follows that

Σ0 ≪ x exp{−xεx
1 }x2

∏

p∈℘2

(

1 +
ρ(p)τD(p)

p

)

≪ x exp{−xεx
1 }x2 · (log x)κ

18
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≪ x.

Now, let β1, β2 be arbitrary distinct words belonging to Ek
D. Then,

|νβ1(θN )− νβ2(θN )| ≪ x · x3/4
2 .

Since
∑

β∈Ek
D

νβ(θN ) = N +O(logN)

and since x ≈ N/(log logN), it follows that
∣

∣

∣

∣

νβ(θN )− N

Dk

∣

∣

∣

∣

≤ 1

Dk

∑

β1∈Ek
D

|νβ(θN )− νβ1(θN )|+O

(

N

(log logN)1/4

)

,

thus establishing that

lim sup
N→∞

νβ(θN )

N
=

1

Dk

and thereby completing the proof of Theorem 1.

6. The proof of Theorem 2

The proof of Theorem 2 can be obtained along the same lines as that of
Theorem 1, if one uses Lemma 13 instead of Lemma 12, along with Lemmas 7
and 10, as well as inequalities (4.13) and (4.14) of Lemma 11.
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