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Abstract

We study the normality of the distribution of consecutive digits in the q-
ary expansion of integers belonging to particular subsequences of the positive
integers.

1 Introduction

For each integer q ≥ 2, let Aq = {0, 1, . . . , q − 1}. The q-ary expansion of a positive
integer n is the representation

(1.1) n =
∞∑
j=0

aj(n)qj, where each aj(n) ∈ Aq,

observing that the above sum is clearly finite, since aj(n) = 0 as soon as qj > n.
Let P ∈ Z[x] be an arbitrary polynomial of degree r with a positive leading

coefficient.
Let k be a positive integer. We write Akq to denote the set Aq × · · · × Aq︸ ︷︷ ︸

k

. A

typical element of Akq will be denoted by b = (b0, b1, . . . , bk−1) with each bν ∈ Aq.
Let F = Fk : Akq → R be such that F (0, 0, . . . , 0) = 0.
Moreover, for positive integers n represented as in (1.1), we consider the functions

φk0(n), φk1(n), . . . given by

φkj (n) = (aj(n), . . . , aj+k−1(n)).

With these notations, we further introduce the sequences {αn}n≥1 and {βn}n≥1 defined
by

αn =
∞∑
j=0

Fk(φ
k
j (P (n))), βn =

∞∑
j=0

Fk(φ
k
j (n)).
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Let also M =
1

qk

∑
b∈Akq

Fk(b) and, for each h = 0, . . . , k − 1,

σ2
h =

1

qk+h

∑
(b0,...,bk+h−1)∈Ak+hq

(Fk(b0, . . . , bk−1)−M) (Fk(bh, . . . , bh+k−1)−M) .

Also, set

(1.2) σ2 = σ2
0 + 2

k−1∑
h=1

σ2
h.

Finally, for convenience, from here on, assume that x is a large number and let

N =

⌊
log x

log q

⌋
.

In 1996, Bassily and Kátai [2] proved the following two theorems.

Theorem A. Assume that σ 6= 0. Then, for every real number y,

lim
x→∞

1

x
#{n ≤ x :

αn −MNr

σ
√
Nr

< y} = Φ(y),(1.3)

lim
x→∞

1

π(x)
#{p ≤ x :

αp −MNr

σ
√
Nr

< y} = Φ(y),(1.4)

where Φ stands for the Gaussian Law.

Moreover, let [α, β) ⊂ [0, 1], χ : [0, 1) → R be the periodic modulo 1 function
defined by

χ(t) = χ[α,β)(t) :=

{
1− (β − α) if t ∈ [α, β),
−(β − α) if t ∈ [0, 1) \ [α, β).

Theorem B. Assume that

σ2 :=

∫ 1

0

χ(t)2 dt+ 2
∞∑
k=1

∫ 1

0

χ(t)χ(qkt) dt 6= 0.

Then, for every real number y,

lim
x→∞

1

x
#{n ≤ x :

Nr∑
j=1

χ

(
P (n)

qj

)
< yσ

√
Nr} = Φ(y),

lim
x→∞

1

π(x)
#{p ≤ x :

Nr∑
j=1

χ

(
P (p)

qj

)
< yσ

√
Nr} = Φ(y).
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The proof of Theorem A is based essentially on Lemmas 1 and 2 below. By using

Theorems A and B, we can estimate the moments of
αn −MNr

σ
√
Nr

and of
αp −MNr

σ
√
Nr

and

compare them with the moments of P (n) = n. Since estimate (4.1) is known to hold
in the particular case P (n) = n, the Frechet-Shohat Theorem implies the more general
estimates (4.1) and (4.2).

In this paper we will show that Theorems A and B are still true when the sums
run over some subsets of integers defined in Section 4.

2 Notations

As usual, N, Z and R will stand for the set of positive integers, of integers and real
numbers, respectively. As is customary, p will always denote a prime number.

Throughout this paper, we let λ stand for the Lebesgue measure.
We denote byM1 the set of all complex valued multiplicative functions g satisfying

|g(n)| ≤ 1 for all n ∈ N.
For each y ∈ R, let e(y) := exp{2πyi}.
Given a set B = {x1, . . . , xM} of real numbers, the discrepancy of B modulo 1,

noted discr(B) is defined by

discr(B) = sup
[α,β)⊆[0,1]

∣∣∣∣∣∣∣
1

M

M∑
n=1

{xn}∈[α,β)

1− (β − α)

∣∣∣∣∣∣∣ .
Throughout this paper, the letters c and C always denote positive constants, but

not necessarily the same at each occurrence.

3 Preliminary results

Lemma 1. (Erdős-Turán) If DM stands for the discrepancy of the real numbers
x1, . . . , xM modulo 1, then, there exists a positive constant c such that

DM ≤ c

(
K∑
h=1

|Ψh|
h

+
M

K

)

for any positive integer K, where Ψm :=
M∑
`=1

e(mx`) for each positive integer m.

Proof. This result is due to Erdős and Turán [3].

Now, given a real number ξ ∈ (0, 1), let

U = Uξ := [1− ξ, 1] ∪
q−1⋃
b=1

[
b

q
− ξ, b

q
+ ξ

]
∪ [0, ξ].
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Lemma 2. Given P ∈ Z[x]. Assume that P (x) has positive degree and that its leading
coefficient is positive. For each j ∈ N, set

Ej(x) := #

{
p ≤ x :

{
P (p)

qj+1

}
∈ U

}
and Fj(x) := #

{
n ≤ x :

{
P (n)

qj+1

}
∈ U

}
.

Further let ε > 0 be fixed, N ε < j < rN−N ε, η an arbitrary positive constant. Then,
uniformly in j, we have

Ej(x)� ξπ(x) +
x

logη x
and Fj(x)� ξx+

x

logη x
.

Proof. This is Lemma 4 in Bassily and Kátai [1].

For an arbitrary sequence of positive integers `1 < · · · < `h and given b1, . . . , bh ∈
Aq, let

Σ1 = N
(
x

∣∣∣∣ `1, . . . , `h
b1, . . . , bh

)
= #{n ≤ x : a`j(P (n)) = bj, j = 1, . . . , h},(3.1)

Σ2 = Π

(
x

∣∣∣∣ `1, . . . , `h
b1, . . . , bh

)
= #{p ≤ x : a`j(P (p)) = bj, j = 1, . . . , h}.(3.2)

Lemma 3. Assume that

(3.3) N1/3 ≤ `1 < `2 < · · · < `h ≤ rN −N1/3

and let η be an arbitrary positive constant. Then,

Σ1 =
x

qh
+ o

(
x

logη x

)
and Σ2 =

π(x)

qh
+ o

(
x

logη x

)
(x→∞)

hold uniformly for all choices of `1, . . . , `h satisfying (3.3) and bj ∈ Aq. The implicit
constants in the o(...) terms may depend on P , h and η.

Proof. This is Lemma 1 in Bassily and Kátai [2].

Lemma 4. Let c and η be arbitrary constants. Let x be large. Then, for every choice
of h ≤ c log log x, of `1, . . . , `h satisfying condition (3.3) and of (b1, . . . , bh) ∈ Ahq , we
have

Σ1 =
x

qh
+ o

(
xh

logη x

)
and Σ2 =

π(x)

qh
+ o

(
xh

logη x

)
(x→∞),

where the implicit constants in the o(...) terms may depend on P , c and η.

Proof. This is Lemma 2 in Bassily and Kátai [2].

Remark. The proofs of Lemmas 2, 3 and 4 depend mainly on results of I.M. Vino-
gradov [6] and L.K. Hua [4].
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4 Main results

Let J1, . . . , Jk ⊆ [0, 1) be a finite number of intervals. Let P1(x), . . . , Pk(x) be real
valued polynomials each of positive degree. Consider the linear combinations

Qm1,...,mk(x) = m1P1(x) + · · ·+mkPk(x),

where m1, . . . ,mk ∈ Z, and assume that Qm1,...,mk(x)−Qm1,...,mk(0) has an irrational
coefficient for every m1, . . . ,mk ∈ Z except when m1 = · · · = mk = 0. Moreover, let
S = {n ∈ N : {P`(n)} ∈ J` for ` = 1, . . . , k}.

Then, the second author [5] proved the following result.

Theorem C. With S, J1, . . . , Jk and P1, . . . , Pk as above,

sup
g∈M1

∣∣∣∣∣∣∣
1

x

∑
n≤x
n∈S

g(n)− λ(J1) · · ·λ(Jk)

x

∑
n≤x

g(n)

∣∣∣∣∣∣∣→ 0 as x→∞.

As a corollary to this result, the second author showed that, if u(n) is an additive
function for which there exist two functions A(x) and B(x) such that

F (y) = lim
x→∞

1

x
#{n ≤ x :

u(n)− A(x)

B(x)
< y}

exists for all y ∈ R and represents a distribution function, then, with S, J1, . . . , Jk
and P1, . . . , Pk as above,

lim
x→∞

1

λ(J1) · · ·λ(Jk)

1

x
#

{
n ≤ x : n ∈ S, u(n)− A(x)

B(x)
< y

}
= F (y)

for every continuity point y of F .

Theorem 1. As x→∞,

ΠS(x) = #{p ≤ x : p ∈ S} = (1 + o(1))λ(J1) · · ·λ(Jk)π(x).

Let R ∈ R[x] be a polynomial of degree r > 0 be such that R(x)→∞ as x→∞.
Write the q-ary expansion of each integer n as

n =
t∑

ν=0

εν(n)qν , with each εν(n) ∈ Aq, εt(n) 6= 0.

Consider the word in At+1
q defined as

n = ε0(n)ε1(n) . . . εt(n).
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Now, define

NS

(
x

∣∣∣∣ `1, . . . , `t
a1, . . . , at

)
= #{n ≤ x : n ∈ S, ε`j(R(n)) = aj, j = 1, . . . , t},

ΠS

(
x

∣∣∣∣ `1, . . . , `t
a1, . . . , at

)
= #{p ≤ x : p ∈ S, ε`j(R(p)) = aj, j = 1, . . . , t}.

Then, we have the following.

Theorem 2. Let N =

⌊
log x

log q

⌋
. Let t ∈ N be fixed and let also 0 < τ ≤ 1

2
be fixed.

Then, given any a1, . . . , at ∈ Aq,

sup
Nτ≤`1<···<`t<rN−Nτ

∣∣∣∣∣∣∣∣
qtNS

(
x

∣∣∣∣ `1, . . . , `t
a1, . . . , at

)
NS(x)

− 1

∣∣∣∣∣∣∣∣ ≤ δ(x)

and

sup
Nτ≤`1<···<`t<rN−Nτ

∣∣∣∣∣∣∣∣
qtΠS

(
x

∣∣∣∣ `1, . . . , `t
a1, . . . , at

)
ΠS(x)

− 1

∣∣∣∣∣∣∣∣ ≤ δ(x),

where δ(x) → 0 as x → ∞ and where NS(x) = #{n ≤ x : n ∈ S} and ΠS(x) =
#{p ≤ x : p ∈ S}

Let f be a q-additive function and set

mk =
1

q

∑
b∈Aq

f(bqk) and σ2
k =

1

q

∑
b∈Aq

f 2(bqk)−m2
k.

Let also

M(x) =
N∑
k=0

mk and D2(x) =
N∑
k=0

σ2
k.

Assume that R ∈ Z[x], R(x)→∞ as x→∞ and that r is the degree of R.

Theorem 3. Let f be a q-additive function and assume that |f(bqj)| ≤ C for all

b ∈ Aq and all integers j ≥ 0. Assume also that
D(x)

log1/3 x
→∞ as x→∞. Then,

lim
x→∞

1

NS(x)
#{n ≤ x : n ∈ S, f(R(n))−M(xr)

D(xr)
< y} = Φ(y),

lim
x→∞

1

ΠS(x)
#{p ≤ x : p ∈ S, f(R(p))−M(xr)

D(xr)
< y} = Φ(y).
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Theorem 4. Let σ be as in (1.2) and assume that σ 6= 0. Then, for every real number
y,

lim
x→∞

1

NS(x)
#{n ≤ x : n ∈ S, αn −MNr

σ
√
Nr

< y} = Φ(y),(4.1)

lim
x→∞

1

ΠS(x)
#{p ≤ x : p ∈ S, αp −MNr

σ
√
Nr

< y} = Φ(y).(4.2)

Theorem 5. Assume that

σ2 =

∫ 1

0

χ(t)2 dt+ 2
∞∑
k=1

∫ 1

0

χ(t)χ(qkt) dt 6= 0.

Then, for every real number y,

lim
x→∞

1

NS(x)
#{n ≤ x : n ∈ S,

Nr∑
j=1

χ

(
P (n)

qj

)
< yσ

√
Nr} = Φ(y),

lim
x→∞

1

ΠS(x)
#{p ≤ x : p ∈ S,

Nr∑
j=1

χ

(
P (p)

qj

)
< yσ

√
Nr} = Φ(y).

5 Proof of Theorem 1

Let

fh(x) =

{
1 if x ∈ Jh,
0 if x ∈ [0, 1) \ Jh

and extend fh to the whole set of real numbers by setting fh(x + ν) = fh(x) for all
ν ∈ Z.

Let ∆ be a fixed positive small number. Then, for each x ∈ R, let

gh(x) =
1

2∆

∫ ∆

−∆

fh(x+ y) dy.

Then, we write the Fourier series associated with fh(x) and gh(x) as

fh(x) =
∞∑

m=−∞

c(h)
m e(mx) and gh(x) =

∞∑
m=−∞

d(h)
m e(mx),

where the constants c
(h)
m and d

(h)
m satisfy∣∣c(h)

m

∣∣ ≤ Kh

|m|
for m 6= 0, and c

(h)
0 = λ(Jh)

and ∣∣d(h)
m

∣∣ ≤ Kh min

(
1

|m|
,

1

∆m2

)
for m 6= 0, and d

(h)
0 = λ(Jh),
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where Kh is some positive constant depending only on h.
With these notations and conditions, define the two arithmetic functions

σ(n) = f1(P1(n)) · · · fk(Pk(n)),

κ(n) = g1(P1(n)) · · · gk(Pk(n)),

so that

σ(n) =

{
1 if n ∈ S,
0 otherwise,

while 0 ≤ κ(n) ≤ 1.
Now if κ(n) 6= σ(n), then for some j ∈ {1, . . . , k}, we have

(5.1) gj(Pj(n)) 6= fj(Pj(n)).

In such a case, write Jj = U1 ∪ · · · ∪ Um, namely the union of finite disjoint intervals
Uh = [αh, βh), with α1 < β1 < α2 < β2 < · · · < αm < βm. Now, if (5.1) does indeed
hold, then
(5.2)
{Pj(n)} ∈ [α1−∆, α1 +∆]∪[β1−∆, β1 +∆]∪· · ·∪[αm−∆, αm+∆]∪[βm−∆, βm+∆].

But the number of positive integers n ≤ x satisfying (5.2) is less than

2mx∆ + 2mx · discr({Pj(n)}1≤n≤bxc).

But, in light of Lemma 1, we have that

discr({Pj(n)}1≤n≤bxc)→ 0 as x→∞.

Similarly,
discr({Pj(p)}1≤n≤bxc)→ 0 as x→∞.

Combining these results, we get that

#{n ≤ x : σ(n) 6= κ(n)} ≤ c∆x+ o(x) (x→∞),

#{p ≤ x : σ(p) 6= κ(p)} ≤ (c∆ + o(1))π(x) (x→∞).

Now using the same argument as the one used in [5] to prove the theorem in that
paper, but proceeding only with g(n) = 1, we get that

ΠS(x) =
∑
p≤x

κ(p) +O(∆π(x))

=
∑

m1,...,mk

d(1)
m1
· · · d(k)

mk

∑
p≤x

e(Qm1,...,mk(p)) +O(∆π(x)),

where d
(1)
0 · · · d

(k)
0 = λ(J1) · · ·λ(Jk) and∑

m1,...,mk

∣∣d(1)
m1
· · · d(k)

mk

∣∣ <∞.
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Then, the proof of Theorem 1 is complete by observing that

1

π(x)

∑
p≤x

e(P (p))→ 0 as x→∞,

which is a well-known result of I.M. Vinogradov.

6 Proof of Theorem 2

For x ∈ [0, 1), let

φ0(x) =

{
1 if 0 ≤ x < 1/q,
0 if 1/q ≤ x ≤ 1.

and extend the definition of φ0(x) to all non negative real numbers x using the relation
φ0(x+ n) = φ0(x) for all n ∈ N. Moreover, set

φb(x) = φ0(x− b/q) for b ∈ Aq

and, given a fixed positive small number ∆, let

hb(x) =
1

2∆

∫ ∆

−∆

φb(x+ z) dz =
∞∑

m=−∞

u(b)
m e(mx).

By a simple computation, we easily obtain that u
(b)
0 = 1/q and that u

(b)
m = 0 if m ≡ 0

(mod q) and m 6= 0, while ∣∣u(b)
m

∣∣ ≤ min

(
1

πm
,

1

∆πm2

)
.

Now, let

ρ(n) :=
t∏

j=1

φaj

(
R(n)

q`j+1

)
,

τ(n) :=
t∏

j=1

haj

(
R(n)

q`j+1

)
.

With this definition, it is clear that ρ(n) = 1 or 0, depending on wether ε`j(n) = aj
for j = 1, . . . , t or not. Moreover, 0 ≤ τ(n) ≤ 1 and

#{n ≤ x : ρ(n) 6= τ(n)} ≤ c∆x+ x discr({R(1), . . . , R(bxc)}).

Hence, it follows from this that

lim sup
x→∞

1

x
#{n ≤ x : ρ(n) 6= τ(n)} ≤ c∆.
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Similarly, using Lemmas 1 and 2, we get that

lim sup
x→∞

1

x
#{p ≤ x : ρ(p) 6= τ(p)} ≤ c∆.

Hence, we obtain that

NS

(
x

∣∣∣∣ `1, . . . , `t
a1, . . . , at

)
=
∑
n≤x

σ(n)ρ(n) =
∑
n≤x

κ(n)τ(n) +O(∆x) + o(x) (x→∞).

We now repeat the argument used in [1], namely letting

V =

(
1

q`1+1
, . . . ,

1

q`t+1

)
and letting M be the whole set of vectors M = (m1, . . . ,mt), so that

VM =
m1

q`1+1
+ . . .+

mt

q`t+1
=
AM
HM

with (AM , HM) = 1.

Then, we get that

(6.1) τ(n) =
∑
M∈M

TM e

(
AM
HM

R(n)

)
.

In [5], the second author proved that

(6.2) κ(n) =
∑

m1,...,mt

d(1)
m1
· · · d(t)

mt e(Qm1 , . . . Qmt),

where ∑
m1,...,mt

∣∣d(1)
m1
· · · d(t)

mt

∣∣ <∞.
Thus, combining (6.1) and (6.2), we obtain that

κ(n)τ(n) =
∑
M∈M

∑
m1,...,mt

TMd
(1)
m1
· · · d(t)

mt e

(
AM
HM

R(n) +Qm1,...,mt(n)

)
.

Let us sum the above over the positive integers n ≤ x. If (m1, . . . ,mt) 6= (0, . . . , 0),
then the polynomial

AM
HM

R(y) +Qm1,...,mt(y)

has an irrational coefficient other than the constant term. Thus by Weyl’s Theorem,
we have that ∑

n≤x

e

(
AM
HM

R(n) +Qm1,...,mt(n)

)
= o(x),
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while by using the theorem of I.M. Vinogradov, we get∑
p≤x

e

(
AM
HM

R(p) +Qm1,...,mt(p)

)
= o(π(x)).

It remains to estimate, in the sum
∑

n≤x κ(n)τ(n) and in
∑

p≤x κ(p)τ(p), those
terms for which (m1, . . . ,mt) = (0, . . . , 0).

Since d
(`)
0 = λ(J`), we conclude that∑

n≤x

κ(n)τ(n) = λ(J1) · · ·λ(Jt)
∑
n≤x

τ(n) + o(x),∑
p≤x

κ(p)τ(p) = λ(J1) · · ·λ(Jt)
∑
p≤x

τ(p) + o(π(x)).

Then, by applying Lemma 5 of Bassily and Kátai [1], the proof of Theorem 2
follows immediately.

7 The proofs of the other theorems

The proof of Theorem 3 can be obtained by using the Frechet-Shohat Theorem stated
in Section 4 of Kátai [5]. On the other hand, the proofs of Theorems 4 and 5 go
essentially along the same lines as those of Theorems 1 and 2 proved in Bassily and
Kátai [2] and will therefore be omitted.
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