Distribution of consecutive digits in the *q*-ary expansions of some subsequences of integers II

JEAN-MARIE DE KONINCK¹ and IMRE KÁTAI²

Dedicated to Professor Jonas Kubilius on the occasion of his 90th anniversary

Édition du 31 mars 2012

Abstract

We study the normality of the distribution of consecutive digits in the q-ary expansion of integers belonging to particular subsequences of the positive integers.

1 Introduction

For each integer $q \ge 2$, let $A_q = \{0, 1, \dots, q-1\}$. The q-ary expansion of a positive integer n is the representation

(1.1)
$$n = \sum_{j=0}^{\infty} a_j(n)q^j, \quad \text{where each } a_j(n) \in A_q,$$

observing that the above sum is clearly finite, since $a_i(n) = 0$ as soon as $q^j > n$.

Let $P \in \mathbb{Z}[x]$ be an arbitrary polynomial of degree r with a positive leading coefficient.

Let k be a positive integer. We write A_q^k to denote the set $\underbrace{A_q \times \cdots \times A_q}_k$. A

typical element of A_q^k will be denoted by $\underline{b} = (b_0, b_1, \dots, b_{k-1})$ with each $b_{\nu} \in A_q$. Let $F = F_k : A_q^k \to \mathbb{R}$ be such that $F(0, 0, \dots, 0) = 0$.

Moreover, for positive integers n represented as in (1.1), we consider the functions $\phi_0^k(n), \phi_1^k(n), \ldots$ given by

$$\phi_j^k(n) = (a_j(n), \dots, a_{j+k-1}(n)).$$

With these notations, we further introduce the sequences $\{\alpha_n\}_{n\geq 1}$ and $\{\beta_n\}_{n\geq 1}$ defined by

$$\alpha_n = \sum_{j=0}^{\infty} F_k(\phi_j^k(P(n))), \qquad \beta_n = \sum_{j=0}^{\infty} F_k(\phi_j^k(n)).$$

¹Research supported in part by a grant from NSERC.

²Research supported by a grant from the European Union and the European Social Fund.

Let also
$$M = \frac{1}{q^k} \sum_{\underline{b} \in A_q^k} F_k(\underline{b})$$
 and, for each $h = 0, \dots, k - 1$,
$$\sigma_h^2 = \frac{1}{q^{k+h}} \sum_{(b_0,\dots,b_{k+h-1}) \in A_q^{k+h}} (F_k(b_0,\dots,b_{k-1}) - M) (F_k(b_h,\dots,b_{h+k-1}) - M).$$

Also, set

(1.2)
$$\sigma^2 = \sigma_0^2 + 2\sum_{h=1}^{k-1} \sigma_h^2.$$

Finally, for convenience, from here on, assume that x is a large number and let $N = \left\lfloor \frac{\log x}{\log q} \right\rfloor.$

In 1996, Bassily and Kátai [2] proved the following two theorems.

Theorem A. Assume that $\sigma \neq 0$. Then, for every real number y,

(1.3)
$$\lim_{x \to \infty} \frac{1}{x} \# \{ n \le x : \frac{\alpha_n - MNr}{\sigma\sqrt{Nr}} < y \} = \Phi(y),$$

(1.4)
$$\lim_{x \to \infty} \frac{1}{\pi(x)} \# \{ p \le x : \frac{\alpha_p - MNr}{\sigma\sqrt{Nr}} < y \} = \Phi(y),$$

where Φ stands for the Gaussian Law.

Moreover, let $[\alpha, \beta) \subset [0, 1], \chi : [0, 1) \to \mathbb{R}$ be the periodic modulo 1 function defined by

$$\chi(t) = \chi_{[\alpha,\beta)}(t) := \begin{cases} 1 - (\beta - \alpha) & \text{if } t \in [\alpha,\beta), \\ -(\beta - \alpha) & \text{if } t \in [0,1) \setminus [\alpha,\beta). \end{cases}$$

Theorem B. Assume that

$$\sigma^2 := \int_0^1 \chi(t)^2 \, dt + 2 \sum_{k=1}^\infty \int_0^1 \chi(t) \chi(q^k t) \, dt \neq 0.$$

Then, for every real number y,

$$\lim_{x \to \infty} \frac{1}{x} \#\{n \le x : \sum_{j=1}^{Nr} \chi\left(\frac{P(n)}{q^j}\right) < y\sigma\sqrt{Nr}\} = \Phi(y),$$
$$\lim_{x \to \infty} \frac{1}{\pi(x)} \#\{p \le x : \sum_{j=1}^{Nr} \chi\left(\frac{P(p)}{q^j}\right) < y\sigma\sqrt{Nr}\} = \Phi(y).$$

The proof of Theorem A is based essentially on Lemmas 1 and 2 below. By using Theorems A and B, we can estimate the moments of $\frac{\alpha_n - MNr}{\sigma\sqrt{Nr}}$ and of $\frac{\alpha_p - MNr}{\sigma\sqrt{Nr}}$ and compare them with the moments of P(n) = n. Since estimate (4.1) is known to hold in the particular case P(n) = n, the Frechet-Shohat Theorem implies the more general estimates (4.1) and (4.2).

In this paper we will show that Theorems A and B are still true when the sums run over some subsets of integers defined in Section 4.

2 Notations

As usual, \mathbb{N} , \mathbb{Z} and \mathbb{R} will stand for the set of positive integers, of integers and real numbers, respectively. As is customary, p will always denote a prime number.

Throughout this paper, we let λ stand for the Lebesgue measure.

We denote by \mathcal{M}_1 the set of all complex valued multiplicative functions g satisfying $|g(n)| \leq 1$ for all $n \in \mathbb{N}$.

For each $y \in \mathbb{R}$, let $e(y) := \exp\{2\pi yi\}$.

Given a set $B = \{x_1, \ldots, x_M\}$ of real numbers, the discrepancy of B modulo 1, noted discr(B) is defined by

$$\operatorname{discr}(B) = \sup_{[\alpha,\beta)\subseteq[0,1]} \left| \frac{1}{M} \sum_{\substack{n=1\\\{x_n\}\in[\alpha,\beta)}}^{M} 1 - (\beta - \alpha) \right|.$$

Throughout this paper, the letters c and C always denote positive constants, but not necessarily the same at each occurrence.

3 Preliminary results

Lemma 1. (Erdős-Turán) If D_M stands for the discrepancy of the real numbers x_1, \ldots, x_M modulo 1, then, there exists a positive constant c such that

$$D_M \le c \left(\sum_{h=1}^K \frac{|\Psi_h|}{h} + \frac{M}{K} \right)$$

for any positive integer K, where $\Psi_m := \sum_{\ell=1}^M e(mx_\ell)$ for each positive integer m.

Proof. This result is due to Erdős and Turán [3].

Now, given a real number $\xi \in (0, 1)$, let

$$U = U_{\xi} := [1 - \xi, 1] \cup \bigcup_{b=1}^{q-1} \left[\frac{b}{q} - \xi, \frac{b}{q} + \xi \right] \cup [0, \xi].$$

Lemma 2. Given $P \in \mathbb{Z}[x]$. Assume that P(x) has positive degree and that its leading coefficient is positive. For each $j \in \mathbb{N}$, set

$$E_j(x) := \# \left\{ p \le x : \left\{ \frac{P(p)}{q^{j+1}} \right\} \in U \right\}$$
 and $F_j(x) := \# \left\{ n \le x : \left\{ \frac{P(n)}{q^{j+1}} \right\} \in U \right\}$.

Further let $\varepsilon > 0$ be fixed, $N^{\varepsilon} < j < rN - N^{\varepsilon}$, η an arbitrary positive constant. Then, uniformly in j, we have

$$E_j(x) \ll \xi \pi(x) + \frac{x}{\log^{\eta} x}$$
 and $F_j(x) \ll \xi x + \frac{x}{\log^{\eta} x}$.

Proof. This is Lemma 4 in Bassily and Kátai [1].

For an arbitrary sequence of positive integers $\ell_1 < \cdots < \ell_h$ and given $b_1, \ldots, b_h \in A_q$, let

(3.1)
$$\Sigma_1 = \mathcal{N}\left(x \middle| \begin{array}{c} \ell_1, \dots, \ell_h \\ b_1, \dots, b_h \end{array}\right) = \#\{n \le x : a_{\ell_j}(P(n)) = b_j, j = 1, \dots, h\},$$

(3.2) $\Sigma_2 = \Pi\left(x \middle| \begin{array}{c} \ell_1, \dots, \ell_h \\ b_1, \dots, b_h \end{array}\right) = \#\{p \le x : a_{\ell_j}(P(p)) = b_j, j = 1, \dots, h\}.$

Lemma 3. Assume that

(3.3)
$$N^{1/3} \le \ell_1 < \ell_2 < \dots < \ell_h \le rN - N^{1/3}$$

and let η be an arbitrary positive constant. Then,

$$\Sigma_1 = \frac{x}{q^h} + o\left(\frac{x}{\log^{\eta} x}\right) \quad and \quad \Sigma_2 = \frac{\pi(x)}{q^h} + o\left(\frac{x}{\log^{\eta} x}\right) \quad (x \to \infty)$$

hold uniformly for all choices of ℓ_1, \ldots, ℓ_h satisfying (3.3) and $b_j \in A_q$. The implicit constants in the $o(\ldots)$ terms may depend on P, h and η .

Proof. This is Lemma 1 in Bassily and Kátai [2].

Lemma 4. Let c and η be arbitrary constants. Let x be large. Then, for every choice of $h \leq c \log \log x$, of ℓ_1, \ldots, ℓ_h satisfying condition (3.3) and of $(b_1, \ldots, b_h) \in A_q^h$, we have

$$\Sigma_1 = \frac{x}{q^h} + o\left(\frac{xh}{\log^{\eta} x}\right) \quad and \quad \Sigma_2 = \frac{\pi(x)}{q^h} + o\left(\frac{xh}{\log^{\eta} x}\right) \quad (x \to \infty),$$

where the implicit constants in the o(...) terms may depend on P, c and η .

Proof. This is Lemma 2 in Bassily and Kátai [2].

Remark. The proofs of Lemmas 2, 3 and 4 depend mainly on results of I.M. Vinogradov [6] and L.K. Hua [4].

4 Main results

Let $J_1, \ldots, J_k \subseteq [0, 1)$ be a finite number of intervals. Let $P_1(x), \ldots, P_k(x)$ be real valued polynomials each of positive degree. Consider the linear combinations

$$Q_{m_1,\dots,m_k}(x) = m_1 P_1(x) + \dots + m_k P_k(x),$$

where $m_1, \ldots, m_k \in \mathbb{Z}$, and assume that $Q_{m_1,\ldots,m_k}(x) - Q_{m_1,\ldots,m_k}(0)$ has an irrational coefficient for every $m_1, \ldots, m_k \in \mathbb{Z}$ except when $m_1 = \cdots = m_k = 0$. Moreover, let $S = \{n \in \mathbb{N} : \{P_\ell(n)\} \in J_\ell \text{ for } \ell = 1, \ldots, k\}.$

Then, the second author [5] proved the following result.

Theorem C. With S, J_1, \ldots, J_k and P_1, \ldots, P_k as above,

$$\sup_{g \in \mathcal{M}_1} \left| \frac{1}{x} \sum_{\substack{n \le x \\ n \in S}} g(n) - \frac{\lambda(J_1) \cdots \lambda(J_k)}{x} \sum_{n \le x} g(n) \right| \to 0 \quad \text{as } x \to \infty.$$

As a corollary to this result, the second author showed that, if u(n) is an additive function for which there exist two functions A(x) and B(x) such that

$$F(y) = \lim_{x \to \infty} \frac{1}{x} \# \{ n \le x : \frac{u(n) - A(x)}{B(x)} < y \}$$

exists for all $y \in \mathbb{R}$ and represents a distribution function, then, with S, J_1, \ldots, J_k and P_1, \ldots, P_k as above,

$$\lim_{x \to \infty} \frac{1}{\lambda(J_1) \cdots \lambda(J_k)} \frac{1}{x} \# \left\{ n \le x : n \in S, \ \frac{u(n) - A(x)}{B(x)} < y \right\} = F(y)$$

for every continuity point y of F.

Theorem 1. As $x \to \infty$,

$$\Pi_S(x) = \#\{p \le x : p \in S\} = (1 + o(1))\lambda(J_1) \cdots \lambda(J_k)\pi(x).$$

Let $R \in \mathbb{R}[x]$ be a polynomial of degree r > 0 be such that $R(x) \to \infty$ as $x \to \infty$. Write the *q*-ary expansion of each integer *n* as

$$n = \sum_{\nu=0}^{t} \varepsilon_{\nu}(n) q^{\nu}, \quad \text{with each } \varepsilon_{\nu}(n) \in A_q, \ \varepsilon_t(n) \neq 0.$$

Consider the word in A_q^{t+1} defined as

$$\overline{n} = \varepsilon_0(n)\varepsilon_1(n)\ldots\varepsilon_t(n).$$

Now, define

$$N_{S}\left(x \middle| \begin{array}{c} \ell_{1}, \dots, \ell_{t} \\ a_{1}, \dots, a_{t} \end{array}\right) = \#\{n \leq x : n \in S, \ \varepsilon_{\ell_{j}}(R(n)) = a_{j}, \ j = 1, \dots, t\}, \\ \Pi_{S}\left(x \middle| \begin{array}{c} \ell_{1}, \dots, \ell_{t} \\ a_{1}, \dots, a_{t} \end{array}\right) = \#\{p \leq x : p \in S, \ \varepsilon_{\ell_{j}}(R(p)) = a_{j}, \ j = 1, \dots, t\}.$$

Then, we have the following.

Theorem 2. Let $N = \left\lfloor \frac{\log x}{\log q} \right\rfloor$. Let $t \in \mathbb{N}$ be fixed and let also $0 < \tau \leq \frac{1}{2}$ be fixed. Then, given any $a_1, \ldots, a_t \in A_q$,

$$\sup_{N^{\tau} \le \ell_1 < \dots < \ell_t < rN - N^{\tau}} \left| \frac{q^t N_S \left(x \left| \begin{array}{c} \ell_1, \dots, \ell_t \\ a_1, \dots, a_t \end{array} \right) \right.}{N_S(x)} - 1 \right| \le \delta(x)$$

and

$$\sup_{N^{\tau} \leq \ell_1 < \dots < \ell_t < rN - N^{\tau}} \left| \frac{q^t \Pi_S \left(x \middle| \begin{array}{c} \ell_1, \dots, \ell_t \\ a_1, \dots, a_t \end{array} \right)}{\Pi_S(x)} - 1 \right| \leq \delta(x),$$

where $\delta(x) \to 0$ as $x \to \infty$ and where $N_S(x) = \#\{n \le x : n \in S\}$ and $\Pi_S(x) = \#\{p \le x : p \in S\}$

Let f be a q-additive function and set

$$m_k = \frac{1}{q} \sum_{b \in A_q} f(bq^k)$$
 and $\sigma_k^2 = \frac{1}{q} \sum_{b \in A_q} f^2(bq^k) - m_k^2.$

Let also

$$M(x) = \sum_{k=0}^{N} m_k$$
 and $D^2(x) = \sum_{k=0}^{N} \sigma_k^2$.

Assume that $R \in \mathbb{Z}[x], R(x) \to \infty$ as $x \to \infty$ and that r is the degree of R.

Theorem 3. Let f be a q-additive function and assume that $|f(bq^j)| \leq C$ for all $b \in A_q$ and all integers $j \geq 0$. Assume also that $\frac{D(x)}{\log^{1/3} x} \to \infty$ as $x \to \infty$. Then,

$$\lim_{x \to \infty} \frac{1}{N_S(x)} \#\{n \le x : n \in S, \ \frac{f(R(n)) - M(x^r)}{D(x^r)} < y\} = \Phi(y),$$
$$\lim_{x \to \infty} \frac{1}{\Pi_S(x)} \#\{p \le x : p \in S, \ \frac{f(R(p)) - M(x^r)}{D(x^r)} < y\} = \Phi(y).$$

Theorem 4. Let σ be as in (1.2) and assume that $\sigma \neq 0$. Then, for every real number y,

(4.1)
$$\lim_{x \to \infty} \frac{1}{N_S(x)} \#\{n \le x : n \in S, \ \frac{\alpha_n - MNr}{\sigma\sqrt{Nr}} < y\} = \Phi(y),$$

(4.2)
$$\lim_{x \to \infty} \frac{1}{\prod_S(x)} \#\{p \le x : p \in S, \ \frac{\alpha_p - MNr}{\sigma\sqrt{Nr}} < y\} = \Phi(y)$$

Theorem 5. Assume that

$$\sigma^2 = \int_0^1 \chi(t)^2 dt + 2\sum_{k=1}^\infty \int_0^1 \chi(t)\chi(q^k t) dt \neq 0.$$

Then, for every real number y,

$$\lim_{x \to \infty} \frac{1}{N_S(x)} \#\{n \le x : n \in S, \sum_{j=1}^{Nr} \chi\left(\frac{P(n)}{q^j}\right) < y\sigma\sqrt{Nr}\} = \Phi(y),$$
$$\lim_{x \to \infty} \frac{1}{\Pi_S(x)} \#\{p \le x : p \in S, \sum_{j=1}^{Nr} \chi\left(\frac{P(p)}{q^j}\right) < y\sigma\sqrt{Nr}\} = \Phi(y).$$

5 Proof of Theorem 1

Let

$$f_h(x) = \begin{cases} 1 & \text{if } x \in J_h, \\ 0 & \text{if } x \in [0,1) \setminus J_h \end{cases}$$

and extend f_h to the whole set of real numbers by setting $f_h(x + \nu) = f_h(x)$ for all $\nu \in \mathbb{Z}$.

Let Δ be a fixed positive small number. Then, for each $x \in \mathbb{R}$, let

$$g_h(x) = \frac{1}{2\Delta} \int_{-\Delta}^{\Delta} f_h(x+y) \, dy.$$

Then, we write the Fourier series associated with $f_h(x)$ and $g_h(x)$ as

$$f_h(x) = \sum_{m=-\infty}^{\infty} c_m^{(h)} e(mx)$$
 and $g_h(x) = \sum_{m=-\infty}^{\infty} d_m^{(h)} e(mx)$,

where the constants $c_m^{(h)}$ and $d_m^{(h)}$ satisfy

$$\left|c_{m}^{(h)}\right| \leq \frac{K_{h}}{\left|m\right|} \text{ for } m \neq 0, \text{ and } c_{0}^{(h)} = \lambda(J_{h})$$

and

$$\left|d_m^{(h)}\right| \le K_h \min\left(\frac{1}{|m|}, \frac{1}{\Delta m^2}\right)$$
 for $m \ne 0$, and $d_0^{(h)} = \lambda(J_h)$,

where K_h is some positive constant depending only on h.

With these notations and conditions, define the two arithmetic functions

$$\sigma(n) = f_1(P_1(n)) \cdots f_k(P_k(n)),$$

$$\kappa(n) = g_1(P_1(n)) \cdots g_k(P_k(n)),$$

so that

$$\sigma(n) = \begin{cases} 1 & \text{if } n \in S, \\ 0 & \text{otherwise,} \end{cases}$$

while $0 \le \kappa(n) \le 1$.

Now if $\kappa(n) \neq \sigma(n)$, then for some $j \in \{1, \ldots, k\}$, we have

(5.1)
$$g_j(P_j(n)) \neq f_j(P_j(n)).$$

In such a case, write $J_j = U_1 \cup \cdots \cup U_m$, namely the union of finite disjoint intervals $U_h = [\alpha_h, \beta_h)$, with $\alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots < \alpha_m < \beta_m$. Now, if (5.1) does indeed hold, then (5.2)

$$\{P_j(n)\} \in [\alpha_1 - \Delta, \alpha_1 + \Delta] \cup [\beta_1 - \Delta, \beta_1 + \Delta] \cup \cdots \cup [\alpha_m - \Delta, \alpha_m + \Delta] \cup [\beta_m - \Delta, \beta_m + \Delta].$$

But the number of positive integers $n \leq x$ satisfying (5.2) is less than

 $2mx\Delta + 2mx \cdot \operatorname{discr}(\{P_j(n)\}_{1 \le n \le \lfloor x \rfloor}).$

But, in light of Lemma 1, we have that

discr
$$(\{P_j(n)\}_{1 \le n \le \lfloor x \rfloor}) \to 0$$
 as $x \to \infty$.

Similarly,

discr
$$(\{P_j(p)\}_{1 \le n \le \lfloor x \rfloor}) \to 0$$
 as $x \to \infty$.

Combining these results, we get that

$$\begin{aligned} &\#\{n \le x : \sigma(n) \ne \kappa(n)\} &\le c\Delta x + o(x) \quad (x \to \infty), \\ &\#\{p \le x : \sigma(p) \ne \kappa(p)\} &\le (c\Delta + o(1))\pi(x) \quad (x \to \infty) \end{aligned}$$

Now using the same argument as the one used in [5] to prove the theorem in that paper, but proceeding only with g(n) = 1, we get that

$$\Pi_{S}(x) = \sum_{p \le x} \kappa(p) + O(\Delta \pi(x))$$

=
$$\sum_{m_{1},...,m_{k}} d_{m_{1}}^{(1)} \cdots d_{m_{k}}^{(k)} \sum_{p \le x} e(Q_{m_{1},...,m_{k}}(p)) + O(\Delta \pi(x)),$$

where $d_0^{(1)} \cdots d_0^{(k)} = \lambda(J_1) \cdots \lambda(J_k)$ and

$$\sum_{m_1,\ldots,m_k} \left| d_{m_1}^{(1)} \cdots d_{m_k}^{(k)} \right| < \infty.$$

Then, the proof of Theorem 1 is complete by observing that

$$\frac{1}{\pi(x)}\sum_{p\leq x}e(P(p))\to 0\qquad\text{as }x\to\infty,$$

which is a well-known result of I.M. Vinogradov.

6 Proof of Theorem 2

For $x \in [0, 1)$, let

$$\phi_0(x) = \begin{cases} 1 & \text{if } 0 \le x < 1/q, \\ 0 & \text{if } 1/q \le x \le 1. \end{cases}$$

and extend the definition of $\phi_0(x)$ to all non negative real numbers x using the relation $\phi_0(x+n) = \phi_0(x)$ for all $n \in \mathbb{N}$. Moreover, set

$$\phi_b(x) = \phi_0(x - b/q) \quad \text{for } b \in A_q$$

and, given a fixed positive small number Δ , let

$$h_b(x) = \frac{1}{2\Delta} \int_{-\Delta}^{\Delta} \phi_b(x+z) \, dz = \sum_{m=-\infty}^{\infty} u_m^{(b)} e(mx).$$

By a simple computation, we easily obtain that $u_0^{(b)} = 1/q$ and that $u_m^{(b)} = 0$ if $m \equiv 0 \pmod{q}$ and $m \neq 0$, while

$$\left|u_m^{(b)}\right| \le \min\left(\frac{1}{\pi m}, \frac{1}{\Delta \pi m^2}\right)$$

Now, let

$$\rho(n) := \prod_{j=1}^{t} \phi_{a_j} \left(\frac{R(n)}{q^{\ell_j + 1}} \right),$$

$$\tau(n) := \prod_{j=1}^{t} h_{a_j} \left(\frac{R(n)}{q^{\ell_j + 1}} \right).$$

With this definition, it is clear that $\rho(n) = 1$ or 0, depending on wether $\varepsilon_{\ell_j}(n) = a_j$ for $j = 1, \ldots, t$ or not. Moreover, $0 \le \tau(n) \le 1$ and

$$#\{n \le x : \rho(n) \ne \tau(n)\} \le c\Delta x + x \operatorname{discr}(\{R(1), \dots, R(\lfloor x \rfloor)\}).$$

Hence, it follows from this that

$$\limsup_{x \to \infty} \frac{1}{x} \# \{ n \le x : \rho(n) \ne \tau(n) \} \le c\Delta.$$

Similarly, using Lemmas 1 and 2, we get that

$$\limsup_{x \to \infty} \frac{1}{x} \# \{ p \le x : \rho(p) \ne \tau(p) \} \le c\Delta.$$

Hence, we obtain that

$$N_S\left(x \middle| \begin{array}{c} \ell_1, \dots, \ell_t \\ a_1, \dots, a_t \end{array}\right) = \sum_{n \le x} \sigma(n)\rho(n) = \sum_{n \le x} \kappa(n)\tau(n) + O(\Delta x) + o(x) \quad (x \to \infty).$$

We now repeat the argument used in [1], namely letting

$$V = \left(\frac{1}{q^{\ell_1+1}}, \dots, \frac{1}{q^{\ell_t+1}}\right)$$

and letting \mathcal{M} be the whole set of vectors $M = (m_1, \ldots, m_t)$, so that

$$VM = \frac{m_1}{q^{\ell_1+1}} + \ldots + \frac{m_t}{q^{\ell_t+1}} = \frac{A_M}{H_M}$$
 with $(A_M, H_M) = 1$.

Then, we get that

(6.1)
$$\tau(n) = \sum_{M \in \mathcal{M}} T_M \ e\left(\frac{A_M}{H_M} R(n)\right).$$

In [5], the second author proved that

(6.2)
$$\kappa(n) = \sum_{m_1,\dots,m_t} d_{m_1}^{(1)} \cdots d_{m_t}^{(t)} e(Q_{m_1},\dots,Q_{m_t}),$$

where

$$\sum_{m_1,\ldots,m_t} \left| d_{m_1}^{(1)} \cdots d_{m_t}^{(t)} \right| < \infty.$$

Thus, combining (6.1) and (6.2), we obtain that

$$\kappa(n)\tau(n) = \sum_{M \in \mathcal{M}} \sum_{m_1, \dots, m_t} T_M d_{m_1}^{(1)} \cdots d_{m_t}^{(t)} e\left(\frac{A_M}{H_M} R(n) + Q_{m_1, \dots, m_t}(n)\right).$$

Let us sum the above over the positive integers $n \leq x$. If $(m_1, \ldots, m_t) \neq (0, \ldots, 0)$, then the polynomial

$$\frac{A_M}{H_M}R(y) + Q_{m_1,\dots,m_t}(y)$$

has an irrational coefficient other than the constant term. Thus by Weyl's Theorem, we have that

$$\sum_{n \le x} e\left(\frac{A_M}{H_M}R(n) + Q_{m_1,\dots,m_t}(n)\right) = o(x),$$

while by using the theorem of I.M. Vinogradov, we get

$$\sum_{p \le x} e\left(\frac{A_M}{H_M}R(p) + Q_{m_1,\dots,m_t}(p)\right) = o(\pi(x)).$$

It remains to estimate, in the sum $\sum_{n \leq x} \kappa(n)\tau(n)$ and in $\sum_{p \leq x} \kappa(p)\tau(p)$, those terms for which $(m_1, \ldots, m_t) = (0, \ldots, 0)$.

Since $d_0^{(\ell)} = \lambda(J_\ell)$, we conclude that

$$\sum_{n \le x} \kappa(n)\tau(n) = \lambda(J_1) \cdots \lambda(J_t) \sum_{n \le x} \tau(n) + o(x),$$

$$\sum_{p \le x} \kappa(p)\tau(p) = \lambda(J_1) \cdots \lambda(J_t) \sum_{p \le x} \tau(p) + o(\pi(x)).$$

Then, by applying Lemma 5 of Bassily and Kátai [1], the proof of Theorem 2 follows immediately.

7 The proofs of the other theorems

The proof of Theorem 3 can be obtained by using the Frechet-Shohat Theorem stated in Section 4 of Kátai [5]. On the other hand, the proofs of Theorems 4 and 5 go essentially along the same lines as those of Theorems 1 and 2 proved in Bassily and Kátai [2] and will therefore be omitted.

References

- N.L. Bassily and I. Kátai, Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hungar. 68 (1995), 353-361.
- [2] N.L. Bassily and I. Kátai, Distribution of consecutive digits in the q-ary expansions of some subsequences of integers, J. of Mathematical Sciences 78 (1996), no.1, 11-17.
- [3] P. Erdős and P. Turán, On a problem in the theory of uniform distributions, Indig. Math. J. 10 (1948), 370–378, 406–413.
- [4] L.K. Hua, Additive Theory of Prime Numbers, AMS, Providence, Rhode Island (1965).
- [5] I. Kátai, On the sum of bounded multiplicative functions over some special subsets of integers, Uniform Distribution Theory 3 (2008), no. 2, 37-43.
- [6] I.M. Vinogradov, Method of Trigonometric Sums in the Theory of Numbers [in Russian], Nauka, Moscow (1980).

Jean-Marie De Koninck Dép. de mathématiques et de statistique Université Laval Québec Québec G1V 0A6 Canada jmdk@mat.ulaval.ca Imre Kátai Computer Algebra Department Eötvös Loránd University 1117 Budapest Pázmány Péter Sétány I/C Hungary katai@compalg.inf.elte.hu

JMDK, le 31 mars 2012; fichier: consecutive-digits-31March-2012.tex