Some new methods for constructing normal numbers

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai ${ }^{2}$

Édition du 18 décembre 2011

Abstract

Given an integer $q \geq 2$, a q-normal number, or simply a normal number, is a real number whose q-ary expansion is such that any preassigned sequence, of length $k \geq 1$, of base q digits from this expansion, occurs at the expected frequency, namely $1 / q^{k}$. We expose two new methods which allow for the construction of large families of normal numbers.

AMS Subject Classification numbers: 11K16, 11N37, 11A41
Key words: normal numbers, primes, arithmetic function

1 Introduction

Given an integer $q \geq 2$, a q-normal number, or simply a normal number, is a real number whose q-ary expansion is such that any preassigned sequence, of length $k \geq 1$, of base q digits from this expansion, occurs at the expected frequency, namely $1 / q^{k}$. Equivalently, given a positive real number $\eta<1$ whose expansion is $\eta=0, a_{1} a_{2} \ldots$. with each $a_{i} \in\{0,1, \ldots, q-1\}$, that is, $\eta=\sum_{j=1}^{\infty} \frac{a_{j}}{q^{j}}$, we say that η is a normal number if the sequence $\left\{q^{m} \eta\right\}, m=1,2, \ldots$ (here $\{y\}$ stands for the fractional part of y), is uniformly distributed in the interval $[0,1[$.

It is easily seen that η is a q-normal number if and only if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{j<N: a_{j+1} \ldots a_{j+k}=b_{1} \ldots b_{k}\right\}=\frac{1}{q^{k}}
$$

for every $b_{1} \ldots b_{k} \in\{0,1, \ldots, q-1\}^{k}$.
The problem of determining if a given number is normal is unresolved. For instance, fundamental constants such as $\pi, e, \sqrt{2}, \log 2$ as well as the famous Apéry constant $\zeta(3)$, have not yet been proven to be normal numbers, although numerical evidence tends to indicate that they are. Interestingly, Borel [2] has shown that almost all real numbers are normal, that is that the set of those real numbers which are not normal has Lebesgue measure 0 .

In this paper, we expose two new methods which allow the construction of large families of normal numbers.

[^0]
2 Notations

Given an integer $t \geq 1$, an expression of the form $i_{1} i_{2} \ldots i_{t}$, where each i_{j} is one of the numbers $0,1, \ldots, q-1$, is called a word of length t. Given a word α, we shall write $\lambda(\alpha)=t$ to indicate that α is a word of length t. We shall also use the symbol Λ to denote the empty word.

Let $q \geq 2$ be a fixed integer and let $A=A_{q}=\{0,1,2, \ldots, q-1\}$. Then, $A^{t}=A_{q}^{t}$ will stand for the set of words of length t over A, while $A^{*}=A_{q}^{*}$ will stand for the set of words over A, including the empty word Λ, that is

$$
A^{*}=A_{q}^{*}=\bigcup_{t=0}^{\infty} A^{t}, \quad \text { where } A^{0}=\{\Lambda\}
$$

Moreover, the concatenation of two words $\alpha, \beta \in A^{*}$, written $\alpha \beta$, also belongs to A^{*}. It is clear that $\lambda(\alpha \beta)=\lambda(\alpha)+\lambda(\beta)$.

Given a fixed integer $q \geq 2$, we will write positive integers n as

$$
\begin{equation*}
n=\sum_{j \geq 0} \varepsilon_{j}(n) q^{j}, \text { with each } \varepsilon_{j}(n) \in A_{q} \tag{2.1}
\end{equation*}
$$

where the above sum is clearly finite, and use the notation

$$
\begin{equation*}
\bar{n}=\varepsilon_{0}(n) \varepsilon_{1}(n) \ldots \varepsilon_{t}(n) \tag{2.2}
\end{equation*}
$$

where $\varepsilon_{t}(n) \neq 0$.
Let k be a fixed positive integer. For each word $\beta=b_{1} \ldots b_{k} \in A^{k}$, we let $\nu_{\beta}(\bar{n})$ stand for the number of occurrences of β in the representation (2.2) of the positive integer n, that is, the number of times that $\varepsilon_{j}(n) \ldots \varepsilon_{j+k-1}(n)=\beta$ as j varies from 0 to $t-(k-1)$.

Let $\eta_{\infty}=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \ldots$, where each ε_{i} is an element of A_{q}. Let $\eta_{N}=\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{N}$. Moreover, for each $\beta=\delta_{1} \ldots \delta_{k} \in A_{q}^{*}$ and integer $N \geq 2$, let $M(N, \beta)$ stand for the number of occurrences of β as a subsequence of the consecutive digits of η_{N}, that is

$$
M(N, \beta)=\#\left\{(\alpha, \gamma): \eta_{N}=\alpha \beta \gamma, \alpha \gamma \in A_{q}^{*}\right\}
$$

We will say that η_{∞} is a normal sequence if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{M(N, \beta)}{N}=\frac{1}{q^{\lambda(\beta)}} \quad \text { for all } \beta \in A_{q}^{*} \tag{2.3}
\end{equation*}
$$

Let \wp stand for the set of all prime numbers and let $\widetilde{\wp}$ stand for an infinite subset of \wp. We shall denote by $\mathcal{N}(\widetilde{\wp})$ the multiplicative semigroup generated by $\widetilde{\wp}$.

Let ξ be the real number belonging to the interval $[0,1]$ whose q-ary expansion is

$$
\xi=0 . \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \ldots
$$

and, for each integer $N \geq 1$, set

$$
\xi_{N}=0 . \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{N}
$$

With β and $M(N, \beta)$ as above, we will say that ξ is normal if (2.3) holds.
We shall let $\omega(n)$ stand for the number of distinct prime factors of n. Throughout this paper, the letter p, with or without subscripts, always denotes a prime number. Finally, the letters c and C always denote positive constants, but not necessarily the same at each occurrence.

3 First method

Let \mathcal{B} be an infinite set of positive integers and let $B(x)=\#\{b \leq x: b \in \mathcal{B}\}$. Further, let $F: \mathcal{B} \rightarrow \mathbb{N}$ be a function for which, for some positive integer r and constants $0<c_{1}<c_{2}<+\infty$,

$$
c_{1} \leq \frac{F(b)}{b^{r}} \leq c_{2} \quad \text { for all } b \in \mathcal{B}
$$

Let x be a large number and set $N=\left\lfloor\frac{\log x}{\log q}\right\rfloor$.
Let $0 \leq \ell_{1}<\cdots<\ell_{h}(\leq r N)$ be integers and let $a_{1}, \ldots, a_{h} \in A_{q}$. Using the notation given in (2.1) and (2.2), we further let

$$
\mathcal{B}_{F}\left(\begin{array}{l|l}
x & \begin{array}{l}
\ell_{1}, \ldots, \ell_{h} \\
a_{1}, \ldots, a_{h}
\end{array}
\end{array}\right)=\left\{b \leq x: b \in \mathcal{B}, \varepsilon_{\ell_{j}}(F(b))=a_{j}, j=1, \ldots, h\right\}
$$

and

$$
B_{F}\left(\begin{array}{l|l}
x & \begin{array}{l}
\ell_{1}, \ldots, \ell_{h} \\
a_{1}, \ldots, a_{h}
\end{array}
\end{array}\right)=\# \mathcal{B}_{F}\left(\begin{array}{l|l}
x & \begin{array}{l}
\ell_{1}, \ldots, \ell_{h} \\
a_{1}, \ldots, a_{h}
\end{array}
\end{array}\right) .
$$

We say that $F(\mathcal{B})$ is a q-ary smooth sequence if there exists a positive constant $\alpha<1$ and a function $\varepsilon(x)$, which tends to 0 as x tends to infinity, such that for every fixed integer $h \geq 1$,

$$
\sup _{N^{\alpha} \leq \ell_{1}<\cdots<\ell_{h} \leq r N-N^{\alpha}}\left|\frac{q^{h} B_{F}\left(x \left\lvert\, \begin{array}{l}
\ell_{1}, \ldots, \ell_{h} \tag{3.1}\\
a_{1}, \ldots, a_{h}
\end{array}\right.\right)}{B(x)}-1\right| \leq c(h) \varepsilon(x)
$$

(where $c(h)$ is a positive constant depending only on h) and also such that $B(x) \gg \frac{x}{\log x}$.
Now, let $F(\mathcal{B})$ be a q-ary smooth sequence. Let $b_{1}<b_{2}<\cdots$ stand for the list of all elements of \mathcal{B}. Let also

$$
\xi_{n}=\overline{F\left(b_{n}\right)}=\varepsilon_{0}\left(F\left(b_{n}\right)\right) \ldots \varepsilon_{t}\left(F\left(b_{n}\right)\right)
$$

Since $c_{1} b_{n}^{r} \leq F\left(b_{n}\right) \leq c_{2} b_{n}^{r}$, it follows that $t=\frac{r \log \log b_{n}}{\log q}+O(1)$.
Let $n \in I:=[x, 2 x], \beta \in A_{q}^{k}, \nu_{\beta}\left(\xi_{n}\right)$ be the number of occurrences of β as a subword in ξ_{n}. Let us write

$$
\nu_{\beta}\left(\xi_{n}\right)=\nu_{\beta}^{(1)}\left(\xi_{n}\right)+\nu_{\beta}^{(2)}\left(\xi_{n}\right)+\nu_{\beta}^{(3)}\left(\xi_{n}\right)
$$

where $\nu_{\beta}^{(1)}\left(\xi_{n}\right)$ is the number of those occurrences of β in ξ_{n} as $\xi_{n}=\delta \beta \gamma$, with $\lambda(\delta) \leq N^{\alpha}$, while $\nu_{\beta}^{(3)}\left(\xi_{n}\right)$ is the number of those occurrences of β in ξ_{n} for which $\lambda(\gamma) \leq N^{\alpha}$.

Now, from (3.1), we obtain that

$$
\begin{align*}
\Sigma_{1} & :=\sum_{n \in I} \nu_{\beta}^{(2)}\left(\xi_{n}\right)=\frac{1}{q^{k}} \sum_{n \in I}\left(\lambda\left(\xi_{n}\right)+O\left(N^{\alpha}\right)\right) \\
& =\frac{1}{q^{k}} r N x+O\left(x(\log x)^{\alpha}\right) \tag{3.2}
\end{align*}
$$

Similarly, one can estimate the expression

$$
\Sigma_{2}:=\sum_{n \in I}\left(\nu_{\beta}^{(2)}\left(\xi_{n}\right)\right)^{2}
$$

Indeed, $\left(\nu_{\beta}^{(2)}\left(\xi_{n}\right)\right)^{2}$ stands for the number of solutions of

$$
\xi_{n}=\delta_{1} \beta \gamma_{1}, \quad \xi_{n}=\delta_{2} \beta \gamma_{2} \quad \text { such that } \lambda\left(\delta_{j}\right)>N^{\alpha}, \lambda\left(\gamma_{j}\right) \leq N^{\alpha}(j=1,2)
$$

Observe that the number of those occurrences of β which are not disjoint, say
$\left.\left.\xi_{n}=\begin{array}{|l|l|l|}\hline \delta_{1} & \beta & \gamma_{1} \\ \xi_{n} & =\begin{array}{|l|l|l|}\hline \delta_{2} & \beta & \mid \gamma_{2} \\ \hline\end{array}\end{array}\right)=\begin{array}{ll} & \end{array}\right)$
is less than $(2 k+1) \nu_{\beta}^{(2)}\left(\xi_{n}\right)$.
Thus,

$$
\begin{equation*}
\Sigma_{2}=\frac{1}{q^{2 k}}(r N)^{2} x+O(x N) \tag{3.3}
\end{equation*}
$$

It follows from (3.2) and (3.3) that

$$
\sum_{n \in I}\left(\nu_{\beta}^{(2)}\left(\xi_{n}\right)-\frac{1}{q^{k}} r N\right)^{2} \ll x N
$$

so that

$$
\sum_{n \in I}\left(\nu_{\beta}\left(\xi_{n}\right)-\frac{1}{q^{k}} r N\right)^{2} \ll x N+O\left(x N^{2 \alpha}\right)
$$

We have thus established the following result.

Theorem 1. Let $F(\mathcal{B})$ be a q-ary smooth sequence. Let $b_{1}<b_{2}<\cdots$ stand for the list of all elements of \mathcal{B}. Let also

$$
\xi_{n}=\overline{F\left(b_{n}\right)}=\varepsilon_{0}\left(F\left(b_{n}\right)\right) \ldots \varepsilon_{t}\left(F\left(b_{n}\right)\right)
$$

and set

$$
\eta=0 . \xi_{1} \xi_{2} \ldots
$$

Consider η as the real number whose q-ary expansion is the concatenation of the numbers ξ_{1}, ξ_{2}, \ldots. Then η is a q-normal number.

Since one can easily construct plenty of q-ary smooth sequences, Theorem 1 allows for the construction of many q-ary normal numbers. In this context, we formulate the following two remarks.

Remark 1. Assume that $P \in \mathbb{Z}[x]$ with $r=\operatorname{deg}(P) \geq 1$ and that $\lim _{x \rightarrow \infty} P(x)=+\infty$. Bassily and Kátai [1] proved, using theorems of I.M. Vinogradov [8] and of L.K. Hua [5] concerning the estimation of trigonometric sums, that $P(\mathbb{N})$ and $P(\wp)$ are both smooth sequences. Nakai and Shiokawa [6] explicitly proved that, in this case, η is a normal number. They even estimated the discrepancy of the sequence $\left\{q^{m} \eta\right\}_{m \geq 1}$.

Remark 2. Recently, German and Kátai [4] showed the following:
Let $n_{1}<n_{2}<\cdots$ stand for the list of all elements of $\mathcal{N}(\widetilde{\wp})$. Moreover, let $N(x):=\#\{n \leq x: n \in \mathcal{N}(\widetilde{\wp})\}$ and let $P \in \mathbb{Z}[x]$. Assume also that $P(n)$ takes only non negative values. Then $\eta=0 . \overline{P\left(n_{1}\right)} \overline{P\left(n_{2}\right)} \ldots$ is a normal number.

Much more is true. Indeed, we can also obtain the following result.
Theorem 2. Let $n_{1}<n_{2}<\cdots$ be a sequence of integers such that $\#\left\{n_{j} \leq x\right\}>\rho x$ provided $x>x_{0}$, for some positive constant ρ. Then, using the notations of Theorem 1, let

$$
\mu=0 . \xi_{n_{1}} \xi_{n_{2}} \ldots
$$

Then μ is a q-normal number.

4 Second method

Theorem 3. Let $q \geq 2$ be a fixed integer. Given a positive integer $n=p_{1}^{e_{1}} \cdots p_{k+1}^{e_{k+1}}$ with primes $p_{1}<\cdots<p_{k+1}$ and positive exponents e_{1}, \ldots, e_{k+1}, we introduce the numbers $c_{1}(n), \ldots, c_{k}(n)$ defined by

$$
c_{j}(n):=\left\lfloor\frac{q \log p_{j}}{\log p_{j+1}}\right\rfloor \in A_{q} \quad(j=1, \ldots, k)
$$

and define the arithmetic function

$$
H(n)= \begin{cases}c_{1}(n) \ldots c_{k}(n) & \text { if } \omega(n) \geq 2 \\ \Lambda & \text { if } \omega(n) \leq 1\end{cases}
$$

Consider the number

$$
\xi=0 . H(1) H(2) H(3) \ldots
$$

Then ξ is a q-normal number.
Proof. As we will see, this theorem is an easy consequence of a variant of the TuránKubilius inequality.

Let b_{1}, \ldots, b_{k} be fixed elements of A_{q}. Then, for each sequence of $k+1$ primes $p_{1}<\cdots<p_{k+1}$, define the function

$$
f\left(p_{1}, \ldots, p_{k+1}\right)= \begin{cases}1 & \text { if }\left\lfloor\frac{q \log p_{j}}{\log p_{j+1}}\right\rfloor=b_{j} \text { for each } j \in\{1, \ldots, k\}, \\ 0 & \text { otherwise }\end{cases}
$$

From this, we define the arithmetic function F as follows. If $n=q_{1}^{\alpha_{1}} \cdots q_{\mu}^{\alpha_{\mu}}$, where $q_{1}<\cdots<q_{\mu}$ are prime numbers and $\alpha_{1}, \ldots, \alpha_{\mu} \in \mathbb{N}$, let

$$
F(n)=F\left(n \mid b_{1}, \ldots, b_{k}\right)=\sum_{j=0}^{\mu-k-1} f\left(q_{j+1}, \ldots, q_{j+k+1}\right) .
$$

We will now show that $F(n)$ is close to $\frac{1}{q^{k}} \omega(n)$ for almost all positive integers n.
Let $Y_{x}=\exp \exp \{\sqrt{\log \log x}\}$ and $Z_{x}=x / Y_{x}$ and further set

$$
\begin{aligned}
& F_{0}(n)=\sum_{q_{j+1} \leq Y_{x}} f\left(q_{j+1}, \ldots, q_{j+k+1}\right), \\
& F_{1}(n)=\sum_{Y_{x}<q_{j+1} \leq Z_{x}} f\left(q_{j+1}, \ldots, q_{j+k+1}\right), \\
& F_{2}(n)=\sum_{q_{j+1}>Z_{x}} f\left(q_{j+1}, \ldots, q_{j+k+1}\right),
\end{aligned}
$$

so that

$$
\begin{equation*}
F(n)=F_{0}(n)+F_{1}(n)+F_{2}(n) \tag{4.1}
\end{equation*}
$$

Now, it is clear that

$$
F_{0}(n) \leq \omega_{Y_{x}}(n):=\sum_{\substack{p \mid n \\ p \leq Y_{x}}} 1
$$

and that

$$
F_{2}(n) \leq \sum_{\substack{p \mid n \\ p>Z_{x}}} 1 .
$$

Therefore,

$$
\begin{equation*}
\sum_{n \leq x} F_{0}(n) \leq x \sum_{p \leq Y_{x}} \frac{1}{p} \leq c x \sqrt{\log \log x} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \leq x} F_{2}(n) \leq x \sum_{Z_{z}<p \leq x} \frac{1}{p} \leq c x \log \left(\frac{\log x}{\log Z_{x}}\right) \ll c x \frac{e^{\sqrt{\log \log x}}}{\log x} \tag{4.3}
\end{equation*}
$$

We now move on to estimate $\sum_{n \leq x}\left(F_{1}(n)-A\right)^{2}$ for a suitable expression A, which shall be given explicitly later.

We first write this sum as follows:

$$
\begin{align*}
\sum_{n \leq x}\left(F_{1}(n)-A\right)^{2} & =\sum_{n \leq x} F_{1}(n)^{2}-2 A \sum_{n \leq x} F_{1}(n)+A^{2}\lfloor x\rfloor \\
& =S_{1}-2 A S_{2}+A^{2}\lfloor x\rfloor \tag{4.4}
\end{align*}
$$

say.
Let $Y_{x}<p_{1}<\cdots<p_{k+1}$. We say that p_{1}, \ldots, p_{k+1} is a chain of prime divisors of n, which we note as $p_{1} \mapsto p_{2} \mapsto \ldots \mapsto p_{k+1} \mid n$, if $\operatorname{gcd}\left(\frac{n}{p_{1} \cdots p_{k+1}}, p\right)=1$ for all primes p in the interval $\left[p_{1}, p_{k+1}\right]$ with the possible exception of the primes p belonging to the set $\left\{p_{1}, \ldots, p_{k+1}\right\}$.

Observe that the contribution to the sums S_{1} and S_{2} of those positive integers $n \leq x$ for which $p^{2} \mid n$ for some prime p is small, since the contribution of those particular integers $n \leq x$ is less than

$$
c x k \sum_{p>Y_{x}} \frac{1}{p^{2}} \leq \frac{c x k}{Y_{x}}=o(x)
$$

Hence we can assume that the sums S_{1} and S_{2} run only over squarefree integers n.
We now introduce the function

$$
\Gamma(u, v):=\prod_{\substack{p \in \mapsto \\ u \leq p<v}}\left(1-\frac{1}{p}\right)
$$

and observe that it follows from Theorem 5.3 of Prachar [7] that

$$
\begin{equation*}
\Gamma(u, v)=\frac{\log u}{\log v}(1+O(\exp \{-\sqrt{\log u}\})) . \tag{4.5}
\end{equation*}
$$

Now, using Lemma 2.1 from Elliott [3], one can establish that

$$
\#\left\{\nu \leq \frac{x}{p_{1} \cdots p_{k+1}}: \operatorname{gcd}\left(\nu, \prod_{p_{1} \leq p \leq p_{k+1}} p\right)=1\right\}
$$

$$
\begin{equation*}
=\frac{x}{p_{1} \cdots p_{k+1}} \Gamma\left(p_{1}, p_{k+1}\right)\left(1+O\left(\log ^{-C} p_{1}\right)\right), \tag{4.6}
\end{equation*}
$$

where C is an arbitrary but fixed positive constant.
It follows from (4.6) using (4.5) that

$$
\begin{align*}
& S_{2}= x \sum_{\substack{p_{1}<\ldots<p_{k+1} \leq x \\
Y_{x}<p_{1}<Z_{x}}} \frac{f\left(p_{1}, \ldots, p_{k+1}\right)}{p_{1} \cdots p_{k+1}} \Gamma\left(p_{1}, p_{k+1}\right) \\
&+O\left(\sum_{\substack{p_{1}<\cdots<p_{k+1} \leq x \\
Y_{x}<p_{1}<Z_{x}}} \frac{f\left(p_{1}, \ldots, p_{k+1}\right)}{p_{1} \cdots p_{k+1}} \frac{\Gamma\left(p_{1}, p_{k+1}\right)}{\log ^{C} p_{1}}\right) \\
&=x \sum_{\substack{p_{1}<\ldots<p_{k+1} \leq x \\
Y_{x}<p_{1}<Z_{x}}} \frac{f\left(p_{1}, \ldots, p_{k+1}\right)}{p_{1} \cdots p_{k+1}} \frac{\log p_{1}}{\log p_{k+1}} \\
&+O\left(\sum_{\substack{p_{1}<\ldots<p_{k+1} \leq x \\
Y_{x}<p_{1}<Z_{x}}} \frac{f\left(p_{1}, \ldots, p_{k+1}\right)}{p_{1} \cdots p_{k+1}} \frac{1}{\log ^{C} p_{1}}\right) \tag{4.7}
\end{align*}
$$

In order to estimate the main term on the right hand side of (4.7), we let

$$
L(x)=\sum_{\substack{p_{1}<\cdots<p_{k+1} \leq x \\ Y_{x}<p_{1}<Z_{x}}} \frac{f\left(p_{1}, \ldots, p_{k+1}\right)}{p_{1} \cdots p_{k+1}} \frac{\log p_{1}}{\log p_{k+1}}
$$

and we also consider the sum $L_{0}(x)$, that is essentially the same sum as the sum $L(x)$ but where we drop the condition $Y_{x}<p_{1}<Z_{x}$ in the summation.

Note that, in light of (4.2), the error $L_{0}(x)-L(x)$ satisfies

$$
\begin{equation*}
0 \leq L_{0}(x)-L(x) \leq c \frac{1}{x} \sum_{n \leq x} \omega_{Y_{x}}(n) \ll \sqrt{\log \log x} \tag{4.8}
\end{equation*}
$$

Now, since, for each $j \in\{1,2, \ldots, k\}$, we have

$$
\sum_{\left\lfloor\frac{q \log p_{j}}{\log p_{j}+1}\right\rfloor=b_{j}} \frac{\log p_{j}}{p_{j}}=\frac{1}{q} \log p_{j+1}+O(1)
$$

it follows that, after iteration, we easily obtain that

$$
\begin{equation*}
L_{0}(x)=\frac{1}{q^{k}} \sum_{p_{k+1} \leq x} \frac{1}{p_{k+1}}+O(1)=\frac{1}{q^{k}} \log \log x+O(1) \tag{4.9}
\end{equation*}
$$

Now, because of (4.8), we have that $L(x)-L_{0}(x)=o(\log \log x)$, so that it follows from (4.9) that

$$
\begin{equation*}
L(x)=\frac{1}{q^{k}} \log \log x+O(1) \tag{4.10}
\end{equation*}
$$

Substituting (4.10) in (4.7), we get

$$
\begin{equation*}
S_{2}=\frac{1}{q^{k}} x \log \log x+O(x) \tag{4.11}
\end{equation*}
$$

In order to estimate S_{1}, we proceed as follows. We have

$$
\begin{align*}
S_{1} & =\sum_{n \leq x} F_{1}(n)^{2} \\
& =2 \sum_{n \leq x} \sum_{\substack{p_{1} \mapsto \ldots \mapsto p_{k+1}\left|n \\
q_{1} \mapsto . . \rightarrow q_{k+1}\right| n \\
p_{k+1}<q_{1}}} f\left(p_{1}, \ldots, p_{k+1}\right) f\left(q_{1}, \ldots, q_{k+1}\right)+E(x), \tag{4.12}
\end{align*}
$$

where the error term $E(x)$ arises from those $k+1$ tuples $\left\{p_{1}, \ldots, p_{k+1}\right\}$ and $\left\{q_{1}, \ldots, q_{k+1}\right\}$ which have common elements. One can see that the sum of $f\left(p_{1}, \ldots, p_{k+1}\right) f\left(q_{1}, \ldots, q_{k+1}\right)$ on such $k+1$ tuples is less than $k \omega(n)$, implying that

$$
\begin{equation*}
E(x) \ll x \log \log x \tag{4.13}
\end{equation*}
$$

Using the fact that

$$
\begin{aligned}
\#\{\nu \leq & \left.\frac{x}{p_{1} \cdots p_{k+1} q_{1} \cdots q_{k+1}}:\left(\nu, \prod_{p_{1}<p<p_{k+1}} p \times \prod_{q_{1}<p<q_{k+1}} p\right)=1\right\} \\
& =x \frac{\Gamma\left(p_{1}, p_{k+1}\right) \Gamma\left(q_{1}, q_{k+1}\right)}{p_{1} \cdots p_{k+1} q_{1} \cdots q_{k+1}}\left(1+O\left(\frac{1}{\log ^{C} p_{1}}\right)\right)
\end{aligned}
$$

for some positive constant C. It follows from (4.12) and (4.13), while arguing as we did for the estimation of S_{2}, that

$$
\begin{equation*}
S_{1}=x\left(\sum_{\substack{p_{1}<\cdots<p_{k+1} \leq x \\ Y_{x}<p_{1}<Z_{x}}} \frac{f\left(p_{1}, \ldots, p_{k+1}\right) \Gamma\left(p_{1}, p_{k+1}\right)}{p_{1} \cdots p_{k+1}}\right)^{2}+O(x \log \log x) . \tag{4.14}
\end{equation*}
$$

Hence, in light of (4.11) and (4.14), we get that

$$
S_{1}=x\left(\frac{\log \log x}{q^{k}}+O(1)\right)^{2}=x\left(\frac{\log \log x}{q^{k}}\right)^{2}+O(x \log \log x)
$$

Hence, choosing $A=\frac{1}{q^{k}} \log \log x$, it follows that the left hand side of (4.4) satisfies

$$
\begin{equation*}
\sum_{n \leq x}\left(F_{1}(n)-\frac{1}{q^{k}} \log \log x\right)^{2} \ll \frac{1}{q^{k}} x \log \log x \tag{4.15}
\end{equation*}
$$

Recall that $F_{1}(n)$, as well as $F(n)$, depends on b_{1}, \ldots, b_{k}, while A does not. Hence, setting

$$
G(n)=\sum_{\left\{b_{1}, \ldots, b_{k}\right\} \in A_{q}^{k}} F\left(n \mid b_{1}, \ldots, b_{k}\right)
$$

a sum containing q^{k} terms, we get that

$$
\sum_{n \leq x}\left(F\left(n \mid b_{1}, \ldots, b_{k}\right)-\frac{G(n)}{q^{k}}\right)^{2} \ll x \log \log x
$$

so that $\frac{G(n)}{q^{k}}$ does not depend on the choice of $\left(b_{1}, \ldots, b_{k}\right) \in A_{q}^{k}$.
Now, by using the Cauchy-Schwarz inequality along with (4.2) and (4.3), we obtain, in light of (4.1), that

$$
\begin{align*}
\sum_{n \leq x}\left|F(n)-\frac{1}{q^{k}} x_{2}\right| & \leq \sum_{n \leq x}\left|F_{1}(n)-\frac{1}{q^{k}} x_{2}\right|+\sum_{n \leq x}\left|F_{0}(n)\right|+\sum_{n \leq x}\left|F_{2}(n)\right| \\
& \leq \sqrt{x}\left(\sum_{n \leq x}\left|F_{1}(n)-\frac{1}{q^{k}} x_{2}\right|^{2}\right)^{1 / 2}+O(x \sqrt{\log \log x}) \tag{4.16}
\end{align*}
$$

Hence, it follows from (4.15) and (4.16) that

$$
\begin{equation*}
\sum_{n \leq x}\left|F(n)-\frac{1}{q^{k}} x_{2}\right| \leq C x \sqrt{\log \log x} \tag{4.17}
\end{equation*}
$$

Hence, given any two k-tuples $\left(b_{1}, \ldots, b_{k}\right)$ and $\left(b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right)$ both belonging to A_{q}^{k}, it follows from (4.17) that

$$
\sum_{n \leq x}\left|F\left(n \mid b_{1}, \ldots, b_{k}\right)-F\left(n \mid b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right)\right| \leq 2 C x \sqrt{\log \log x}
$$

thus implying that the probability of the occurrence of b_{1}, \ldots, b_{k} in the chain of prime divisors $p_{1} \mapsto \ldots \mapsto p_{k+1} \mid n$ is almost the same as that of the occurrence of $b_{1}^{\prime}, \ldots, b_{k}^{\prime}$ for any $\left(b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right) \in A_{q}^{k}$. This final remark proves that ξ is a normal number and thus completes the proof of Theorem 3.

5 Final remarks

This last method can easily be applied to prove the following more general theorem.

Theorem 4. Let $R[x] \in \mathbb{Z}[x]$, the leading coefficient of which is positive. Let m_{0} be a positive integer such that $R(m) \geq 0$ for all $m \geq m_{0}$. Moreover, let $H(n)$ be defined as in Theorem 3 and set

$$
\xi=0 . H\left(R\left(m_{0}\right)\right) H\left(R\left(m_{0}+1\right)\right) H\left(R\left(m_{0}+2\right)\right) \ldots
$$

Also, let $m_{0} \leq p_{1}<p_{2}<\cdots$ be the sequence of all primes no smaller than m_{0} and set

$$
\eta=0 . H\left(R\left(p_{1}\right)\right) H\left(R\left(p_{2}\right)\right) H\left(R\left(p_{3}\right)\right) \ldots
$$

Then ξ and η are q-normal numbers.
Even more is true, namely the following.
Theorem 5. Let $\left(m_{0}<\right) n_{1}<n_{2}<\cdots$ be a sequence of integers for which $\#\left\{n_{j} \leq\right.$ $x\}>\rho x$ provided $x>x_{0}$, for some positive constant ρ. Then, using the notations of Theorem 4, let

$$
\tau=0 . H\left(R\left(n_{1}\right)\right) H\left(R\left(n_{2}\right)\right) \ldots
$$

Then τ is a q-normal number.
Moreover, let $\left(m_{0}<\right) \pi_{1}<\pi_{2}<\cdots$ be a sequence of primes for which $\#\left\{\pi_{j} \leq\right.$ $x\}>\delta \pi(x)$ provided $x>x_{0}$, for some positive constant δ. Let

$$
\kappa=0 . H\left(R\left(\pi_{1}\right)\right) H\left(R\left(\pi_{2}\right)\right) \ldots
$$

Then κ is a q-normal number.

References

[1] N.L. Bassily and I. Kátai, Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hungar. 68 (4) (1995), 353-361.
[2] E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271.
[3] P.D.T.A. Elliott, Probabilistic Number Theory I, Mean Value Theorems, Springer-Verlag, Berlin, 1979.
[4] L. Germán and I. Kátai, Distribution of the values of q-additive functions on some multiplicative semigroups II (preprint).
[5] L.K. Hua, Additive Theory of Prime Numbers, AMS (Providence, Rhode Island, 1965). Translations of Mathematical Monographs, Vol. 13.
[6] Y. Nakai and I. Shiokawa, Normality of numbers generated by the values of polynomials at primes, Acta Arith. 81 (1997), no. 4, 345-356.
[7] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.
[8] I.M. Vinogradov, Method of Trigonometric Sums in the Theory of Numbers [in Russian], Nauka, Moscow (1980).

Jean-Marie De Koninck
Département de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

JMDK, le 18 décembre 2011; fichier: normal-numbers-methods-may-2011.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.
 ${ }^{2}$ Research supported by a grant from the European Union and the European Social Fund.

