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Abstract
Let ϕ stand for Euler’s totient function and let ω(n) stand for the number

of distinct prime factors of n, with ω(1) = 0. Given an arbitrary non negative
integer r, Ram Murty and Kumar Murty have obtained an asymptotic estimate for
#{n ≤ x : ω((n, ϕ(n))) = r}. For each positive integer k, letting ϕk(n) be the k-fold
iterate of ϕ, we obtain an asymptotic estimate for #{n ≤ x : ω((n, ϕk(n))) = r}.
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§1. Introduction

Given an integer n ≥ 2, we write ω(n) for the number of distinct prime factors of n,
with ω(1) = 0, p(n) for the smallest prime factor of n and P (n) for the largest prime
factor of n, with p(1) = P (1) = 1. Let ϕ stand for Euler’s totient function and, for each
positive integer k, let ϕk(n) be the k-fold iterate of ϕ, i.e. ϕ0(n) = n, ϕj+1(n) = ϕ(ϕj(n))
for j = 0, 1, 2, . . .. Throughout this paper p and q, with or without subscripts, denote
prime numbers. We shall use the abbreviation x1 = log x, x2 = log x1, and so on. For
each real number y ≥ 2 and positive integer n, define the functions A(n, y) and B(n, y)
by

n =
∏
pα‖n
p≤y

pα ·
∏
pα‖n
p>y

pα = A(n, y) ·B(n, y).

Moreover, for all real numbers 2 ≤ y ≤ x, let

Fx,y := {n ≤ x : A(n, y) = 1} = {n ≤ x : p(n) > y} and Φ(x, y) = #Fx,y.

Erdős [4] proved that

#{n ≤ x : (n, ϕ(n)) = 1} = (1 + o(1))Φ(x, x2) = (1 + o(1))
e−γx

x3

(x→∞),(1)

where γ stands for Euler’s constant.
Further results of this type were obtained by Kátai and Subbarao [6], Bassily, Kátai

and Wijsmuller [1], and Indlekofer and Kátai [5]. Given an arbitrary non negative integer
r, R. Murty and K. Murty [9] proved that

#{n ≤ x : ω((n, ϕ(n))) = r} = (1 + o(1))
e−γx xr4
r!x3

,(2)

1Research supported in part by a grant from NSERC.
2Research supported by the European Union and the European Social Fund under the grant agreement

no. TMOP 4.2.1/B-09/1/KMR-2010-0003.
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the particular case r = 0 yielding Erdős’ result (1). V. Kumar Murty [8] proved that

#{n ≤ x : (n, ϕ(n)) = k} = (1 + o(1))
e−γx

kx3

.(3)

Our main goal here is to generalize (2) by studying the local distribution of ω((n, ϕk(n))).

§2. Main results

For 2 ≤ y ≤ x, let

T (x, y) := #{n ≤ x : n ∈ Fx,y and (n, ϕk(n)) > 1}.

Theorem 1. Let k be a positive integer. Then, as x→∞,

T (x, xk2)� 1

x3

Φ(x, xk2).

Let k be a fixed positive integer and ε > 0 an arbitrary fixed number, and write
H = Hx for the least common multiple of all the prime powers < x

k(1−ε)
2 . In other words,

H = Hx =
∏

p<x
k(1−ε)
2

pαp ,

where each αp is the unique positive integer satisfying

pαp ≤ x
k(1−ε)
2 < pαp+1.

Theorem 2. Let k, ε and H be as above. Then, as x→∞,

1

Φ(x, xk2)
#{n ≤ x : n ∈ Fx,xk2 and ϕk(n) 6≡ 0 (mod H)} � 1

x0.8
1

.

Theorem 3. Let k ≥ 1 and r ≥ 0 be fixed integers, and let

Rr(x) := #{n ≤ x : ω((n, ϕk(n)) = r}.

Then

Rr(x) = (1 + o(1))
e−γx

kx3

· x
r
4

r!

uniformly for r ≤ Bx4 for any fixed positive constant B.
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3. Preliminary lemmas

Lemma 1. Let ` ∈ {−1, 1} and 1 ≤ k ≤ x. Then there exists a positive constant c1 such
that ∑

p≤x
p≡` (mod k)

1

p
≤ c1x2

ϕ(k)
.

Proof. See Bassily, Kátai and Wijsmuller [1].

Let Q be a fixed prime; let κ0, κ1, . . . be the sequence of completely additive functions
defined on the primes by

κ0(p) :=
{

1 if p = Q,
0 if p 6= Q,

κj+1(p) :=
∑
q|p−1

κj(q).

Moreover, let
Sj(y) :=

∑
p≤y

κj(p).

Lemma 2. Let m and j be arbitrary positive integers, y > e2
j−3Q2

. Then there exists a
positive constant c2 = c2(m, j) such that

Sj(y) ≤ c2y(log log y)j−1

(log y)Q(m−1)/m
.

Proof. For a proof, see Indlekofer and Kátai [5].

Lemma 3. Let 2 ≤ y ≤ x. Then, setting ρ(y) :=
∏
p<y(1− 1/p),

Φ(x, y) = xρ(y) +O

(
x exp

{
−1

2

x1

log y

})
.

Proof. This result is a consequence of Theorems 5.1 and 6.2 of the book of Tenenbaum
[10].

Lemma 4. Let f be a non negative strongly additive function and set

A(x) :=
∑
p≤x

f(p)

p− 1
and B2(x) :=

∑
p≤x

f 2(p)

p
.

Then, for each real number α ∈ [0, 2[, there exists a constant D = D(α) such that the
inequality ∑

p−1≤x
|f(p− 1)− A(x)|α ≤ D · x

x1

·Bα(x)

holds uniformly for x ≥ 2.
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Proof. This is a variant of Lemma 4.18 in the book of Elliott [3].

Let Q be a given prime number. We say that (Q→)p1 → . . .→ pk is a chain of primes
if Q|p1 − 1, pj|pj+1 − 1 (j = 1, 2, . . . , k − 1).

It is clear that Q 6 |ϕk(m) implies that pk 6 |m whenever pk is the last element of an
arbitrary chain of primes Q→ p1 → . . .→ pk.

Let ε > 0 be a fixed number, Q be a prime or a prime power, Q ≤ x
k(1−ε)
2 . Let

τ1, τ2, . . . , τk be a sequence of strongly additive functions defined on the primes as follows:

τ1(p) =
{

1 if Q|p− 1 and p > Q3,
0 otherwise;

τj+1(p) =
∑

q<p1/3

q|p−1

τj(q) (j = 2, 3, . . . , k − 1).

Moreover, for each real number u ≤ x, define the strongly additive function fu by

fu(n) =
∑

q<u1/3

q|n

τk−1(q).

It follows from Lemma 4 that∑
u≤p≤2u

|fu(p− 1)− Au|α ≤ D
u

log u
·Bα

u ,(4)

where

Au =
∑

q<u1/3

τk−1(q)

q − 1
and B2

u =
∑

q<u1/3

τ 2
k−1(p)

p
.

By using the Bombieri-Vinogradov inequality (see Bombieri [2] or Vinogradov [11])
and the Siegel-Walfisz Theorem, as well as standard sieve inequalities, one can deduce
that there exist positive constants c3 et c4 such that, for u ≥ e2

kQ2
,

Au ≥ c3
(log log u)k

Q
and B2

u ≤ c4
(log log u)2k−1

Q2
(5)

uniformly for Q ≤ (log log u)k(1−δ) ≤ x
k(1−ε)
2 , where δ and ε are arbitrarily small but fixed

numbers. The inequalities (5) can be deduced by using the method used in the proof of
Lemma 2. We shall therefore omit the details.

From (4) and (5), and setting as usual li(u) :=
∫ u

2

dt

log t
, we can deduce that

1

li(u)
#{p ∈ [u, 2u] : fu(p− 1) = 0} = O

(
Bα
u · A−αu

)
= O

(
(log log u)−α/2

)
,

which tends to 0 if one chooses α arbitrarily close to 2.
Since κk(p) = 0 for p ∈ [u, 2u] implies that fu(p− 1) = 0, it follows that

1

li(u)
#{p ∈ [u, 2u] : κk(p) = 0} → 0 (u→∞).(6)
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Lemma 5. Let k be a positive integer, ε > 0 an arbitrary small number, Q a prime
power, Q ≤ xk−ε2 . Then

Uk(Q) := #{n ∈ Fx,xk2 : Q 6 |ϕk(n)} � x

x0.9
1

.

Proof. Assume that Q 6 |ϕk(n). Then pk 6 |n for every prime pk which is the last element
of the chain of primes (Q→)p1 → p2 → . . .→ pk. Moreover pk 6 |n whenever τk(pk) > 0.
It follows that

Uk(Q)� x
∏
p<xk2

(
1− 1

p

)
ρk(Q, x),(7)

where

ρk(Q, x) =
∏

U0<p<x

τk(p)>0

(
1− 1

p

)
with U0 := e2

kQ2

.(8)

Now, from (6) and (8), it follows that

− log ρk(Q, x) =
∑

U0<p<x
τk(p)>0

1

p
> 0.95 log log x,(9)

since for u ∈ [U0, x], (6) holds uniformly. Combining (7) and (9), the proof of Lemma 5
is complete.

§4. The proofs of Theorems 1 and 2

Assume that n ∈ Fx,xk2 and that (n, ϕk(n)) > 1. Then there exists some prime q|n
with q > xk2 such that q|ϕk(n). The fact that q|ϕk(n) implies that either p1|ϕk−1(n) for
some prime p1 ≡ 1 (mod q) or q2|ϕk−1(n). Continuing this argument, we obtain one of
the following two situations:

(a) there exists a chain of primes (q = p0)→ p1 → . . .→ pk, qpk|n,

(b) there exists a positive integer t < k such that

(q = p0)→ p1 → . . .→ pt, pt|ϕk−t(n), p2
t |ϕk−t−1(n), pj|pj+1−1 (j = 0, 1, . . . , t−1), q|n.

Let us first estimate the number of those n ∈ Fx,xk2 for which (a) holds. We need to find
an appropriate upper bound for the expression

Σ :=
∑
q>xk

2
q→p1→...→pk(≤x)

Φ(
x

qpk
, xk2) = Σ1 + Σ2 + Σ3,(10)

where in Σ1 we sum over those q > x
1/5
1 , in Σ2 over those q ∈ [xk2, x

1/5
1 ] and pk > x1/3, and

in Σ3 over all other possible pairs of primes q and pk.
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Using the trivial inequality Φ(x, y) ≤ x, and by repeated application of Lemma 1, it
follows that

Σ1 ≤ x
∑

q>x
1/5
1

1

q

∑
q→p1→...→pk

1

pk
� xxk2

∑
q>x

1/5
1

1

q2
� x

x0.19
1

,(11)

say.
Furthermore, again using Φ(x, y) ≤ x, we have

Σ2 ≤ x
∑

xk
2
<q<x

1/5
1

q→p1→...→pk
x1/3<pk<x

1

qpk
.

For a fixed prime q ∈ [xk2, x
1/5
1 ] with q := Q, it follows from Lemma 2 that

∑
x1/3<pk<x

1

pk
≤

T0∑
t=0

1

2tx1/3
Sk(2

tx1/3)� xk−1
2

q(m−1)/m
,

where m is any arbitrary fixed number. Therefore, choosing m > k, we obtain that

Σ2 � x · xk−1
2

∑
q>xk2

1

q2−1/m
� x

x
1−k/m
2

� x

x3

.(12)

It remains to estimate Σ3. In this case, we have q < x
1/5
1 and pk < x1/3. Clearly, there

exists an absolute constant c8 such that

Φ(
x

qpk
, xk2) ≤ c8

qpk
Φ(x, xk2).(13)

On the other hand,

Φ(x, xk2)� x

x3

.(14)

Since ∑
q,pk

1

qpk
� xk2

∑
q>xk2

1

q2
� 1

x3

,

it follows from (13) and (14) that

Σ3 ≤
x

x2
3

.(15)

Substituting (11), (12) and (15) in (10), it follows that Σ� x

x2
3

, which clears the case

when (a) holds.
Now, by the method used in Bassily, Kátai and Wijsmuller [1], one can prove that the

contribution of those n for which (b) holds is less than
1

x3

Φ(x, xk2), thus completing the

proof of Theorem 1.

Theorem 2 is a direct consequence of Lemma 5. Hence we shall omit its proof.
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§5. The proof of Theorem 3

Let k ≥ 1 be a fixed integer. Let 1 ≤ r ≤ Bx4, where B is an arbitrary constant. Let
E(n) stand for (n, ϕk(n)). In what follows, A runs through integers A ≥ 2 whose prime
factors do not exceed xk2. Now, first observe that

#{n ≤ x : A(n, xk2) > x1} �
∑
A>x1

P (A)≤xk
2

Φ(
x

A
, xk2)� x exp

{
− 1

2k

x2

x3

}
.(16)

Hence, it is clear that in order to prove Theorem 3, we may drop those integers n for
which A(n, xk2) > x1.

By using Theorem 1, the number of integers n = Aν ≤ x, with A fixed and ν ∈ F x
A
,xk2

,

and such that E(ν) > 1 is O

(
x

Ax2
3

)
, since

Φ(
x

A
, xk2) ≈ x

A

∏
p<xk2

(
1− 1

p

)
≈ x

Ax3

.

Summing over all A’s, it follows that the total number of these particular integers is less
than ∑

A

x

Ax2
3

� x

x3

.

We may therefore also drop all this category of integers.
Hence, let A ≤ x1. By Theorem 2, we obtain that ϕk(ν) ≡ 0 (mod Hx/A) for all but

O

(
x

Ax3x0.8
1

)
integers. Hence, by summing over all possible A ≤ x1, we obtain a quantity

of integers which is less than O

(
x

x0.8
1

)
. Now, observe that Hx/A is a multiple of

M :=
∏

p< 1
2
x
k(1−ε)
2

p,(17)

and write A = A1 · A2, where P (A1) ≤ 1
2
x
k(1−ε)
2 and p(A2) >

1
2
x
k(1−ε)
2 . We shall now

consider all the remaining integers n. For these integers n, we have A1|E(n) and there
exists a divisor D|A2 such that E(n) = A1D.

Let

T =
∑

p< 1
2
x
k(1−ε)
2

1

p
and S =

∑
1
2
x
k(1−ε)
2 <p<xk2

1

p
.

It is clear that S < c9ε for some positive constant c9 and that there exists a constant
c10 = c10(k) such that

T = x4 + c10 +O
(

1

x3

)
.(18)
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Furthermore, ∑
P (A1)< 1

2x
k(1−ε)
2

ω(A1)=h

1

A1

= (1 + o(1))
T h

h!
(19)

uniformly for 0 ≤ h ≤ Bx4.
Thus,

Rr(x) = #{n ≤ x : ω(E(n)) = r}(20)

=
∑

A=A1A2<x1
E(ν)=1

∑
D|A2

#{n = Aν : E(n) = A1D, ω(A1D) = r}+O
(
x

x3

)
.

In order to estimate the right hand side of (20), we first consider the case D = 1, that
is when ω(E(n)) = ω(A1) = r. In this case the contribution of the corresponding integers
is ∑

A1A2<x1
ω(A1)=r

#{n = Aν ≤ x : E(n) = A1} = Σ1 + Σ2,

where

Σ1 = #{n = A1ν ≤ x : A1 < x1, ω(A1) = r, E(n) = A1},
Σ2 = #{n = A1A2ν ≤ x : A2 > 1, A1A2 < x, ω(A1) = r, E(n) = A1}.

Thus, recalling the definition of M given in (17), we have

Σ1 =
∑
A1<x1
ω(A1)=r

#{ν ≤ x/A1 : E(ν) = 1, ϕk(ν) ≡ 0 (mod M)}(21)

= (1 + o(1))
∑
A1<x1
ω(A1)=r

x

A1

ρ(xk2) = (1 + o(1))xρ(xk2)
T r

r!
.

On the other hand, in light of Lemma 3,

Σ2 �
∑

A1A2<x1, A2>1
ω(A1)=r

#{n = A1A2ν ≤ x : E(n) = A1}(22)

� xρ(xk2)
∑

ω(A1)=r

1

A1

∑
A2>1

1

A2

� xρ(xk2)
T r

r!

∑
A2>1

1

A2

.

Observing that ∑
A2>1

1

A2

=
∏

1
2
x
k(1−ε)
2 <p<xk2

(
1 +

1

p− 1

)
− 1� ε,

it follows from (22) that
Σ2 � εΣ1.(23)
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Gathering (21) with (18) and taking into account (23), it follows that the contribution
to Rr(x) of those integers with corresponding D = 1 will be the main one, namely

(1 + o(1))
e−γx

kx3

· x
r
4

r!
.

It remains to show that the contribution of those integers with corresponding D > 1
is negligible in the estimation of Rr(x). Hence, we now consider the cases in (20) where
D > 1. For these, we have

ω(A1) = r1(< r), ω(D) = r − r1.

For fixed A1 and D, A2 ≡ 0 (mod D), the contribution to Rr(x) is less than

x

A1

ρ(xk2)
∑

A2≡0 (mod D)

1

A2

� x

A1D
ρ(xk2),

so that by summing over all those D > 1, ω(A1) = r1, ω(D) = r−r1, the total contribution
to Rr(x) is less than

xρ(xk2)
∑

ω(A1)=r1

1

A1

∑
ω(D)=r−r1

1

D
� xρ(xk2)

T r1

r1!

(cε)r−r1

(r − r1)!
.

Since
T r1

r1!

(cε)r−r1

(r − r1)!
≤ T r

r!

(
rcε

T

)r−r1 1

(r − r1)!
,

and since ∑
r1<r

(
rcε

T

)r−r1 1

(r − r1)!
≤ exp

{
rcε

T

}
− 1 < 2Bcε,

provided ε is small, it does indeed follow that the contribution of this category of integers
does not contribute to the asymptotic estimate of Rr(x).

This completes the proof of Theorem 3, except for the case r = 0 which is a particular
case of (3).
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Univ. Sci. Budapestinensis de Rolando Eötvös Nominatae Sectio Computatorica, 25
(2005), 113-130. .

[8] V. Kumar Murty, Some results in number theory, II, Proc. Int. Conf. – Number Theory
No. 1, 2004, 51-55.

[9] M. Ram Murty and V. Kumar Murty, Some results in number theory. I, Acta Arith-
metica 35 (1979), 367-371.
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