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J.M. DE KoNINck! and 1. KATATI?

Abstract
Let ¢ stand for Euler’s totient function and let w(n) stand for the number
of distinct prime factors of n, with w(1) = 0. Given an arbitrary non negative
integer r, Ram Murty and Kumar Murty have obtained an asymptotic estimate for
#{n <z :w((n,p(n))) =r}. For each positive integer k, letting ¢ (n) be the k-fold
iterate of ¢, we obtain an asymptotic estimate for #{n < z : w((n, px(n))) =r}.

Mathematics Subject Classification Number: Primary 11N64, Secondary 11N37

Edition du 15 novembre 2010

81. Introduction

Given an integer n > 2, we write w(n) for the number of distinct prime factors of n,
with w(1) = 0, p(n) for the smallest prime factor of n and P(n) for the largest prime
factor of n, with p(1) = P(1) = 1. Let ¢ stand for Euler’s totient function and, for each
positive integer k, let ¢y (n) be the k-fold iterate of ¢, i.e. @o(n) =n, p;r1(n) = @(p;(n))
for j = 0,1,2,.... Throughout this paper p and ¢, with or without subscripts, denote
prime numbers. We shall use the abbreviation xy = logx, x5 = logx;, and so on. For
each real number y > 2 and positive integer n, define the functions A(n,y) and B(n,y)
by

n= H p- H p” :A(n7y) B(?’L,y)

p*|In p|In
p<y P>y

Moreover, for all real numbers 2 <y < x, let
Foy={n<z:AMny) =1} ={n<z:pn) >y}t and O(z,y) =#F.,.
Erdés [4] proved that

e Tx

(1) #{n<z:(n,en)) =1} = (1+o(1))®(x,x2) = (1 + o(1)) (z — o),

xs3

where v stands for Euler’s constant.

Further results of this type were obtained by Kétai and Subbarao [6], Bassily, Katai
and Wijsmuller [1], and Indlekofer and Kétai [5]. Given an arbitrary non negative integer
r, R. Murty and K. Murty [9] proved that

v
e Txxy

(2) #H{n <z w((n,e(n)) =r} = (1+0(1))

rlxs
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the particular case r = 0 yielding Erd6s’ result (1). V. Kumar Murty [8] proved that

e Tx

(3) #{n <w:(n,0n)) =kt = (1+o0(1))

]{fl'g ’

Our main goal here is to generalize (2) by studying the local distribution of w((n, pr(n))).

82. Main results

For 2 <y <z, let

T(z,y) :=#{n<z:neF,,and (n,pr(n)) > 1}.
Theorem 1. Let k be a positive integer. Then, as x — 00,

1
T(r,2%) <« ;@(x,azg)
3

Let k be a fixed positive integer and ¢ > 0 an arbitrary fixed number, and write

H = H, for the least common multiple of all the prime powers < x’;(l_a). In other words,
H = Hm - H pap’
p<x§<175)

where each «,, is the unique positive integer satisfying

k(1—e)
2

pap < < pap—&—l.

Theorem 2. Let k, ¢ and H be as above. Then, as x — o0,

1
- < . . 1
(P(x,x’g)#{n <x:n€Fu and pp(n) 20 (mod H)} < 03

Theorem 3. Let k> 1 and r > 0 be fixed integers, and let

R.(z):=#{n <z :w((n,or(n)) =r}.

Then
e Tr )

R.(z) = (1 +o(1))

kxs 1!

uniformly for r < Bx, for any fixed positive constant B.



3. Preliminary lemmas

Lemma 1. Let £ € {—1,1} and 1 < k < z. Then there exists a positive constant c; such

that
Z 1 C1T2
p<z p - @(k)
p={ (mod k)
Proof. See Bassily, Kdtai and Wijsmuller [1].
Let @ be a fixed prime; let kg, k1, ...be the sequence of completely additive functions
defined on the primes by
1 ifp=Q,
KO(p) = {0 lfp ?é Q, "ij-l—l(p) = Z "ij(Q)'

qlp—1

Moreover, let

Sj(y) = > r;(p).

p<y

Lemma 2. Let m and j be arbitrary positive integers, y > ¢2 @ . Then there exists a
positive constant co = co(m, j) such that

coy(loglogy) =t
Sily) < (log y)Qm=1)/m"

Proof. For a proof, see Indlekofer and Katai [5].

Lemma 3. Let 2 <y < x. Then, setting p(y) := [I,«,(1 — 1/p),

CP(x,y):xp(y)JrO(ﬂfeXp{—l o })

§logy

Proof. This result is a consequence of Theorems 5.1 and 6.2 of the book of Tenenbaum
[10].

Lemma 4. Let f be a non negative strongly additive function and set

A(z) := Z M and B*(z):= Z / (p)

p<e P — 1 p<a P

Then, for each real number o € [0,2], there exists a constant D = D(«) such that the
inequality

S f(p—1)—A@)|* <D= B()

p—1<z X1

holds uniformly for x > 2.



Proof. This is a variant of Lemma 4.18 in the book of Elliott [3].

Let @ be a given prime number. We say that () —)p; — ... — pg is a chain of primes
1fQ|p1 — 1apj|pj+1 —1 (] = 1,2,...,]{3— 1)

It is clear that @ /¢x(m) implies that p; fm whenever p; is the last element of an
arbitrary chain of primes ) — p; — ... — pg.

Let ¢ > 0 be a fixed number, () be a prime or a prime power, () < x’;(l‘5>. Let
Ty, Ta, ..., Tk be a sequence of strongly additive functions defined on the primes as follows:

- _ 3
Tl(p):{l if Qlp—1 and p > @7,

0 otherwise;
Tj+l(p): Z Tj(Q) (]:27377k_1)
q<pt/3
qlp—1

Moreover, for each real number u < x, define the strongly additive function f, by

fulm) = 3 ma()-

1/3

q<"i~
It follows from Lemma 4 that
U
4 fulp—1) = A,* <D - By,
(1 X 1A= - Al < D
where )
A — Z Tk—1<q) and B2 _ Z Tk*l(p).
g<ul/3 q— 1 “ g<ul/3 b

By using the Bombieri-Vinogradov inequality (see Bombieri [2] or Vinogradov [11])
and the Siegel-Walfisz Theorem, as well as standard sieve inequalities, one can deduce
that there exist positive constants c3 et ¢4 such that, for u > esz2,

(loglog u)*~!

Q Q?

uniformly for Q < (loglogu)*1=9 < #5079 here § and ¢ are arbitrarily small but fixed
numbers. The inequalities (5) can be deduced by using the method used in the proof of
Lemma 2. We shall therefore omit the details.

From (4) and (5), and setting as usual li(u) := /
2

(loglog u)*

(5) A, > c3 and B:<¢

u o dt
——, we can deduce that
logt

1
li(u)

which tends to 0 if one chooses « arbitrarily close to 2.
Since ki(p) = 0 for p € [u, 2u] implies that f,(p — 1) = 0, it follows that

1

(6) m#{p € [u,2u] : ke(p) =0} — 0 (u — 00).

#{p S [Uﬂ 2“] : fu(p - 1) = 0} =0 (BS . A;a) =0 ((loglogu>_0‘/2) 7



Lemma 5. Let k be a positive integer, € > 0 an arbitrary small number, () a prime
power, Q < z57°. Then

UQ) = #{n € F, s - Q for(n)} < —g3.

Ty

Proof. Assume that Q fox(n). Then p; [n for every prime py which is the last element
of the chain of primes (Q —)p; — pa — ... — px. Moreover py [n whenever 74 (py) > 0.
It follows that

@ Q) < I (1 - ;) 00(Q. 1),

p<36’2C
where
1
(8) Pk(Q,ﬂf) = H (1 — ) with Uy := esz2,
Up<p<z p
T (P)>0

Now, from (6) and (8), it follows that

1
9) —logpe(Q,z) = > =>0.95loglogz,

Upg<p<z
T (p)>0

since for u € [Up, |, (6) holds uniformly. Combining (7) and (9), the proof of Lemma 5
is complete.
84. The proofs of Theorems 1 and 2

Assume that n € F,  and that (n,¢x(n)) > 1. Then there exists some prime g|n

with ¢ > 2% such that q|pg(n). The fact that g|px(n) implies that either p;|¢p_1(n) for
some prime p; = 1 (mod q) or ¢*|¢r_1(n). Continuing this argument, we obtain one of
the following two situations:

(a) there exists a chain of primes (¢ = pg) — p1 — ... — Pk, qPk|n,
(b) there exists a positive integer ¢t < k such that

(q = pO) —pP1— ... — D¢, pt|§0k—t(n)7 p?lgpk—t—l(n>7 p]|pj+1_1 (.] = 07 17 e Jt_1)7 Q|n

Let us first estimate the number of those n € F, ,x for which (a) holds. We need to find
an appropriate upper bound for the expression

(10) Si= Y (k) =%+, 4+ 5,
q>112g qPk

q—p1—...—pE ()

1/5]

where in »; we sum over those ¢ > a:i/g', in ¥, over those ¢ € [z, 2,
in Y3 over all other possible pairs of primes ¢ and py.

and p, > z'/3, and

5



Using the trivial inequality ®(z,y) < x, and by repeated application of Lemma 1, it
follows that

1 1
(11) Yy < Z - Z —<<m:2 Z 0197

q>xi/5 q q—p1—...—Pk Dk 1/5

say.
Furthermore, again using ®(z,y) < x, we have

1

22 S Xz —
ok L1/ qPk
i N
a:l/3<pk<z

For a fixed prime ¢ € |25, mi/ °] with ¢ := Q, it follows from Lemma 2 that
k-1
t,.1/3 Lo
> _Zzt a2 <

x1/3<pk-<x
where m is any arbitrary fixed number. Therefore, choosing m > k, we obtain that

T T

2 l/m 1 k/m < ;3

(12) Yo L Y

q>:l:2

It remains to estimate 3. In this case, we have ¢ < xiﬁ and py, < 2'/3. Clearly, there
exists an absolute constant cg such that

T Cg
13 O(—, 2k < = D(x,25).
(13 (o)) < (aa)
On the other hand,
(14) P (7, 75) < —
T3
Since
1 1
I D
= apk o @ T3’
it follows from (13) and (14) that
x
15 Y3 < —
(15) <%

Substituting (11), (12) and (15) in (10), it follows that ¥ < %, which clears the case
T

3
when (a) holds.

Now, by the method used in Bassily, Kétai and Wijsmuller [1], one can prove that the
1
contribution of those n for which (b) holds is less than —®(z, %), thus completing the
€3
proof of Theorem 1.

Theorem 2 is a direct consequence of Lemma 5. Hence we shall omit its proof.



85. The proof of Theorem 3

Let £ > 1 be a fixed integer. Let 1 < r < Buxy, where B is an arbitrary constant. Let
E(n) stand for (n,pg(n)). In what follows, A runs through integers A > 2 whose prime
factors do not exceed z5. Now, first observe that

1
(16) #{n<z:AMnab)>nr< Y @(E,x’;) < T exp {—IQ} :
A>z A 2k ZT3
P(A)gmg

Hence, it is clear that in order to prove Theorem 3, we may drop those integers n for
which A(n,z%) > x;.
By using Theorem 1, the number of integers n = Av < z, with A fixed and v € F =

z ok

and such that F(v) > 11is O % , since
Axs

Summing over all A’s, it follows that the total number of these particular integers is less
than

We may therefore also drop all this category of integers.
Hence, let A < ;. By Theorem 2, we obtain that ¢(v) =0 (mod H,,4) for all but

x
@] <AO8> integers. Hence, by summing over all possible A < x;, we obtain a quantity
T3y

of integers which is less than O (%). Now, observe that H,,4 is a multiple of
Il'

(17) M = H D,
p<%x§(1_5)

and write A = A; - Ay, where P(A;) < %:cg(lfe) and p(Ay) > %xg(lfs). We shall now

consider all the remaining integers n. For these integers n, we have A;|E(n) and there
exists a divisor D|As such that E(n) = A;D.

Let ) ]
T = Z — and S = Z —.
p<%m§(1_5) p %x§(1_5)<p<z§ p

It is clear that S < cge for some positive constant ¢y and that there exists a constant
¢10 = ¢10(k) such that

1
(18) T:$4+010+O().
T3



Furthermore,

1 Th
(19) DR i)
1 _k(l—eg) 1 h’

P(Al)<§z2

w(Aq1)=h

uniformly for 0 < h < Buay.
Thus,

(20) R.(z) = #{n<z:w(En)=r}
= Y Y #{n=Av:E(m)=AD, w(AD)=r}+0 ("’C) .

A=A1Ay<z1 D|A, I3
E(v)=1

In order to estimate the right hand side of (20), we first consider the case D = 1, that
is when w(E(n)) = w(A;) = r. In this case the contribution of the corresponding integers
1s

Z #{n:Al/S:I:E(n):Al}:le—i—Eg,
AjAg<zy
w(A1)=r

where

Y1 = #n=Awv <z A <z, wA) =1, E(n) = A},
22 = #{n = A1A21/ <zx: A2 > 1, A1A2 <z, W(Al) =, E(n) — Al}

Thus, recalling the definition of M given in (17), we have

(21) 1= Y, #Hrv<z/AEWw)=1, ¢(v) =0 (mod M)}
= (o) ¥ Spleh) = (+ o()aplab)
FER |

On the other hand, in light of Lemma 3,

(22) 22 < Z #{n = AlAQI/ S xT . E(n) = Al}
AjAg<zq, Ag>1
w(Ap)=r
1 1
w(A1)='r' 1 As>1 2
" 1
< ap(ay)— Y o
r! Ax>1 A2

Observing that

1
ZI: H <1+_1>—1<<6,
2 %xg(lis)<p<x’2“ p

it follows from (22) that
(23> EQ <K 621.

8



Gathering (21) with (18) and taking into account (23), it follows that the contribution

to R.(z) of those integers with corresponding D = 1 will be the main one, namely
e T x)

1+o(1 S

(1+0(1)) kxs 1!

It remains to show that the contribution of those integers with corresponding D > 1
is negligible in the estimation of R, (x). Hence, we now consider the cases in (20) where
D > 1. For these, we have

w(A) =ri(<r), wD)=r—ry.
For fixed A; and D, Ay =0 (mod D), the contribution to R,.(z) is less than
Xk R
Alp(x2> Z )A2 < Ale($2)7

A2=0 (mod D

so that by summing over all those D > 1, w(A;) = 1, w(D) = r—ry, the total contribution
to R,(x) is less than

wh) Y o Y <o)

w(A1)=r1 Al w(D)=r—r

T (ce)—

r! (r—mr)!

Since

Tr (06)7"—7’1 < Tr (7“05)7"” 1
T (

! (r—r)! =l r—ry)!

and since

rce\" "M 1 rce
(7)) gopsee{T 1<

ri<r T—T

provided ¢ is small, it does indeed follow that the contribution of this category of integers
does not contribute to the asymptotic estimate of R, (x).

This completes the proof of Theorem 3, except for the case r = 0 which is a particular
case of (3).
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