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On the Distance Between Smooth Numbers

Jean-Marie De Koninck and Nicolas Doyon

Abstract. Let P(n) stand for the largest prime factor of » > 2 and set P(1) = 1. For
each integer n > 2, let §(n) be the distance to the nearest P(n)-smooth number, that is,
to the nearest integer whose largest prime factor is no larger than that of n. We provide
a heuristic argument showing that ), . 1/6(n) = (4log2 — 2 + o(1))x as x — oo.
Moreover, given an arbitrary real-valued arithmetic function f, we study the behavior of
the more general function 8 (n) defined by 8¢ (n) = miny<m£n, r(m)<sm) In — m| for
n > 2,and §¢(1) = 1. In particular, given any positive integers a < b, we show that
Y a<n<p 1/8r(m) = 2(b —a)/3 and that if f(n) > f(a) for all n € [a, b, then one has
Y o<t 8 (1) < (b —a) log(b — a)/(2log2).
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1 Introduction

A smooth number (or a friable number) is a positive integer n whose largest prime
factor is “small” compared to n. Hence, given an integer B > 2, we say that an
integer n is B-smooth if all its prime factors are < B.

Let P(n) stand for the largest prime factor of n (with P(1) = 1).

For each integer n > 2, let §(n) be the distance to the nearest P (n)-smooth
number, that is, to the nearest integer whose largest prime factor is no larger than
that of n. In other words,

6(n) ;= min |n—m].

1<m#n
P(m)<P(n)

Equivalently, if we let
WU(x,y):=#n<x:Pn) <y},

then §(n) is the smallest positive integer & such that either one of the following
two equalities occur:

V(i +46,P(n)—¥Ym, Pn)=1 Y, Pn)—¥Ymn—-245 PHn) =1.
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648 J.-M. De Koninck and N. Doyon

For convenience, we set §(1) = 1. In particular,
§(2%) = 2971 for each integer a > 1. (1

The first 40 values of §(n) are

We call §(n) the index of isolation of n and we say that an integer n is isolated
if §(n) > 2 and non-isolated if §(n) = 1. Finally, an integer n is said to be very
isolated if §(n) is “large”.

It follows from (1) that the most isolated number < x is the largest power of 2
not exceeding x, which implies in particular that §(n) < n/2 for alln > 2.

Remark. One might think, as a rule of thumb, that the smaller P (n) is, the larger
8(n) will be, that is, that “smooth numbers have a large index of isolation”. But
this is not true for small values of n: for instance, n = 11859211 has a small P (n)
and nevertheless §(n) = 1, since

n=11859211=7-13-19%
n—1=11859210=2-3*.5-11*%
However, for large values of 7, one can say that smooth numbers do indeed have

a large index of isolation. Indeed, one can prove (see Lemma 3) that, given B > 3
fixed, there exist a constant ¢ = ¢(B) > 0 and a number no = n¢(B) such that

5(n) >

for all B-smooth integers n > ny.

n
(logn)©

2 Preliminary Observations and Results

It is clear that §( p) = 1 for each prime p and also that if p is odd, then §(p?) = 1.
Each of the following also holds:
82p) =1 forp =5, 6(3p) =1 for p > 3, 6(4p) <2 forp > 5,
8GBp)=1 forp>2, §8(6p) <2 forp >3, 8(7p) <2 for p > 2,
5(8p) <3 forp>7, 8O9p) <3 forp>2, §(10p) <2 for p > 2.

The above are easily proven. For instance, to prove the second statement, observe
thatif p = 1 (mod 4), then 3p + 1 = 0 (mod 4), in which case P(3p + 1) < p,

Brought to you by | Bibliotheque de I'Universite Laval (Bibliotheque de I'Universite Le
Authenticated | 172.16.1.226
Download Date | 6/13/12 4:28 PM



On the Distance Between Smooth Numbers 649

whileif p = 3 (mod 4), then3p—1 = 0 (mod 4), in which case P(3p—1) < p,
so that in both cases §(3p) = 1.

Observe also that given any prime p, if @ is an integer such that P(a) < p, then
8(ap) < a because

P(ap —a) = P(a(p — 1)) < max(P(a), P(p —1)) < p.

If follows from this simple observation that

§(n) =8@aPm)) <a= 0 (n >2). 2)
Moreover, one can easily show that if P(n)?|n, then §(n) < P(n )
n
Definition. For each integer n > 1, let
An) =) _58(d).
dln

Trivially, we have A(n) > t(n).

Lemma 1. [f n is a power of 2, then A(n) = n. On the other hand, for alln > 1
such that P(n) > 3, we have

A(n) <n. 3

Proof. The first assertion is obvious since for each integer ¢ > 1, we have the fol-
lowing: A(2%) = 3%, 2171 =22,

Now consider the case when » is not a power of 2. First, it is easy to show that
if P(n) = 3, then (3) holds. Indeed, if n = 2% - 3# for some integers @ > 0 and
B > 1, then in light of (2), we have

d d d

A 4 4 4

(”)E%P(d) + ; p@) " dZ P()
P(d)=2 P(d)=3

I, 1 1
=145 24 2) d =142~ 1+ 20 —0(2Y)

i=1 dln
3|d
1 3B+
— 2o + _((2Ol+1 . 1)— _ (20l+1 _ 1))
3 2
38
=n—7+§§n—l <n,

which proves that (3) holds if P(n) = 3.
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650 J.-M. De Koninck and N. Doyon

Hence, from here on, we shall assume that P(n) > 5. We shall use induction
on the number of distinct prime factors of # in order to prove that

d
L@ <" )

First observe that the above inequality is true if w(n) = 1. Indeed, in this case, we
have n = pb. It is clear that
d pP—1

—— =141 R |
;P(d) +1+p+p>+-+p L

<1+pt—1=pbt=

which will clearly establish (3).

Let us now assume that the result holds for all n such that w(n) = r — 1 and
prove that it does hold for n such that w(n) = r. Take such an integer n with k
being the unique positive integer such that P (n)¥||n. We then have

dP(n)'
Z () Z Z Z P(dP(n)")

dln dln/P(n)* ( i=1d|n/P(n)*
d
= Z TJF ' d+Pm) Y d
n/P(n d|n/Pn)* d|n/Pn)k
+---+P(n)k-1 > od
d|n/Pn)k
_ 4 k=1 k
= > P )+(1+P(n)+ —+ P Yo (n/Pm)¥). (5)
d|n/Pn)*

Using the identity

n . o(n)
O(P(n)k) 1+ P(n)+ Pm)?+---+ P(n)k

and the induction argument, it follows from (5) that

k—1
Z d n 14+ P(n)+---+ Pn) o)

< +
G4 PW) " PE " 1+ P() +-+ P ©

n o(n)
< + .
P(n) ~ P(n)
On the other hand, it is clear that for any integer n > 1 such that P(n) > 5 and
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On the Distance Between Smooth Numbers 651

w(n) > 2, we have

o(n) P 3
< < =P(n).
n 1_[ p—1 4 ()
pln
Using this in (6), we obtain, since P(n) > 5, that de % < % + %n < n,
which completes the proof of (4) and thus of (3). O

Lemma 2. The following are true:
() #Hn <x:68(n) =1} > 3 forall x > 2.

(i) 5 < X,cx gy < Xforallx > 4.

(iii) 8(n) =8(m) =k = |n —m| > k.
(iv) |m —n| > min(§(m), §(n)).

(V) ck(x) :=#n <x:8(n) =k} = 7.
Vi) #n < x5 = y) < X,

Proof. Since itis clear that if §(n) > 2, then§(n — 1) = 6(n + 1) = 1, (i) follows
immediately, along with (ii).

On the other hand, (iii) follows from the definition of (). From (iii), we easily
deduce (iv) and (v).

To prove statement (vi), we proceed as follows. Fix 1 < y < x and assume that
k:=#n <x:8n)>y}>x/y. Lety <ny <ny <--- < ny be the integers
n; < x such that §(n;) > y. By the Pigeonhole Principle, there exist n, and ng
with 1 < r < s < k such that ng — n, < y. Without any loss in generality, one
can assume that P(n,) < P(ng), in which case we have §(ns) < ng —n, < y,
a contradiction. |

Lemma 3. Let B > 3 be a fixed integer. Then there exist a constant ¢ = ¢(B) > 0
and a number ny = no(B) such that
n
(logn)©
Proof. The result follows almost immediately from an estimate of Tijdeman [7],
who showed, using the theory of logarithmic forms of Baker (see Theorem 3.1 in

the book of Baker [1]), thatif ny < ny < --- represents the sequence of B-smooth
numbers, then there exist positive constants ¢ (B) and ¢, (B) such that

8(n) >

for all B-smooth integers n > ny.

n; nj
(logn;)c1(B) (logn;)e2(B)’
where ¢2(B) < n(B) < ¢1(B). Observe that Langevin [6] later provided explicit
values for the constants c; (B) and c2(B). |

Lnjp1—n; K

Brought to you by | Bibliotheque de I'Universite Laval (Bibliotheque de I'Universite Le
Authenticated | 172.16.1.226
Download Date | 6/13/12 4:28 PM



652 J.-M. De Koninck and N. Doyon

3 Probabilistic Results

In 1978, Erdés and Pomerance [4] showed that the lower density of those integers
n for which P(n) < P(n + 1) (or P(n) > P(n + 1)) is positive. Most likely, this
density is % but this fact remains an open problem. In 2001, Balog [2] showed that
the number of integers n < x with

P(n—1)> P(n) > P(n+1) )

is > 4/x and observed that “undoubtedly” the density of those integers n such
that (7) holds is equal to %.
To establish our next result, we shall make the following reasonable assumption.

Hypothesis A. Fix an arbitrary integer k > 2 and let n be a large number. Let
ai,as,...,ay be any permutation of the numbers 0,1,2, ...,k — 1. Then,

1
Prob[P(n +a1) < P(n1+a) <+ < P(n+ap)] = 1.

Theorem 4. Assuming Hypothesis A and given any integer k > 1, the expected
proportion of integers n for which §(n) = k is equal to 4k§——1‘ In particular, the
proportion of non-isolated numbers is %

Proof. Fix k. Let Ej, be the expected proportion of integers n for which 6(n) = k.
Given a large integer n, the probability that §(rn) > k is equal to the probability
that

min(P(n £ 1),..., P(n £ k)) > P(n).

Under Hypothesis A, this probability is equal to ﬁ This implies that

1 12
k—1 2k+1 4k2-1

Exy =P(n)>k—-1)—P((n) > k)= 5
which completes the proof of the theorem. i

Remark. Let Sy (x) := #{n < x : §(n) = k) and choose x = 10°. Then, we
obtain the following numerical evidence.

| k [+ [ 2 [ 3 | ¢4 [ 5 |
a = Sk(x) 664084 | 134239 | 57089 | 32185 | 20145
b=1[x-2/(4k?—1)] || 666666 | 133333 | 57142 | 31746 | 20202
a/b 099 | 1.006 | 0999 | 1.013 | 0.997

Brought to you by | Bibliotheque de I'Universite Laval (Bibliotheque de I'Universite Le

Authenticated | 172.16.1.226
Download Date | 6/13/12 4:28 PM



On the Distance Between Smooth Numbers 653

Theorem 5. Assuming Hypothesis A,

Z 8( ) =2(2log2 — 1) ~ 0.7725.

x—>oo X
Proof. According to Theorem 4 (proved assuming Hypothesis A),

%#{n <x:m)=k}y=01+ 0(1))% (x = 00).

Therefore, given a fixed large integer N, we have, as x — oo,

[x/2]
,,<x8<n>=Z DI ngxl
T S(m)=k =k §(n)=
N X
- Z (4k2 (1 +o(1)) + O(Z k_2) (®)
k=1 k>N

= (1 +oM)xT1(N) + O(xT2(N)),

say, where we used Lemma 2 (v). First, one can show that

N
Ti(N) = kz m =22log2—1) + 0(%) (N > o).  (9)
=1

To prove (9), we proceed as follows. Assume for now that N = 3 (mod 4). Then,
using the estimate Z;cv=1 % =logN +y + O(1/N) as N — oo (where y is
Euler’s constant), we have

1 1 1 1
ETl(N)Z_Z%+sz—1+sz+1
k=1 k=1 k=1
RS 1
_—E—i—g—.._{_ﬁ
+2(L+L+...+ )+ 1
N+2 N+4 IN—1) 2N +1
o N-—1 1 1
=log2— 14+ O(1/N) +2 4
g (1/N) j=(NX+:1)/22]+1 2N + 1

=log2—1+ O(1/N)+1log2+ O(1/N)
=2log2—1+ O(1/N),

which proves (9). A similar argument holds if N = 0,1 or 2 (mod 4), thus es-
tablishing (9).
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654 J.-M. De Koninck and N. Doyon

On the other hand,

1 /°° 1 1
Z — < —dt = —

2 2 ’
k>N k Nt N
so that

T>(N) < ! (10)
2 N

Now let ¢ > 0 be arbitrarily small and let N = [1/¢] + 1. We then have, using
(9) and (10) in (8),
1
Z —— =22log2 - 1)x 4+ O(ex) + O(ex) (x — 00),
o))

which completes the proof of the theorem. o

Remark. Using a computer, one obtains that

1 1
— — =0.7719... .
10° Z 8(n)
n<10°

4 The Isolation Index with Respect to a Given Function

The function § can also be defined relatively to any real-valued arithmetic function
f taking its minimal value at f(1) as

d¢(m):= min [n—m| (n=>2)
1<m#n
fm)=f(n)
with §7(1) = 1.
Examples. + Let f(n) be any monotonic function. Then we have §(n) = 1 for
alln > 2.

* Let f(n) = o(n) := }_,|, 1. Then, the first 40 values of &, (n) are

L1 11,1,1,2,1,2,1, 1,1, 1,1, 2,1,
,1,2,1,2,1,2,1,2,1, 1,1, 1, 1, 1, 1, 4, 1, 1, 1.

* Let f(n) = Q(n) := }_,«, @ Then, the first 40 values of 5 (n) are

L,1L1,1,2,1,2,1,1,1,2,1,2,1, 1, 1, 2, 1, 2, 1,
,1,4,1,1,1,1,1,2,1,2,1,1, 1, 1, 1, 4, 1, 1, 1.
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On the Distance Between Smooth Numbers 655

e Let f(n) =1t(n):= de 1. Then, the first 40 values of §;(n) are

,1,1,1,2,1,2,1,2,1,2,1,2,1, 1, 1, 2, 1, 2, 1,
1,1,4,1,2,1,1,1,2,1,2,1, 1,1, 1, 1, 4, 1, 1, 1.

Remark 6. It turns out that Hypothesis A holds unconditionally when one replaces
the function P(n) by the function w(n) or Q2(n) or t(n), and therefore that the
equivalent of Theorem 4 for either of these three functions is true without any
conditions, that is, that for any fixed positive integer k,

%#{n <x:6o(n)=k} = 422—_1 +o(l) (x = 00),

k
the same being true for (n) or 7(n) in place of w(n).
To prove our claim, we first need to prove the following two propositions.

Proposition 7. Let ay,ax, . .., ay be any distinct integers and let z1, 23, . . ., z, be
arbitrary real numbers. Then,

1 ) —log1l
lim —#{nfx:w(n+aj) o2 Ogn<Zj,1§j§k}= 1_[ ®(z)),

xX—>00 X J1oglogn <)<k
i (1
_ _1 z —t=/2
where ®(z) = Wit e dt.
Proof. Given a real-valued vector (¢1, 1?2, ..., ), consider the function

k
H(n) = tjo( +aj).

i=1
We will now apply Proposition 2 and Theorem 1 of Granville and Soundarara-

jan [5], where instead of considering the function

1

- if pln,
fp(n) = 1 r .
-7 otherwise,
we use the function
k .
fr_%zj':]tj ift pl(n +ay),
fp(n) = 1 k h .
=5 2j=11 otherwise,

where it is clear that, except for a finite number of primes p, each prime p divides
n + a, for at most one a,.
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656 J.-M. De Koninck and N. Doyon

Using this newly defined function f,(n) and following exactly the same steps
as in the proof of Proposition 2 of Granville and Soundararajan, we obtain that

k
1 H(n)—> "_;tjloglogn
i —#{nfx: (n) — > j—tjloglog

T <z} =q>(—\/ﬁ).

In other words, H (n) has a Gaussian distribution with mean value

k
Z tj loglogn
j=1

(12)

X—>00 X

and standard deviation

k

Z tjz -loglogn.
j=1

Because of the moments of a Gaussian distribution, statement (12) is equivalent to

1 - Z}czl tj loglogn

. H(n)
B k m/2
= G(m)(z r}) m=12,...),
Jj=1

where, for each positive integer m,

[licj<m22j =1 if misodd,
0 if m is even.

13)

G(m) = {

By expanding the left-hand side of (13) using the Multinomial Theorem, we
may rewrite it (for each positive integer m) as

o1 m! u; (w(n +aj) —loglogn\"
1 N _oome i
Z #0200 % Zul'-'-u l_[ J ( J/loglogn

]
O<uj<m, i=1,...k n<x ko 1<j<k
Uy t-tug=m (14)
By considering (14) as a function of #1, f2, . .., #; and comparing the coefficients

with those on the right—hand side of (13), we obtain, for each positive integer m,

Z l_[ w(n +aj) —loglogn\"
ull uklx—)oox loglogx

n<x1<j<k

(m/2)!
(u1/2)!- - (u/2)!

= G(m)
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On the Distance Between Smooth Numbers 657

or equivalently

o o(n +aj) ~ loglogn ) _ |
i ¥ I (") = I o a9

n=x1<j<k 1<j=<k

Since the right-hand side of (15) corresponds to the centered moments of a mul-
tivariate independent Gaussian distribution, the validity of (11) follows, thereby

completing the proof. |
Proposition 8. Let g stand for any of the functions o, Q or t. Let ay,as, ..., ax
be any permutation of the integers 0,1, ...,k — 1. Then,
1 . , 1
xll)rrolO;#{n <x:gmn+aj)<gn+ajy1), j= 1,...,k—1} =0

Proof. Inthe case g = w, the result follows from Proposition 7, namely by simple
integration of (11). As for g = €2, observe that it is easy to show that

lim lim l#{n <x:Q2(n)—wh)> K} =0. (16)

K—00X—>00 X

Hence, using (16) and integrating (11), Proposition 7 holds for g = €2. Finally, as
Proposition 7 holds for g = w and g = , the inequality 22" < () < 2%
implies that it also holds for g = t, thus completing the proof. |

Theorem 9. Let f(n) = w(n) or Q(n) or t(n). Then,

1 1
lim — —— =22log2-1).
X—>00 X r;c Sf(n)

Proof. In light of Remark 6 and of Proposition 8, the result is immediate. |

Theorem 10. Let a < b be positive integers. For any real-valued arithmetic func-
tion [ and any interval I = [a,b| of length N = b — a,

Proof. We conduct the proof using induction on N . First observe that Theorem 10
holds for small values of N. For instance, if N = 1,

>0=2-2

Z 1 202
~ dr(n)  Sr(a) 3 3
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658 J.-M. De Koninck and N. Doyon

If N = 2, then since at least one of ¢ (n) and 67 (n + 1) must be 1, it follows that

Wl

Z ! = ! + ! >1>——22—
§p(n) — Sp(a)  Sp(a+1) 3 3

nel

We will now assume that the result holds for every integer smaller than N and
prove that it must therefore hold for N. We shall do this by distinguishing three
possible cases:

(i) either§r(a) = lords(b—1) =1;

(ii) case (i) is not satisfied and there exists a positive integer k € Ja, b — 2[ such
that both §¢ (k) = 1 and 8¢ (k + 1) = 1;

(iii) neither of the two previous cases holds.
In case (i), we can assume without any loss of generality that §¢(a) = 1, in which

case | |
=1 .
it X 5w

a+1<n<b

Using our induction hypothesis, we get that

2 2 1 2 2
=-—-N——>-—-N—

1 A 5
+ 3 3 3 3 3

>1+2(N 1)
a+1§n<b5f00 - 3

proving the theorem in case (i).
Suppose now that case (ii) is satisfied. Then, there is an integer k € Ja, b — 2|
such that 67 (k) = 87 (k + 1) = 1, in which case

1
Z5f(n) = Z

nel a<n<k

1
, 37’

1
sf(n)+2+ >

k+2<n<

Again, using our induction hypothesis we have that the right-hand side is larger or

equal to
2 2 2 2 2 2
g(k—a)—§+2+§(b—k—2)—§ = §N—§,
proving the theorem in case (ii).
We now consider case (iii). In this situation, N has to be odd, since the sum
starts with the term 1/3y(a) < 1 and ends with the term 1/67(b—1) < 1, because
every second value of 67 (n) must be 1. Assume that @ is odd, in which case b — 1

is odd. The case a and b — 1 even can be treated in a similar way. Hence, it is at
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On the Distance Between Smooth Numbers 659

odd integers n that §¢ (n) > 1, in which case we must have both f(n —1) > f(n)
and f(n + 1) > f(n). Recall the definition

dr(n) := 1innfltl;én |m —n|;

Sm)=f(n)

now since the integer  at which this minimum occurs must be odd (since for the
other integers m, the even ones, we have 6¢(m) = 1), it follows that for an odd
n =2j 4+ 1, we have

8,2 +1)=2 i k—jl,
r(2j + 1) | in lk—Jjl
FQE+D)<f2j+1)

so that we may write

1 1
2 m—j} 52 +1)

,b a=1 b
il A
1 1
T2 Z min lk —j|
jelzh.51 1<k#]
FQRE+D<f(2j+1)

1 1
_1 L 17
2 Z 8¢ (J) (an

where we have set g(j) := f(2j +1). Now since the interval [“2 '3 [ is of length
N +1 < N, we can apply our induction hypothesis and write that the last expres-
510n in (17) is no larger than

as needed to be proved. This completes the proof of the theorem. |
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660 J.-M. De Koninck and N. Doyon

In the statement of Theorem 10, is there any hope that one could replace the
constant % by a larger one? The answer is ‘no’, as the following result shows.

Theorem 11. Let ag 4(n), a1,4(n), 02,4(n), ... ok 4(n) be the digits of n when
written in base q, that is,

k
n=7 ajqmq’.
j=0

Then the function ' = g4 defined by

k
gg(n) =) ajq(n)g"/ (18)
j=0
has the following property:
1 1 q
m — = —. (19)
x—>ooxn2<;65f(n) qg+1

Remark. Observe that g, (n) is the number obtained by writing the basis ¢ digits
of n inreverse order. In a sense, the result claims that the function g5 is the one that
provides the minimal value for the sum of the reciprocals of the index of isolation.

Remark 12. Let n be written in basis g > 2, that is,

k
n:= Zaj,q(n)qf.
j=0

Let m be the smallest integer such that oy, 4(n) is greater than zero. Then, under
the assumption that n is not a perfect power of ¢, it is easy to verify that

8g,(n) =q™.
On the other hand, if » is a perfect power of ¢, say n = qk, we have
8¢, (1) = q* "' (g~ 1.

Proof of Theorem 11. We shall only consider the case ¢ = 2, since the general
case can be treated similarly. We observe that dg,(n) = 1 if and only if n is odd.
More generally, in light of Remark 12, we have

8g,(n) = 2K if and only if zn_k is an odd integer (k > 0).
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On the Distance Between Smooth Numbers 661

We can therefore write

2.

n<x 8g2 (n)

[log x/ log 2]

Z 2_k.#{n§x;2n—k51 (mod2)}.

k=0

It is easy to see that

X
#{nfx:zkzl (mod2)}=ﬁ+0(1),

so that
[log x/ log 2]
X 1 2
> sf(n) > St t O(Z 2—k) =3+ 0,
n<x k=0 k>0

which proves (19) in the case ¢ = 2, thus completing the proof of the theorem. ©

Theorem 13. For real numbers y,w such that 2 < y < w < 1, there exists an

3
arithmetic function f such that

it 3

n<x

1
d i — = w. 20
=y an im sup e ’; w (20)

sf(n) xoo X At B (n)

Proof. The function 1/ 8g2 has a mean value of % while it is clear that the mean
value of the reciprocal of the index of isolation of any monotone function # is 1.
We shall construct a function that behaves piecewise like g» and piecewise like £
so that the mean value of the reciprocal of its isolation index will be a pondered
mean of the Values and 1. We first define real numbers s, ¢ € [0, 1] in such a way
that s 4+ (1 — s)% =yandzr + (1— t)2 = w. Now consider the intervals

2J+1

=0 22" (G =123..).

For j even and for each integer m € [1, 22— (22j — 1)], define the families of
subintervals K; , and L; ,, as follows:

Kim =122 +m—-12/ 22 4+ (m—1+s)-2/]

and ) _ ) _
Lim:=12% +(m—1+s)2/,22 + m2/[,
so that
227 =7 (227 _1)
I; = U (Kj,m ULjm).
m=1
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662 J.-M. De Koninck and N. Doyon

For j odd, we replace the number s by ¢ in the definition of the subintervals
Kjm and L; ;. For simplicity, we define implicitly A; ., Bjm, Cjm, Djm as

Kj,m = [Aj,m, Bj,m[

and
Ljm = [Cjm, Djml.
We are now ready to define a function f satisfying (20). We define f piecewise
in the following manner. If n € Kj ,,, then set

f)y=n—A;m,
while if n € Lj ,, set
f(n) = ga(n = Cjm).
Assume first that j is even. Then,

Zsf(n)_z 2 8f<n> PP sf(n>

m nekK;, m neL; n,

2
= Z (Bjjm — Ajm + O(1)) + Z 3 (Djm — Cjm + O(1))

— ; (szf + 0(1)) + ; (%(1 —5)2/ + 0(1))
= (yzf + 0(1))

m .
0itl o) 22"
:y(2 ) )+0 ) @1
If j is odd, we obtain in a similar fashion
2J+1
2J+1 2J 2
Z 5f(n) w (22 -2 )+0( = ) 22)

Let x be a large real number. Let j* be the largest integer such that 22" < xand
let m™* be the largest integer such that D i+ m* < x. We then have

1
2 2 5f<n) Z 5 (n)

n<x nel;x

5f(n) o 22; 15f(n)

<n=<x

=314+ 2 + X3, (23)
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On the Distance Between Smooth Numbers 663

say. On the one hand, we trivially get
si=0(22"""), (24)

while assuming j* — 1 even, we obtain, using (21),

J* 22
S, = y-22 +0(2j*). (25)

Finally,

Z Z 8¢ (n) Z Z 5/(’1) (j*)’

m=m*neL;x ,, m=m* nek;x

which yields, in light of (22) (since j* is odd),
E3=w<x—22j*)+0<2j*—|—m*). (26)

Using (24), (25) and (26) in (23), we get

Eim = o) +0 ()

n=<x
which completes the proof of the theorem. o

5 The Mean Value of the Index of Isolation

While the mean value of the reciprocal of the index of isolation gives information
on the local behavior of a function f, the mean value of the index of isolation
itself gives information on the very isolated numbers.

Theorem 14. Let | be a real-valued arithmetic function. Let a and b be two pos-
itive integers such that b —a = N. Suppose furthermore that for all m € [a, b],

f(m) = f(a). Then

Z 57 () < NlogN 27
- 210g2
ne€la,b|

Proof. We prove Theorem 14 by induction on N. The result holds for N =1,
because the left-hand side of (27) is O (since the interval of summation contains no
integers), yielding the inequality 0 < 0. It also holds for N = 2, because in this
case we have §7(a + 1) = 1, yielding the inequality 1 < 1. So, let us assume that
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664 J.-M. De Koninck and N. Doyon

(27) is true for all intervals Ja, b[ with @ — b = N for some integer N > 1. We
shall prove that under the hypothesis that b—a = N + 1 and that for all m € ]a, b,

f(m) > f(a)and f(m) > f(b), we have

N log N
) < — . 28
Z r () < 2 log2 %)
a+1<n<b-—1

We prove (28) by using induction on N. Clearly, the result is true for N = 1
and N = 2. Assume that it is true for N — 1 and let us prove that it is true for N.
Let n* be an integer such that n* € Ja,b[ and f(m) > f(n™) for all m € ]a, b|.
We thus have

Z §¢(n) <min(n* —a—1,b—n*—1)

a+1<n<b-1 + Z Sf(n) + Z Sf(l’l)

a+1<n<n*-—1 n*+1<n<b-—1

Using our induction hypothesis, we have

* *
Z 5(n) < n* —alog(n™ —a)
2 log2

at+1<n<n*-—1

and 5 * loa(h .
Z §/(n) < —n"log(b —n )'
2 log2
n*+1<n<b-—1

Without any loss of generality, we can assume that n* € Ja,a + (b —a)/2], so
that

n* —alog(n*—a) b—n*log(b—n*)
2 log2 2 log2

Z Sp(my<n*—a—1+
a+1<n<b-1
(29)
Assuming for now that n* is a real variable, and taking the derivative of the right-
hand side of (29) with respect to n*, we obtain

log(n* —a) B log(b —n™)

1
+ 2log2 2log2

Since the second derivative is positive, the right-hand side of (29) reaches its max-
imum value at the end points, that is, either when n* = a + 1 orn* = (b 4+ a)/2.
In the first case, we get

-1l -1 1
S < = Dlos®W oD NlogN
2log?2 2log?2

a+1<n<b—1
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In the second case, that is, when n* = (b + a)/2, we obtain

Nlog(N/2) NlogN | < N log N

2. S =5 =1 2log2  2log2 = 2log2
a+1<n<b—1 0g 0g og

thus proving (28) in all cases.

We are now ready to complete the proof of Theorem 14, that is, to remove the
condition f(m) > f(b). For this, we use induction.

Let ng € ]a, b[ be an integer such that for all m € |a, b[, f(m) > f(ng). We
can write

Yo=Y Sy +no—a—1+ Y Ss(n).
a+1<n<b-1 a+l<n<no—1 no+1<n<b—1
Using our induction hypothesis, we obtain

(no —a)log(no —a)
Z O (n) = 2log?2

a+1<n<np—1

and

(b —no)log(b — no)
2. s 2log2 '

no+1<n<b—1

From the last three estimates, it follows that

—a)l — b —np)log(b —

S S <nmo—a—1+ (no —a)log(ng —a) Jr( 1) log(b —no)
2log?2 2log?2

a+l<n<b-1

(30)

Proceeding as we did to estimate the right-hand side of (29), we obtain that the

loe NV which completes the proof of

right-hand side of formula (30) is less than —A; Tog2 *
the theorem. .

Theorem 15. As x — oo,

Z dw(n) K xloglogx.

n<x

Proof. Foreach x > 2,

D ey =) D Suln)
d

n<x n<x
w(n)=d
= Y ) e+ D) Sw). (3D
d<10loglogx Nn=x d>10loglogx Nn=x
w(n)=d w(n)=d
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666 J.-M. De Koninck and N. Doyon

Clearly, for any fixed d > 1,

> Bu(n) <2x.

n<x

w(n)=d

Therefore,

Z Z 8w(n) <20xloglogx. (32)

d<10loglogx n=x
w(n)=d

Let x be large and fixed, and consider the set S := {n < x : w(n) > 10loglog x}.
Write S as the union of disjoint intervals S = I; U I, U--- U I, and let £; stand
for the length of the interval I;. We have from Theorem 14 that

{jlogt;
> Sulm) < L=t g2 (33)
nel; 08

On the other hand, one can show that

Ygy=#s= Y 1=o(10;x) (x = 00) (34)

j=1 n<x
w(n)>10loglog x

(see, for instance, relation (18) in De Koninck, Doyon and Luca [3]).
It follows from (33) and (34) that

k
Cilogl; logx x o\
28"’(")5_2 2og2 = 210g2 “\ogx ) =0 (x> o0- (39)
nes j=1

Substituting (32) and (35) in (31) completes the proof of the theorem. O

Remark. Using a computer, one can observe that, for x = 10°,

> 8w (n) ~ 0.60.

n<x

X log log x
Theorem 16. Let the function g4 be defined as in (18). Then
l)N log N
Y g (n) = F——=—+ O(N),
1<n<N

so that the function g, is the function for which the sums of the index of isolation
is maximal.
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Proof. Let n be written in base g > 2, that is,

k
n:= Zaj,q(n)q].

Jj=0

In light of Remark 12, we get, letting ko be the largest integer such that qko <N,

N e )= Y Se )+ Y Sg, ()

n<N n<N n<N
n#q* n=g*
= Y q"#Hn=N:S,m=q"t+ Y ¢ -1
m=<log N/loggq gk<N
m (4-1 k-1
= Y " (GEN+tom)+@-1 ) q
m=<log N/logq q gk<N
—1 logN ko
=L NZ2ER L o) + (g - 12
q  logq q-1
—1 logN
_ 14—ty + O(N),
q  logq
thus completing the proof of the theorem. o
6 Computational Data and Open Problems
If n = ny, stands for the smallest positive integer n such that
Sn)y=8n+1)=---=8n+k—-1)=1, (36)
then we have the following table:
k 1 2 3 4 5
ng 1 1 1 91 91
k 6 7 8 9 10
ng 169 2737 26536 67311 535591
k 11 12 13 14 15
ng || 3021151 | 26817437 | 74877777 | 657240658 | 785211337
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668 J.-M. De Koninck and N. Doyon

Some open problems concerning the sequence ny, k = 1,2,3,..., are the
following:

(i) Prove that ny exists for each integer k > 16.

(ii) Estimate the size of ny as a function of k. Also, is it true that n; < k! for
each integer k > 5?

(iii) Prove that for any fixed k > 3, there are infinitely many integers n such
that (36) is satisfied. The fact that the matter is settled for k = 2 follows
immediately from the Balog result stated at the beginning of Section 3.

Interesting questions also arise from the study of the function A(n) first men-
tioned in Section 2. For instance, let 1 stand for the smallest number m for which

Am)=Am+1)=---=A(m+k—1). (37)
Then
* my = 14, with A(14) = A(15) = 4;
* m3 = 33, with A(33) = A(34) = A(35) = 4;
o my = 2189815, with A(mg +i) = 12fori =0,1,2,3;
* ms = 7201674, with A(ms +1) = 14 fori =0,1,2,3,4;
e if mg exists, then mg > 1500 000 000.
Specific questions are the following:
(i) Prove that my exists for each integer k > 6.
(ii) Estimate the size of my as a function of k.

(iii) Prove that for any fixed k > 3, there are infinitely many integers m such that
(37) is satisfied.
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