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On the Distance Between Smooth Numbers

Jean-Marie De Koninck and Nicolas Doyon

Abstract. Let P.n/ stand for the largest prime factor of n � 2 and set P.1/ D 1. For
each integer n � 2, let ı.n/ be the distance to the nearest P.n/-smooth number, that is,
to the nearest integer whose largest prime factor is no larger than that of n. We provide
a heuristic argument showing that

P
n�x 1=ı.n/ D .4 log 2 � 2 C o.1//x as x ! 1.

Moreover, given an arbitrary real-valued arithmetic function f , we study the behavior of
the more general function ıf .n/ defined by ıf .n/ D min1�m¤n; f .m/�f .n/ jn � mj for
n � 2, and ıf .1/ D 1. In particular, given any positive integers a < b, we show thatP
a�n<b 1=ıf .n/ � 2.b � a/=3 and that if f .n/ � f .a/ for all n 2 Œa; bŒ, then one hasP
a<n<b ıf .n/ � .b � a/ log.b � a/=.2 log 2/.
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1 Introduction

A smooth number (or a friable number) is a positive integer n whose largest prime
factor is “small” compared to n. Hence, given an integer B � 2, we say that an
integer n is B-smooth if all its prime factors are � B .

Let P.n/ stand for the largest prime factor of n (with P.1/ D 1).
For each integer n � 2, let ı.n/ be the distance to the nearest P.n/-smooth

number, that is, to the nearest integer whose largest prime factor is no larger than
that of n. In other words,

ı.n/ WD min
1�m 6Dn

P.m/�P.n/

jn �mj:

Equivalently, if we let

‰.x; y/ WD #¹n � x W P.n/ � yº;

then ı.n/ is the smallest positive integer ı such that either one of the following
two equalities occur:

‰.nC ı; P.n// �‰.n; P.n// D 1; ‰.n; P.n// �‰.n � ı; P.n// D 1:
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648 J.-M. De Koninck and N. Doyon

For convenience, we set ı.1/ D 1. In particular,

ı.2a/ D 2a�1 for each integer a � 1: (1)

The first 40 values of ı.n/ are

1; 1; 1; 2; 1; 2; 1; 4; 1; 1; 1; 3; 1; 1; 1; 8; 1; 2; 1; 2;

1; 1; 1; 3; 1; 1; 3; 1; 1; 2; 1; 16; 1; 1; 1; 4; 1; 1; 1; 4:

We call ı.n/ the index of isolation of n and we say that an integer n is isolated
if ı.n/ � 2 and non-isolated if ı.n/ D 1. Finally, an integer n is said to be very
isolated if ı.n/ is “large”.

It follows from (1) that the most isolated number � x is the largest power of 2
not exceeding x, which implies in particular that ı.n/ � n=2 for all n � 2.

Remark. One might think, as a rule of thumb, that the smaller P.n/ is, the larger
ı.n/ will be, that is, that “smooth numbers have a large index of isolation”. But
this is not true for small values of n: for instance, n D 11 859 211 has a small P.n/
and nevertheless ı.n/ D 1, since

n D 11 859 211 D 7 � 13 � 194;

n � 1 D 11 859 210 D 2 � 34 � 5 � 114:

However, for large values of n, one can say that smooth numbers do indeed have
a large index of isolation. Indeed, one can prove (see Lemma 3) that, given B � 3
fixed, there exist a constant c D c.B/ > 0 and a number n0 D n0.B/ such that

ı.n/ >
n

.logn/c
for all B-smooth integers n � n0:

2 Preliminary Observations and Results

It is clear that ı.p/ D 1 for each prime p and also that if p is odd, then ı.p2/ D 1.
Each of the following also holds:

ı.2p/ D 1 for p � 5; ı.3p/ D 1 for p � 3; ı.4p/ � 2 for p � 5;

ı.5p/ D 1 for p � 2; ı.6p/ � 2 for p � 3; ı.7p/ � 2 for p � 2;

ı.8p/ � 3 for p � 7; ı.9p/ � 3 for p � 2; ı.10p/ � 2 for p � 2:

The above are easily proven. For instance, to prove the second statement, observe
that if p � 1 .mod 4/, then 3pC 1 � 0 .mod 4/, in which case P.3pC 1/ < p,
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On the Distance Between Smooth Numbers 649

while if p � 3 .mod 4/, then 3p�1 � 0 .mod 4/, in which case P.3p�1/ < p,
so that in both cases ı.3p/ D 1.

Observe also that given any prime p, if a is an integer such that P.a/ � p, then
ı.ap/ � a because

P.ap � a/ D P.a.p � 1// � max.P.a/; P.p � 1// � p:

If follows from this simple observation that

ı.n/ D ı.aP.n// � a D
n

P.n/
.n � 2/: (2)

Moreover, one can easily show that if P.n/2jn, then ı.n/ �
n

P.n/2
.

Definition. For each integer n � 1, let

�.n/ WD
X
d jn

ı.d/:

Trivially, we have �.n/ � �.n/.

Lemma 1. If n is a power of 2, then �.n/ D n. On the other hand, for all n > 1

such that P.n/ � 3, we have
�.n/ < n: (3)

Proof. The first assertion is obvious since for each integer ˛ � 1, we have the fol-
lowing: �.2˛/ D

P˛
iD1 2

i�1 D 2˛.
Now consider the case when n is not a power of 2. First, it is easy to show that

if P.n/ D 3, then (3) holds. Indeed, if n D 2˛ � 3ˇ for some integers ˛ � 0 and
ˇ � 1, then in light of (2), we have

�.n/ �
X
d jn

d

P.d/
D 1C

X
d jn

P.d/D2

d

P.d/
C

X
d jn

P.d/D3

d

P.d/

D 1C
1

2

X̨
iD1

2i C
1

3

X
d jn
3jd

d D 1C 2˛ � 1C
1

3
.�.n/ � �.2˛//

D 2˛ C
1

3

�
.2˛C1 � 1/

3ˇC1 � 1

2
� .2˛C1 � 1/

�
D n �

3ˇ

2
C
1

2
� n � 1 < n;

which proves that (3) holds if P.n/ D 3.
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650 J.-M. De Koninck and N. Doyon

Hence, from here on, we shall assume that P.n/ � 5. We shall use induction
on the number of distinct prime factors of n in order to prove thatX

d jn

d

P.d/
< n: (4)

First observe that the above inequality is true if !.n/ D 1. Indeed, in this case, we
have n D pb . It is clear thatX

d jn

d

P.d/
D 1C 1C p C p2 C � � � C pb�1 D 1C

pb � 1

p � 1

< 1C pb � 1 D pb D n;

which will clearly establish (3).
Let us now assume that the result holds for all n such that !.n/ D r � 1 and

prove that it does hold for n such that !.n/ D r . Take such an integer n with k
being the unique positive integer such that P.n/kkn. We then have

X
d jn

d

P.d/
D

X
d jn=P.n/k

d

P.d/
C

kX
iD1

X
d jn=P.n/k

dP.n/i

P.dP.n/i /

D

X
d jn=P.n/k

d

P.d/
C

X
d jn=P.n/k

d C P.n/
X

d jn=P.n/k

d

C � � � C P.n/k�1
X

d jn=P.n/k

d

D

X
d jn=P.n/k

d

P.d/
C .1C P.n/C � � � C P.n/k�1/�.n=P.n/k/: (5)

Using the identity

�

�
n

P.n/k

�
D

�.n/

1C P.n/C P.n/2 C � � � C P.n/k

and the induction argument, it follows from (5) thatX
d jn

d

P.d/
<

n

P.n/k
C
1C P.n/C � � � C P.n/k�1

1C P.n/C � � � C P.n/k
�.n/

<
n

P.n/
C
�.n/

P.n/
:

(6)

On the other hand, it is clear that for any integer n > 1 such that P.n/ � 5 and
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On the Distance Between Smooth Numbers 651

!.n/ � 2, we have
�.n/

n
<
Y
pjn

p

p � 1
<
3

4
P.n/:

Using this in (6), we obtain, since P.n/ � 5, that
P
d jn

d
P.d/

< n
5
C

3
4
n < n;

which completes the proof of (4) and thus of (3).

Lemma 2. The following are true:

(i) #¹n � x W ı.n/ D 1º � x
2

for all x � 2.

(ii) x
2
�
P
n�x

1
ı.n/

< x for all x � 4.

(iii) ı.n/ D ı.m/ D k H) jn �mj � k.

(iv) jm � nj � min.ı.m/; ı.n//.

(v) ck.x/ WD #¹n � x W ı.n/ D kº � x
k

.

(vi) #¹n � x W ı.n/ � yº � x
y

.

Proof. Since it is clear that if ı.n/ � 2, then ı.n� 1/ D ı.nC 1/ D 1, (i) follows
immediately, along with (ii).

On the other hand, (iii) follows from the definition of ı.n/. From (iii), we easily
deduce (iv) and (v).

To prove statement (vi), we proceed as follows. Fix 1 < y � x and assume that
k WD #¹n � x W ı.n/ � yº > x=y. Let y � n1 < n2 < � � � < nk be the integers
ni � x such that ı.ni / � y. By the Pigeonhole Principle, there exist nr and ns
with 1 � r < s � k such that ns � nr < y. Without any loss in generality, one
can assume that P.nr/ � P.ns/, in which case we have ı.ns/ � ns � nr < y,
a contradiction.

Lemma 3. Let B � 3 be a fixed integer. Then there exist a constant c D c.B/ > 0
and a number n0 D n0.B/ such that

ı.n/ >
n

.logn/c
for all B-smooth integers n � n0:

Proof. The result follows almost immediately from an estimate of Tijdeman [7],
who showed, using the theory of logarithmic forms of Baker (see Theorem 3.1 in
the book of Baker [1]), that if n1 < n2 < � � � represents the sequence of B-smooth
numbers, then there exist positive constants c1.B/ and c2.B/ such that

ni

.logni /c1.B/
� niC1 � ni �

ni

.logni /c2.B/
;

where c2.B/ � �.B/ � c1.B/. Observe that Langevin [6] later provided explicit
values for the constants c1.B/ and c2.B/.
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652 J.-M. De Koninck and N. Doyon

3 Probabilistic Results

In 1978, Erdős and Pomerance [4] showed that the lower density of those integers
n for which P.n/ < P.nC 1/ (or P.n/ > P.nC 1/) is positive. Most likely, this
density is 1

2
, but this fact remains an open problem. In 2001, Balog [2] showed that

the number of integers n � x with

P.n � 1/ > P.n/ > P.nC 1/ (7)

is �
p
x and observed that “undoubtedly” the density of those integers n such

that (7) holds is equal to 1
6

.
To establish our next result, we shall make the following reasonable assumption.

Hypothesis A. Fix an arbitrary integer k � 2 and let n be a large number. Let
a1; a2; : : : ; ak be any permutation of the numbers 0; 1; 2; : : : ; k � 1. Then,

ProbŒP.nC a1/ < P.nC a2/ < � � � < P.nC ak/� D
1

kŠ
:

Theorem 4. Assuming Hypothesis A and given any integer k � 1, the expected
proportion of integers n for which ı.n/ D k is equal to 2

4k2�1
. In particular, the

proportion of non-isolated numbers is 2
3

.

Proof. Fix k. LetEk be the expected proportion of integers n for which ı.n/ D k.
Given a large integer n, the probability that ı.n/ > k is equal to the probability
that

min.P.n˙ 1/; : : : ; P.n˙ k// > P.n/:

Under Hypothesis A, this probability is equal to 1
2kC1

. This implies that

Ek D P.ı.n/ > k � 1/ � P.ı.n/ > k/ D
1

2k � 1
�

1

2k C 1
D

2

4k2 � 1
;

which completes the proof of the theorem.

Remark. Let Sk.x/ WD #¹n � x W ı.n/ D kº and choose x D 106. Then, we
obtain the following numerical evidence.

k 1 2 3 4 5

a D Sk.x/ 664 084 134 239 57 089 32 185 20 145

b D Œx � 2=.4k2 � 1/� 666 666 133 333 57 142 31 746 20 202

a=b 0.996 1.006 0.999 1.013 0.997
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On the Distance Between Smooth Numbers 653

Theorem 5. Assuming Hypothesis A,

lim
x!1

1

x

X
n�x

1

ı.n/
D 2.2 log 2 � 1/ � 0:7725:

Proof. According to Theorem 4 (proved assuming Hypothesis A),
1

x
#¹n � x W ı.n/ D kº D .1C o.1//

2

4k2 � 1
.x !1/:

Therefore, given a fixed large integer N , we have, as x !1,X
n�x

1

ı.n/
D

NX
kD1

1

k

X
n�x
ı.n/Dk

1C

Œx=2�X
kDNC1

1

k

X
n�x
ı.n/Dk

1

D

NX
kD1

2x

k.4k2 � 1/
.1C o.1//CO

�X
k>N

x

k2

�
(8)

D .1C o.1//xT1.N /CO.xT2.N //;

say, where we used Lemma 2 (v). First, one can show that

T1.N / D

NX
kD1

2

k.4k2 � 1/
D 2.2 log 2 � 1/CO

�
1

N

�
.N !1/: (9)

To prove (9), we proceed as follows. Assume for now thatN � 3 .mod 4/. Then,
using the estimate

PN
kD1

1
k
D logN C  C O.1=N/ as N ! 1 (where  is

Euler’s constant), we have

1

2
T1.N / D �

NX
kD1

1

k
C

NX
kD1

1

2k � 1
C

NX
kD1

1

2k C 1

D �
1

2
C
1

3
� � � � C

1

N

C 2

�
1

N C 2
C

1

N C 4
C � � � C

1

2N � 1

�
C

1

2N C 1

D log 2 � 1CO.1=N/C 2
N�1X

jD.NC1/=2

1

2j C 1
C

1

2N C 1

D log 2 � 1CO.1=N/C log 2CO.1=N/

D 2 log 2 � 1CO.1=N/;

which proves (9). A similar argument holds if N � 0; 1 or 2 .mod 4/, thus es-
tablishing (9).
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654 J.-M. De Koninck and N. Doyon

On the other hand, X
k>N

1

k2
<

Z 1
N

1

t2
dt D

1

N
;

so that
T2.N / <

1

N
: (10)

Now let " > 0 be arbitrarily small and let N D Œ1="�C 1. We then have, using
(9) and (10) in (8),X

n�x

1

ı.n/
D 2.2 log 2 � 1/x CO."x/CO."x/ .x !1/;

which completes the proof of the theorem.

Remark. Using a computer, one obtains that

1

109

X
n�109

1

ı.n/
D 0:7719 : : : :

4 The Isolation Index with Respect to a Given Function

The function ı can also be defined relatively to any real-valued arithmetic function
f taking its minimal value at f .1/ as

ıf .n/ WD min
1�m6Dn

f .m/�f .n/

jn �mj .n � 2/

with ıf .1/ D 1.

Examples. � Let f .n/ be any monotonic function. Then we have ıf .n/ D 1 for
all n � 2.

� Let f .n/ D !.n/ WD
P
pjn 1. Then, the first 40 values of ı!.n/ are

1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 1; 2; 1; 1; 1; 1; 1; 2; 1;

1; 1; 2; 1; 2; 1; 2; 1; 2; 1; 1; 1; 1; 1; 1; 1; 4; 1; 1; 1:

� Let f .n/ D �.n/ WD
P
p˛kn ˛. Then, the first 40 values of ı�.n/ are

1; 1; 1; 1; 2; 1; 2; 1; 1; 1; 2; 1; 2; 1; 1; 1; 2; 1; 2; 1;

1; 1; 4; 1; 1; 1; 1; 1; 2; 1; 2; 1; 1; 1; 1; 1; 4; 1; 1; 1:
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On the Distance Between Smooth Numbers 655

� Let f .n/ D �.n/ WD
P
d jn 1. Then, the first 40 values of ı� .n/ are

1; 1; 1; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 1; 1; 2; 1; 2; 1;

1; 1; 4; 1; 2; 1; 1; 1; 2; 1; 2; 1; 1; 1; 1; 1; 4; 1; 1; 1:

Remark 6. It turns out that Hypothesis A holds unconditionally when one replaces
the function P.n/ by the function !.n/ or �.n/ or �.n/, and therefore that the
equivalent of Theorem 4 for either of these three functions is true without any
conditions, that is, that for any fixed positive integer k,

1

x
#¹n � x W ı!.n/ D kº D

2

4k2 � 1
C o.1/ .x !1/;

the same being true for �.n/ or �.n/ in place of !.n/.

To prove our claim, we first need to prove the following two propositions.

Proposition 7. Let a1; a2; : : : ; ak be any distinct integers and let z1; z2; : : : ; zk be
arbitrary real numbers. Then,

lim
x!1

1

x
#
²
n � x W

!.nC aj / � log logn
p

log logn
< zj ; 1 � j � k

³
D

Y
1�j�k

ˆ.zj /;

(11)
where ˆ.z/ D 1p

2�

R z
�1

e�t
2=2dt .

Proof. Given a real-valued vector .t1; t2; : : : ; tk/, consider the function

H.n/ D

kX
jD1

tj!.nC aj /:

We will now apply Proposition 2 and Theorem 1 of Granville and Soundarara-
jan [5], where instead of considering the function

fp.n/ D

´
1 � 1

p
if pjn;

�
1
p

otherwise,

we use the function

fp.n/ D

´
tr �

1
p

Pk
jD1 tj if pj.nC ar/;

�
1
p

Pk
jD1 tj otherwise,

where it is clear that, except for a finite number of primes p, each prime p divides
nC ar for at most one ar .
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656 J.-M. De Koninck and N. Doyon

Using this newly defined function fp.n/ and following exactly the same steps
as in the proof of Proposition 2 of Granville and Soundararajan, we obtain that

lim
x!1

1

x
#
²
n � x W

H.n/ �
Pk
jD1 tj log logn

p
log logn

< z

³
D ˆ

�
zqPk
jD1 t

2
j

�
: (12)

In other words, H.n/ has a Gaussian distribution with mean value

kX
jD1

tj log logn

and standard deviation vuuut kX
jD1

t2j � log logn:

Because of the moments of a Gaussian distribution, statement (12) is equivalent to

lim
x!1

1

x

X
n�x

 
H.n/ �

Pk
jD1 tj log logn

p
log logn

!m

D G.m/

 
kX

jD1

t2j

!m=2
.m D 1; 2; : : : /;

(13)

where, for each positive integer m,

G.m/ D

´Q
1�j�m=2.2j � 1/ if m is odd,

0 if m is even.

By expanding the left-hand side of (13) using the Multinomial Theorem, we
may rewrite it (for each positive integer m) asX
0�ui�m; iD1;:::;k
u1C���CukDm

lim
x!1

1

x

X
n�x

mŠ

u1Š � � �ukŠ

Y
1�j�k

t
uj
j

�
!.nC aj / � log logn

p
log logn

�uj
:

(14)

By considering (14) as a function of t1; t2; : : : ; tk and comparing the coefficients
with those on the right-hand side of (13), we obtain, for each positive integer m,

mŠ

u1Š � � �ukŠ
lim
x!1

1

x

X
n�x

Y
1�j�k

�
!.nC aj / � log logn

p
log log x

�uj
D G.m/

.m=2/Š

.u1=2/Š � � � .uk=2/Š
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On the Distance Between Smooth Numbers 657

or equivalently

lim
x!1

1

x

X
n�x

Y
1�j�k

�
!.nC aj / � log logn

p
log log x

�uj
D

Y
1�j�k

G.uj /: (15)

Since the right-hand side of (15) corresponds to the centered moments of a mul-
tivariate independent Gaussian distribution, the validity of (11) follows, thereby
completing the proof.

Proposition 8. Let g stand for any of the functions !, � or � . Let a1; a2; : : : ; ak
be any permutation of the integers 0; 1; : : : ; k � 1. Then,

lim
x!1

1

x
#
®
n � x W g.nC aj / < g.nC ajC1/; j D 1; : : : ; k � 1

¯
D

1

kŠ
:

Proof. In the case g D !, the result follows from Proposition 7, namely by simple
integration of (11). As for g D �, observe that it is easy to show that

lim
K!1

lim
x!1

1

x
#
®
n � x W �.n/ � !.n/ > K

¯
D 0: (16)

Hence, using (16) and integrating (11), Proposition 7 holds for g D �. Finally, as
Proposition 7 holds for g D ! and g D �, the inequality 2!.n/ � �.n/ � 2�.n/

implies that it also holds for g D � , thus completing the proof.

Theorem 9. Let f .n/ D !.n/ or �.n/ or �.n/. Then,

lim
x!1

1

x

X
n�x

1

ıf .n/
D 2.2 log 2 � 1/:

Proof. In light of Remark 6 and of Proposition 8, the result is immediate.

Theorem 10. Let a < b be positive integers. For any real-valued arithmetic func-
tion f and any interval I D Œa; bŒ of length N D b � a,X

n2I

1

ıf .n/
�
2

3
N �

2

3
:

Proof. We conduct the proof using induction onN . First observe that Theorem 10
holds for small values of N . For instance, if N D 1,X

n2I

1

ıf .n/
D

1

ıf .a/
> 0 D

2

3
�
2

3
:
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658 J.-M. De Koninck and N. Doyon

If N D 2, then since at least one of ıf .n/ and ıf .nC 1/ must be 1, it follows that

X
n2I

1

ıf .n/
D

1

ıf .a/
C

1

ıf .aC 1/
> 1 >

2

3
D
2

3
� 2 �

2

3
:

We will now assume that the result holds for every integer smaller than N and
prove that it must therefore hold for N . We shall do this by distinguishing three
possible cases:

(i) either ıf .a/ D 1 or ıf .b � 1/ D 1;

(ii) case (i) is not satisfied and there exists a positive integer k 2 �a; b � 2Œ such
that both ıf .k/ D 1 and ıf .k C 1/ D 1;

(iii) neither of the two previous cases holds.

In case (i), we can assume without any loss of generality that ıf .a/ D 1, in which
case X

n2I

1

ıf .n/
D 1C

X
aC1�n<b

1

ıf .n/
:

Using our induction hypothesis, we get that

1C
X

aC1�n<b

1

ıf .n/
� 1C

2

3
.N � 1/ �

2

3
D
2

3
N �

1

3
>
2

3
N �

2

3
;

proving the theorem in case (i).
Suppose now that case (ii) is satisfied. Then, there is an integer k 2 �a; b � 2Œ

such that ıf .k/ D ıf .k C 1/ D 1, in which case

X
n2I

1

ıf .n/
D

X
a�n<k

1

ıf .n/
C 2C

X
kC2�n<b

1

ıf .n/
:

Again, using our induction hypothesis we have that the right-hand side is larger or
equal to

2

3
.k � a/ �

2

3
C 2C

2

3
.b � k � 2/ �

2

3
D
2

3
N �

2

3
;

proving the theorem in case (ii).
We now consider case (iii). In this situation, N has to be odd, since the sum

starts with the term 1=ıf .a/ < 1 and ends with the term 1=ıf .b�1/ < 1, because
every second value of ıf .n/ must be 1. Assume that a is odd, in which case b � 1
is odd. The case a and b � 1 even can be treated in a similar way. Hence, it is at
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On the Distance Between Smooth Numbers 659

odd integers n that ıf .n/ > 1, in which case we must have both f .n� 1/ > f .n/
and f .nC 1/ > f .n/. Recall the definition

ıf .n/ WD min
1�m¤n

f .m/�f .n/

jm � njI

now since the integer m at which this minimum occurs must be odd (since for the
other integers m, the even ones, we have ıf .m/ D 1), it follows that for an odd
n D 2j C 1, we have

ıf .2j C 1/ D 2 min
1�k¤j

f .2kC1/�f .2jC1/

jk � j j;

so that we may writeX
n2 Œa;bŒ
n odd

1

ıf .n/
D

X
j2Œa�1

2
;b
2
Œ

1

ıf .2j C 1/

D
1

2

X
j 2 Œa�1

2
;b
2
Œ

1

min
1�k¤j

f .2kC1/�f .2jC1/

jk � j j

D
1

2

X
j 2 Œa�1

2
;b
2
Œ

1

min
1�k¤j
g.k/�g.j /

jk � j j

D
1

2

X
j 2 Œa�1

2
;b
2
Œ

1

ıg.j /
; (17)

where we have set g.j / WD f .2jC1/. Now since the interval Œa�1
2
; b
2
Œ is of length

NC1
2

< N , we can apply our induction hypothesis and write that the last expres-
sion in (17) is no larger than

1

2
�
2

3

�
N C 1

2
� 1

�
:

It follows from this thatX
n2I

1

ıf .n/
�
N � 1

2
C
1

2
�
2

3

�
N C 1

2
� 1

�
D
2

3
.N � 1/;

as needed to be proved. This completes the proof of the theorem.
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660 J.-M. De Koninck and N. Doyon

In the statement of Theorem 10, is there any hope that one could replace the
constant 2

3
by a larger one? The answer is ‘no’, as the following result shows.

Theorem 11. Let ˛0;q.n/; ˛1;q.n/; ˛2;q.n/; : : : ; ˛k;q.n/ be the digits of n when
written in base q, that is,

n D

kX
jD0

j̨;q.n/q
j :

Then the function f D gq defined by

gq.n/ D

kX
jD0

j̨;q.n/q
k�j (18)

has the following property:

lim
x!1

1

x

X
n�x

1

ıf .n/
D

q

q C 1
: (19)

Remark. Observe that gq.n/ is the number obtained by writing the basis q digits
of n in reverse order. In a sense, the result claims that the function g2 is the one that
provides the minimal value for the sum of the reciprocals of the index of isolation.

Remark 12. Let n be written in basis q � 2, that is,

n WD

kX
jD0

j̨;q.n/q
j :

Let m be the smallest integer such that ˛m;q.n/ is greater than zero. Then, under
the assumption that n is not a perfect power of q, it is easy to verify that

ıgq .n/ D q
m:

On the other hand, if n is a perfect power of q, say n D qk , we have

ıgq .n/ D q
k�1.q � 1/:

Proof of Theorem 11. We shall only consider the case q D 2, since the general
case can be treated similarly. We observe that ıg2.n/ D 1 if and only if n is odd.
More generally, in light of Remark 12, we have

ıg2.n/ D 2
k if and only if

n

2k
is an odd integer .k � 0/:
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On the Distance Between Smooth Numbers 661

We can therefore write

X
n�x

1

ıg2.n/
D

Œlogx= log2�X
kD0

1

2k
� #
²
n � x W

n

2k
� 1 .mod 2/

³
:

It is easy to see that

#
²
n � x W

n

2k
� 1 .mod 2/

³
D

x

2kC1
CO.1/;

so that

X
n�x

1

ıf .n/
D

Œlogx= log2�X
kD0

x

22kC1
CO

�X
k�0

1

2k

�
D
2

3
x CO.1/;

which proves (19) in the case q D 2, thus completing the proof of the theorem.

Theorem 13. For real numbers y;w such that 2
3
� y � w � 1, there exists an

arithmetic function f such that

lim inf
x!1

1

x

X
n�x

1

ıf .n/
D y and lim sup

x!1

1

x

X
n�x

1

ıf .n/
D w: (20)

Proof. The function 1=ıg2 has a mean value of 2
3

, while it is clear that the mean
value of the reciprocal of the index of isolation of any monotone function h is 1.
We shall construct a function that behaves piecewise like g2 and piecewise like h
so that the mean value of the reciprocal of its isolation index will be a pondered
mean of the values 2

3
and 1. We first define real numbers s; t 2 Œ0; 1� in such a way

that s C .1 � s/2
3
D y and t C .1 � t /2

3
D w. Now consider the intervals

Ij WD Œ2
2j ; 22

jC1

Œ .j D 1; 2; 3; : : : /:

For j even and for each integer m 2 Œ1; 22
j�j .22

j

� 1/�, define the families of
subintervals Kj;m and Lj;m as follows:

Kj;m WD Œ2
2j
C .m � 1/2j ; 22

j

C .m � 1C s/ � 2j Œ

and
Lj;m WD Œ2

2j
C .m � 1C s/2j ; 22

j

Cm2j Œ ;

so that

Ij D

22
j�j .22

j
�1/[

mD1

.Kj;m [ Lj;m/:
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662 J.-M. De Koninck and N. Doyon

For j odd, we replace the number s by t in the definition of the subintervals
Kj;m and Lj;m. For simplicity, we define implicitly Aj;m; Bj;m; Cj;m;Dj;m as

Kj;m D ŒAj;m; Bj;mŒ

and
Lj;m D ŒCj;m;Dj;mŒ :

We are now ready to define a function f satisfying (20). We define f piecewise
in the following manner. If n 2 Kj;m, then set

f .n/ D n � Aj;m;

while if n 2 Lj;m, set
f .n/ D g2.n � Cj;m/:

Assume first that j is even. Then,X
n2Ij

1

ıf .n/
D

X
m

X
n2Kj;m

1

ıf .n/
C

X
m

X
n2Lj;m

1

ıf .n/

D

X
m

�
Bj;m � Aj;m CO.1/

�
C

X
m

2

3

�
Dj;m � Cj;m CO.1/

�
D

X
m

�
s2j CO.1/

�
C

X
m

�
2

3
.1 � s/2j CO.1/

�
D

X
m

�
y2j CO.1/

�
D y

�
22
jC1

� 22
j
�
CO

�
22
jC1

2j

�
: (21)

If j is odd, we obtain in a similar fashion

X
n2Ij

1

ıf .n/
D w

�
22
jC1

� 22
j
�
CO

�
22
jC1

2j

�
: (22)

Let x be a large real number. Let j � be the largest integer such that 22
j�

< x and
let m� be the largest integer such that Dj�;m� � x. We then haveX

n�x

1

ıf .n/
D

X
n<22

j��1

1

ıf .n/
C

X
n2Ij��1

1

ıf .n/
C

X
22
j�
�n�x

1

ıf .n/

D †1 C†2 C†3; (23)
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say. On the one hand, we trivially get

†1 D O
�
22
j��1

�
; (24)

while assuming j � � 1 even, we obtain, using (21),

†2 D y � 2
2j
�

CO

�
22
j�

2j
�

�
: (25)

Finally,

†3 D
X
m�m�

X
n2Lj�;m

1

ıf .n/
C

X
m�m�

X
n2Kj�;m

1

ıf .n/
CO

�
2j
�
�
;

which yields, in light of (22) (since j � is odd),

†3 D w
�
x � 22

j�
�
CO

�
2j
�

Cm�
�
: (26)

Using (24), (25) and (26) in (23), we getX
n�x

1

ıf .n/
D y22

j�

C w
�
x � 22

j�
�
CO

�
x

log x

�
;

which completes the proof of the theorem.

5 The Mean Value of the Index of Isolation

While the mean value of the reciprocal of the index of isolation gives information
on the local behavior of a function f , the mean value of the index of isolation
itself gives information on the very isolated numbers.

Theorem 14. Let f be a real-valued arithmetic function. Let a and b be two pos-
itive integers such that b � a D N . Suppose furthermore that for all m 2 Œa; bŒ,
f .m/ � f .a/. Then X

n2 �a;bŒ

ıf .n/ �
N logN
2 log 2

: (27)

Proof. We prove Theorem 14 by induction on N . The result holds for N D 1,
because the left-hand side of (27) is 0 (since the interval of summation contains no
integers), yielding the inequality 0 � 0. It also holds for N D 2, because in this
case we have ıf .aC 1/ D 1, yielding the inequality 1 � 1. So, let us assume that
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664 J.-M. De Koninck and N. Doyon

(27) is true for all intervals �a; bŒ with a � b D N for some integer N > 1. We
shall prove that under the hypothesis that b�a D NC1 and that for allm 2 �a; bŒ,
f .m/ � f .a/ and f .m/ � f .b/, we haveX

aC1�n�b�1

ıf .n/ �
N

2

logN
log 2

: (28)

We prove (28) by using induction on N . Clearly, the result is true for N D 1

and N D 2. Assume that it is true for N � 1 and let us prove that it is true for N .
Let n� be an integer such that n� 2 �a; bŒ and f .m/ � f .n�/ for all m 2 �a; bŒ.
We thus haveX

aC1�n�b�1

ıf .n/ � min.n� � a � 1; b � n� � 1/

C

X
aC1�n�n��1

ıf .n/C
X

n�C1�n�b�1

ıf .n/:

Using our induction hypothesis, we haveX
aC1�n�n��1

ıf .n/ �
n� � a

2

log.n� � a/
log 2

and X
n�C1�n�b�1

ıf .n/ �
b � n�

2

log.b � n�/
log 2

:

Without any loss of generality, we can assume that n� 2 �a; aC .b � a/=2�, so
that X
aC1�n�b�1

ıf .n/ � n
�
� a � 1C

n� � a

2

log.n� � a/
log 2

C
b � n�

2

log.b � n�/
log 2

:

(29)
Assuming for now that n� is a real variable, and taking the derivative of the right-
hand side of (29) with respect to n�, we obtain

1C
log.n� � a/
2 log 2

�
log.b � n�/
2 log 2

:

Since the second derivative is positive, the right-hand side of (29) reaches its max-
imum value at the end points, that is, either when n� D aC 1 or n� D .bC a/=2.
In the first case, we getX

aC1�n�b�1

ıf .n/ �
.N � 1/ log.N � 1/

2 log 2
�
N logN
2 log 2

:
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In the second case, that is, when n� D .b C a/=2, we obtainX
aC1�n�b�1

ıf .n/ �
N

2
� 1C

N log.N=2/
2 log 2

D
N logN
2 log 2

� 1 �
N logN
2 log 2

;

thus proving (28) in all cases.
We are now ready to complete the proof of Theorem 14, that is, to remove the

condition f .m/ � f .b/. For this, we use induction.
Let n0 2 �a; bŒ be an integer such that for all m 2 �a; bŒ, f .m/ � f .n0/. We

can writeX
aC1�n�b�1

ıf .n/ �
X

aC1�n�n0�1

ıf .n/C n0 � a � 1C
X

n0C1�n�b�1

ıf .n/:

Using our induction hypothesis, we obtainX
aC1�n�n0�1

ıf .n/ �
.n0 � a/ log.n0 � a/

2 log 2

and X
n0C1�n�b�1

ıf .n/ �
.b � n0/ log.b � n0/

2 log 2
:

From the last three estimates, it follows thatX
aC1�n�b�1

ıf .n/ � n0 � a� 1C
.n0 � a/ log.n0 � a/

2 log 2
C
.b � n0/ log.b � n0/

2 log 2
:

(30)
Proceeding as we did to estimate the right-hand side of (29), we obtain that the
right-hand side of formula (30) is less than N logN

2 log2 , which completes the proof of
the theorem.

Theorem 15. As x !1, X
n�x

ı!.n/� x log log x:

Proof. For each x � 2,X
n�x

ı!.n/ D
X
d

X
n�x

!.n/Dd

ı!.n/

D

X
d�10 log logx

X
n�x

!.n/Dd

ı!.n/C
X

d>10 log logx

X
n�x

!.n/Dd

ı!.n/: (31)
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666 J.-M. De Koninck and N. Doyon

Clearly, for any fixed d � 1, X
n�x

!.n/Dd

ı!.n/ � 2x:

Therefore, X
d�10 log logx

X
n�x

!.n/Dd

ı!.n/ � 20x log log x: (32)

Let x be large and fixed, and consider the set S WD ¹n � x W !.n/ > 10 log log xº.
Write S as the union of disjoint intervals S D I1 [ I2 [ � � � [ Ik , and let j̀ stand
for the length of the interval Ij . We have from Theorem 14 thatX

n2Ij

ı!.n/ �
j̀ log j̀

2 log 2
: (33)

On the other hand, one can show that

kX
jD1

j̀ D #S D
X
n�x

!.n/>10 log logx

1 D o

�
x

log x

�
.x !1/ (34)

(see, for instance, relation (18) in De Koninck, Doyon and Luca [3]).
It follows from (33) and (34) that

X
n2S

ı!.n/ �

kX
jD1

j̀ log j̀

2 log 2
�

log x
2 log 2

� o

�
x

log x

�
D o.x/ .x !1/: (35)

Substituting (32) and (35) in (31) completes the proof of the theorem.

Remark. Using a computer, one can observe that, for x D 109,

1

x log log x

X
n�x

ı!.n/ � 0:60:

Theorem 16. Let the function gq be defined as in (18). ThenX
1�n�N

ıgq .n/ D
.q � 1/N logN

q log q
CO.N/;

so that the function g2 is the function for which the sums of the index of isolation
is maximal.

Brought to you by | Bibliotheque de l'Universite Laval (Bibliotheque de l'Universite Laval)
Authenticated | 172.16.1.226

Download Date | 6/13/12 4:28 PM



On the Distance Between Smooth Numbers 667

Proof. Let n be written in base q � 2, that is,

n WD

kX
jD0

j̨;q.n/q
j :

In light of Remark 12, we get, letting k0 be the largest integer such that qk0 � N ,X
n�N

ıgq .n/ D
X
n�N

n¤qk

ıgq .n/C
X
n�N

nDqk

ıgq .n/

D

X
m�logN= logq

qm � #¹n � N W ıgq .n/ D q
m
º C

X
qk�N

qk�1.q � 1/

D

X
m�logN= logq

qm �

�
q � 1

qmC1
N CO.1/

�
C .q � 1/

X
qk�N

qk�1

D
q � 1

q
N

logN
log q

CO.N/C .q � 1/
qk0 � 1

q � 1

D
q � 1

q
N

logN
log q

CO.N/;

thus completing the proof of the theorem.

6 Computational Data and Open Problems

If n D nk stands for the smallest positive integer n such that

ı.n/ D ı.nC 1/ D � � � D ı.nC k � 1/ D 1; (36)

then we have the following table:

k 1 2 3 4 5

nk 1 1 1 91 91

k 6 7 8 9 10

nk 169 2737 26 536 67 311 535 591

k 11 12 13 14 15

nk 3 021 151 26 817 437 74 877 777 657 240 658 785 211 337
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668 J.-M. De Koninck and N. Doyon

Some open problems concerning the sequence nk , k D 1; 2; 3; : : : , are the
following:

(i) Prove that nk exists for each integer k � 16.

(ii) Estimate the size of nk as a function of k. Also, is it true that nk � kŠ for
each integer k � 5?

(iii) Prove that for any fixed k � 3, there are infinitely many integers n such
that (36) is satisfied. The fact that the matter is settled for k D 2 follows
immediately from the Balog result stated at the beginning of Section 3.

Interesting questions also arise from the study of the function �.n/ first men-
tioned in Section 2. For instance, letmk stand for the smallest numberm for which

�.m/ D �.mC 1/ D � � � D �.mC k � 1/: (37)

Then

� m2 D 14, with �.14/ D �.15/ D 4;
� m3 D 33, with �.33/ D �.34/ D �.35/ D 4;
� m4 D 2 189 815, with �.m4 C i/ D 12 for i D 0; 1; 2; 3;
� m5 D 7 201 674, with �.m5 C i/ D 14 for i D 0; 1; 2; 3; 4;
� if m6 exists, then m6 > 1500 000 000.

Specific questions are the following:

(i) Prove that mk exists for each integer k � 6.

(ii) Estimate the size of mk as a function of k.

(iii) Prove that for any fixed k � 3, there are infinitely many integers m such that
(37) is satisfied.
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