On the Distance Between Smooth Numbers

Jean-Marie De Koninck and Nicolas Doyon

Abstract

Let $P(n)$ stand for the largest prime factor of $n \geq 2$ and set $P(1)=1$. For each integer $n \geq 2$, let $\delta(n)$ be the distance to the nearest $P(n)$-smooth number, that is, to the nearest integer whose largest prime factor is no larger than that of n. We provide a heuristic argument showing that $\sum_{n \leq x} 1 / \delta(n)=(4 \log 2-2+o(1)) x$ as $x \rightarrow \infty$. Moreover, given an arbitrary real-valued arithmetic function f, we study the behavior of the more general function $\delta_{f}(n)$ defined by $\delta_{f}(n)=\min _{1 \leq m \neq n, f(m) \leq f(n)}|n-m|$ for $n \geq 2$, and $\delta_{f}(1)=1$. In particular, given any positive integers $a<b$, we show that $\sum_{a \leq n<b} 1 / \delta_{f}(n) \geq 2(b-a) / 3$ and that if $f(n) \geq f(a)$ for all $n \in[a, b[$, then one has $\sum_{a<n<b} \delta_{f}(n) \leq(b-a) \log (b-a) /(2 \log 2)$.

Keywords. Arithmetic Function, Smooth Numbers.
2010 Mathematics Subject Classification. 11A25, 11N37.

1 Introduction

A smooth number (or a friable number) is a positive integer n whose largest prime factor is "small" compared to n. Hence, given an integer $B \geq 2$, we say that an integer n is B-smooth if all its prime factors are $\leq B$.

Let $P(n)$ stand for the largest prime factor of n (with $P(1)=1$).
For each integer $n \geq 2$, let $\delta(n)$ be the distance to the nearest $P(n)$-smooth number, that is, to the nearest integer whose largest prime factor is no larger than that of n. In other words,

$$
\delta(n):=\min _{\substack{1 \leq m \neq n \\ P(m) \leq P(n)}}|n-m| .
$$

Equivalently, if we let

$$
\Psi(x, y):=\#\{n \leq x: P(n) \leq y\},
$$

then $\delta(n)$ is the smallest positive integer δ such that either one of the following two equalities occur:

$$
\Psi(n+\delta, P(n))-\Psi(n, P(n))=1, \quad \Psi(n, P(n))-\Psi(n-\delta, P(n))=1
$$

[^0]For convenience, we set $\delta(1)=1$. In particular,

$$
\begin{equation*}
\delta\left(2^{a}\right)=2^{a-1} \quad \text { for each integer } a \geq 1 \tag{1}
\end{equation*}
$$

The first 40 values of $\delta(n)$ are

$$
\begin{aligned}
& 1,1,1,2,1,2,1,4,1,1,1, ~ 3,1,1,1,8,1,2,1,2, \\
& 1,1,1,3,1,1,3,1,1,2,1,16,1,1,1,4,1,1,1,4 .
\end{aligned}
$$

We call $\delta(n)$ the index of isolation of n and we say that an integer n is isolated if $\delta(n) \geq 2$ and non-isolated if $\delta(n)=1$. Finally, an integer n is said to be very isolated if $\delta(n)$ is "large".

It follows from (1) that the most isolated number $\leq x$ is the largest power of 2 not exceeding x, which implies in particular that $\delta(n) \leq n / 2$ for all $n \geq 2$.

Remark. One might think, as a rule of thumb, that the smaller $P(n)$ is, the larger $\delta(n)$ will be, that is, that "smooth numbers have a large index of isolation". But this is not true for small values of n : for instance, $n=11859211$ has a small $P(n)$ and nevertheless $\delta(n)=1$, since

$$
\begin{aligned}
n & =11859211=7 \cdot 13 \cdot 19^{4}, \\
n-1 & =11859210=2 \cdot 3^{4} \cdot 5 \cdot 11^{4}
\end{aligned}
$$

However, for large values of n, one can say that smooth numbers do indeed have a large index of isolation. Indeed, one can prove (see Lemma 3) that, given $B \geq 3$ fixed, there exist a constant $c=c(B)>0$ and a number $n_{0}=n_{0}(B)$ such that

$$
\delta(n)>\frac{n}{(\log n)^{c}} \quad \text { for all } B \text {-smooth integers } n \geq n_{0}
$$

2 Preliminary Observations and Results

It is clear that $\delta(p)=1$ for each prime p and also that if p is odd, then $\delta\left(p^{2}\right)=1$. Each of the following also holds:

$$
\begin{array}{lll}
\delta(2 p)=1 \text { for } p \geq 5, & \delta(3 p)=1 \text { for } p \geq 3, & \delta(4 p) \leq 2 \text { for } p \geq 5, \\
\delta(5 p)=1 \text { for } p \geq 2, & \delta(6 p) \leq 2 \text { for } p \geq 3, & \delta(7 p) \leq 2 \text { for } p \geq 2, \\
\delta(8 p) \leq 3 \text { for } p \geq 7, & \delta(9 p) \leq 3 \text { for } p \geq 2, & \delta(10 p) \leq 2 \text { for } p \geq 2 .
\end{array}
$$

The above are easily proven. For instance, to prove the second statement, observe that if $p \equiv 1(\bmod 4)$, then $3 p+1 \equiv 0(\bmod 4)$, in which case $P(3 p+1)<p$,
while if $p \equiv 3(\bmod 4)$, then $3 p-1 \equiv 0(\bmod 4)$, in which case $P(3 p-1)<p$, so that in both cases $\delta(3 p)=1$.

Observe also that given any prime p, if a is an integer such that $P(a) \leq p$, then $\delta(a p) \leq a$ because

$$
P(a p-a)=P(a(p-1)) \leq \max (P(a), P(p-1)) \leq p
$$

If follows from this simple observation that

$$
\begin{equation*}
\delta(n)=\delta(a P(n)) \leq a=\frac{n}{P(n)} \quad(n \geq 2) \tag{2}
\end{equation*}
$$

Moreover, one can easily show that if $P(n)^{2} \mid n$, then $\delta(n) \leq \frac{n}{P(n)^{2}}$.
Definition. For each integer $n \geq 1$, let

$$
\Delta(n):=\sum_{d \mid n} \delta(d)
$$

Trivially, we have $\Delta(n) \geq \tau(n)$.
Lemma 1. If n is a power of 2 , then $\Delta(n)=n$. On the other hand, for all $n>1$ such that $P(n) \geq 3$, we have

$$
\begin{equation*}
\Delta(n)<n . \tag{3}
\end{equation*}
$$

Proof. The first assertion is obvious since for each integer $\alpha \geq 1$, we have the following: $\Delta\left(2^{\alpha}\right)=\sum_{i=1}^{\alpha} 2^{i-1}=2^{\alpha}$.

Now consider the case when n is not a power of 2 . First, it is easy to show that if $P(n)=3$, then (3) holds. Indeed, if $n=2^{\alpha} \cdot 3^{\beta}$ for some integers $\alpha \geq 0$ and $\beta \geq 1$, then in light of (2), we have

$$
\begin{aligned}
\Delta(n) & \leq \sum_{d \mid n} \frac{d}{P(d)}=1+\sum_{\substack{d \mid n \\
P(d)=2}} \frac{d}{P(d)}+\sum_{\substack{d \mid n \\
P(d)=3}} \frac{d}{P(d)} \\
& =1+\frac{1}{2} \sum_{i=1}^{\alpha} 2^{i}+\frac{1}{3} \sum_{\substack{d|n \\
3| d}} d=1+2^{\alpha}-1+\frac{1}{3}\left(\sigma(n)-\sigma\left(2^{\alpha}\right)\right) \\
& =2^{\alpha}+\frac{1}{3}\left(\left(2^{\alpha+1}-1\right) \frac{3^{\beta+1}-1}{2}-\left(2^{\alpha+1}-1\right)\right) \\
& =n-\frac{3^{\beta}}{2}+\frac{1}{2} \leq n-1<n
\end{aligned}
$$

which proves that (3) holds if $P(n)=3$.

Hence, from here on, we shall assume that $P(n) \geq 5$. We shall use induction on the number of distinct prime factors of n in order to prove that

$$
\begin{equation*}
\sum_{d \mid n} \frac{d}{P(d)}<n \tag{4}
\end{equation*}
$$

First observe that the above inequality is true if $\omega(n)=1$. Indeed, in this case, we have $n=p^{b}$. It is clear that

$$
\begin{aligned}
\sum_{d \mid n} \frac{d}{P(d)} & =1+1+p+p^{2}+\cdots+p^{b-1}=1+\frac{p^{b}-1}{p-1} \\
& <1+p^{b}-1=p^{b}=n
\end{aligned}
$$

which will clearly establish (3).
Let us now assume that the result holds for all n such that $\omega(n)=r-1$ and prove that it does hold for n such that $\omega(n)=r$. Take such an integer n with k being the unique positive integer such that $P(n)^{k} \| n$. We then have

$$
\begin{align*}
\sum_{d \mid n} \frac{d}{P(d)}= & \sum_{d \mid n / P(n)^{k}} \frac{d}{P(d)}+\sum_{i=1}^{k} \sum_{d \mid n / P(n)^{k}} \frac{d P(n)^{i}}{P\left(d P(n)^{i}\right)} \\
= & \sum_{d \mid n / P(n)^{k}} \frac{d}{P(d)}+\sum_{d \mid n / P(n)^{k}} d+P(n) \sum_{d \mid n / P(n)^{k}} d \\
& +\cdots+P(n)^{k-1} \sum_{d \mid n / P(n)^{k}} d \\
= & \sum_{d \mid n / P(n)^{k}} \frac{d}{P(d)}+\left(1+P(n)+\cdots+P(n)^{k-1}\right) \sigma\left(n / P(n)^{k}\right) \tag{5}
\end{align*}
$$

Using the identity

$$
\sigma\left(\frac{n}{P(n)^{k}}\right)=\frac{\sigma(n)}{1+P(n)+P(n)^{2}+\cdots+P(n)^{k}}
$$

and the induction argument, it follows from (5) that

$$
\begin{align*}
\sum_{d \mid n} \frac{d}{P(d)} & <\frac{n}{P(n)^{k}}+\frac{1+P(n)+\cdots+P(n)^{k-1}}{1+P(n)+\cdots+P(n)^{k}} \sigma(n) \tag{6}\\
& <\frac{n}{P(n)}+\frac{\sigma(n)}{P(n)}
\end{align*}
$$

On the other hand, it is clear that for any integer $n>1$ such that $P(n) \geq 5$ and
$\omega(n) \geq 2$, we have

$$
\frac{\sigma(n)}{n}<\prod_{p \mid n} \frac{p}{p-1}<\frac{3}{4} P(n)
$$

Using this in (6), we obtain, since $P(n) \geq 5$, that $\sum_{d \mid n} \frac{d}{P(d)}<\frac{n}{5}+\frac{3}{4} n<n$, which completes the proof of (4) and thus of (3).

Lemma 2. The following are true:
(i) $\#\{n \leq x: \delta(n)=1\} \geq \frac{x}{2}$ for all $x \geq 2$.
(ii) $\frac{x}{2} \leq \sum_{n \leq x} \frac{1}{\delta(n)}<x$ for all $x \geq 4$.
(iii) $\delta(n)=\delta(m)=k \Longrightarrow|n-m| \geq k$.
(iv) $|m-n| \geq \min (\delta(m), \delta(n))$.
(v) $c_{k}(x):=\#\{n \leq x: \delta(n)=k\} \leq \frac{x}{k}$.
(vi) $\#\{n \leq x: \delta(n) \geq y\} \leq \frac{x}{y}$.

Proof. Since it is clear that if $\delta(n) \geq 2$, then $\delta(n-1)=\delta(n+1)=1$, (i) follows immediately, along with (ii).

On the other hand, (iii) follows from the definition of $\delta(n)$. From (iii), we easily deduce (iv) and (v).

To prove statement (vi), we proceed as follows. Fix $1<y \leq x$ and assume that $k:=\#\{n \leq x: \delta(n) \geq y\}>x / y$. Let $y \leq n_{1}<n_{2}<\cdots<n_{k}$ be the integers $n_{i} \leq x$ such that $\delta\left(n_{i}\right) \geq y$. By the Pigeonhole Principle, there exist n_{r} and n_{s} with $1 \leq r<s \leq k$ such that $n_{s}-n_{r}<y$. Without any loss in generality, one can assume that $P\left(n_{r}\right) \leq P\left(n_{s}\right)$, in which case we have $\delta\left(n_{s}\right) \leq n_{s}-n_{r}<y$, a contradiction.

Lemma 3. Let $B \geq 3$ be a fixed integer. Then there exist a constant $c=c(B)>0$ and a number $n_{0}=n_{0}(B)$ such that

$$
\delta(n)>\frac{n}{(\log n)^{c}} \quad \text { for all } B \text {-smooth integers } n \geq n_{0}
$$

Proof. The result follows almost immediately from an estimate of Tijdeman [7], who showed, using the theory of logarithmic forms of Baker (see Theorem 3.1 in the book of Baker [1]), that if $n_{1}<n_{2}<\cdots$ represents the sequence of B-smooth numbers, then there exist positive constants $c_{1}(B)$ and $c_{2}(B)$ such that

$$
\frac{n_{i}}{\left(\log n_{i}\right)^{c_{1}(B)}} \ll n_{i+1}-n_{i} \ll \frac{n_{i}}{\left(\log n_{i}\right)^{c_{2}(B)}}
$$

where $c_{2}(B) \leq \pi(B) \leq c_{1}(B)$. Observe that Langevin [6] later provided explicit values for the constants $c_{1}(B)$ and $c_{2}(B)$.

3 Probabilistic Results

In 1978, Erdős and Pomerance [4] showed that the lower density of those integers n for which $P(n)<P(n+1)$ (or $P(n)>P(n+1)$) is positive. Most likely, this density is $\frac{1}{2}$, but this fact remains an open problem. In 2001, Balog [2] showed that the number of integers $n \leq x$ with

$$
\begin{equation*}
P(n-1)>P(n)>P(n+1) \tag{7}
\end{equation*}
$$

is $\gg \sqrt{x}$ and observed that "undoubtedly" the density of those integers n such that (7) holds is equal to $\frac{1}{6}$.

To establish our next result, we shall make the following reasonable assumption.
Hypothesis A. Fix an arbitrary integer $k \geq 2$ and let n be a large number. Let $a_{1}, a_{2}, \ldots, a_{k}$ be any permutation of the numbers $0,1,2, \ldots, k-1$. Then,

$$
\operatorname{Prob}\left[P\left(n+a_{1}\right)<P\left(n+a_{2}\right)<\cdots<P\left(n+a_{k}\right)\right]=\frac{1}{k!}
$$

Theorem 4. Assuming Hypothesis A and given any integer $k \geq 1$, the expected proportion of integers n for which $\delta(n)=k$ is equal to $\frac{2}{4 k^{2}-1}$. In particular, the proportion of non-isolated numbers is $\frac{2}{3}$.

Proof. Fix k. Let E_{k} be the expected proportion of integers n for which $\delta(n)=k$. Given a large integer n, the probability that $\delta(n)>k$ is equal to the probability that

$$
\min (P(n \pm 1), \ldots, P(n \pm k))>P(n)
$$

Under Hypothesis A, this probability is equal to $\frac{1}{2 k+1}$. This implies that

$$
E_{k}=P(\delta(n)>k-1)-P(\delta(n)>k)=\frac{1}{2 k-1}-\frac{1}{2 k+1}=\frac{2}{4 k^{2}-1}
$$

which completes the proof of the theorem.
Remark. Let $S_{k}(x):=\#\{n \leq x: \delta(n)=k\}$ and choose $x=10^{6}$. Then, we obtain the following numerical evidence.

k	1	2	3	4	5
$a=S_{k}(x)$	664084	134239	57089	32185	20145
$b=\left[x \cdot 2 /\left(4 k^{2}-1\right)\right]$	666666	133333	57142	31746	20202
a / b	0.996	1.006	0.999	1.013	0.997

Theorem 5. Assuming Hypothesis A,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \frac{1}{\delta(n)}=2(2 \log 2-1) \approx 0.7725
$$

Proof. According to Theorem 4 (proved assuming Hypothesis A),

$$
\frac{1}{x} \#\{n \leq x: \delta(n)=k\}=(1+o(1)) \frac{2}{4 k^{2}-1} \quad(x \rightarrow \infty) \text {. }
$$

Therefore, given a fixed large integer N, we have, as $x \rightarrow \infty$,

$$
\begin{align*}
\sum_{n \leq x} \frac{1}{\delta(n)} & =\sum_{k=1}^{N} \frac{1}{k} \sum_{\substack{n \leq x \\
\delta(n)=k}} 1+\sum_{k=N+1}^{[x / 2]} \frac{1}{k} \sum_{\substack{n \leq x \\
\delta(n)=k}} 1 \\
& =\sum_{k=1}^{N} \frac{2 x}{k\left(4 k^{2}-1\right)}(1+o(1))+O\left(\sum_{k>N} \frac{x}{k^{2}}\right) \tag{8}\\
& =(1+o(1)) x T_{1}(N)+O\left(x T_{2}(N)\right),
\end{align*}
$$

say, where we used Lemma 2 (v). First, one can show that

$$
\begin{equation*}
T_{1}(N)=\sum_{k=1}^{N} \frac{2}{k\left(4 k^{2}-1\right)}=2(2 \log 2-1)+O\left(\frac{1}{N}\right) \quad(N \rightarrow \infty) \tag{9}
\end{equation*}
$$

To prove (9), we proceed as follows. Assume for now that $N \equiv 3(\bmod 4)$. Then, using the estimate $\sum_{k=1}^{N} \frac{1}{k}=\log N+\gamma+O(1 / N)$ as $N \rightarrow \infty$ (where γ is Euler's constant), we have

$$
\begin{aligned}
\frac{1}{2} T_{1}(N)= & -\sum_{k=1}^{N} \frac{1}{k}+\sum_{k=1}^{N} \frac{1}{2 k-1}+\sum_{k=1}^{N} \frac{1}{2 k+1} \\
= & -\frac{1}{2}+\frac{1}{3}-\cdots+\frac{1}{N} \\
& +2\left(\frac{1}{N+2}+\frac{1}{N+4}+\cdots+\frac{1}{2 N-1}\right)+\frac{1}{2 N+1} \\
= & \log 2-1+O(1 / N)+2 \sum_{j=(N+1) / 2}^{N-1} \frac{1}{2 j+1}+\frac{1}{2 N+1} \\
= & \log 2-1+O(1 / N)+\log 2+O(1 / N) \\
= & 2 \log 2-1+O(1 / N)
\end{aligned}
$$

which proves (9). A similar argument holds if $N \equiv 0,1$ or $2(\bmod 4)$, thus establishing (9).

On the other hand,

$$
\sum_{k>N} \frac{1}{k^{2}}<\int_{N}^{\infty} \frac{1}{t^{2}} d t=\frac{1}{N}
$$

so that

$$
\begin{equation*}
T_{2}(N)<\frac{1}{N} \tag{10}
\end{equation*}
$$

Now let $\varepsilon>0$ be arbitrarily small and let $N=[1 / \varepsilon]+1$. We then have, using (9) and (10) in (8),

$$
\sum_{n \leq x} \frac{1}{\delta(n)}=2(2 \log 2-1) x+O(\varepsilon x)+O(\varepsilon x) \quad(x \rightarrow \infty)
$$

which completes the proof of the theorem.
Remark. Using a computer, one obtains that

$$
\frac{1}{10^{9}} \sum_{n \leq 10^{9}} \frac{1}{\delta(n)}=0.7719 \ldots
$$

4 The Isolation Index with Respect to a Given Function

The function δ can also be defined relatively to any real-valued arithmetic function f taking its minimal value at $f(1)$ as

$$
\delta_{f}(n):=\min _{\substack{1 \leq m \neq n \\ f(m) \leq f(n)}}|n-m| \quad(n \geq 2)
$$

with $\delta_{f}(1)=1$.
Examples. - Let $f(n)$ be any monotonic function. Then we have $\delta_{f}(n)=1$ for all $n \geq 2$.

- Let $f(n)=\omega(n):=\sum_{p \mid n} 1$. Then, the first 40 values of $\delta_{\omega}(n)$ are

$$
1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1
$$

$$
1,1,2,1,2,1,2,1,2,1,1,1,1,1,1,1,4,1,1,1
$$

- Let $f(n)=\Omega(n):=\sum_{p^{\alpha} \| n} \alpha$. Then, the first 40 values of $\delta_{\Omega}(n)$ are
$1,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1$,
$1,1,4,1,1,1,1,1,2,1,2,1,1,1,1,1,4,1,1,1$.
- Let $f(n)=\tau(n):=\sum_{d \mid n} 1$. Then, the first 40 values of $\delta_{\tau}(n)$ are

$$
\begin{aligned}
& 1,1,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,1 \\
& 1,1,4,1,2,1,1,1,2,1,2,1,1,1,1,1,4,1,1,1
\end{aligned}
$$

Remark 6. It turns out that Hypothesis A holds unconditionally when one replaces the function $P(n)$ by the function $\omega(n)$ or $\Omega(n)$ or $\tau(n)$, and therefore that the equivalent of Theorem 4 for either of these three functions is true without any conditions, that is, that for any fixed positive integer k,

$$
\frac{1}{x} \#\left\{n \leq x: \delta_{\omega}(n)=k\right\}=\frac{2}{4 k^{2}-1}+o(1) \quad(x \rightarrow \infty)
$$

the same being true for $\Omega(n)$ or $\tau(n)$ in place of $\omega(n)$.
To prove our claim, we first need to prove the following two propositions.
Proposition 7. Let $a_{1}, a_{2}, \ldots, a_{k}$ be any distinct integers and let $z_{1}, z_{2}, \ldots, z_{k}$ be arbitrary real numbers. Then,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(n+a_{j}\right)-\log \log n}{\sqrt{\log \log n}}<z_{j}, 1 \leq j \leq k\right\}=\prod_{1 \leq j \leq k} \Phi\left(z_{j}\right) \tag{11}
\end{equation*}
$$

where $\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-t^{2} / 2} d t$.
Proof. Given a real-valued vector $\left(t_{1}, t_{2}, \ldots, t_{k}\right)$, consider the function

$$
H(n)=\sum_{j=1}^{k} t_{j} \omega\left(n+a_{j}\right)
$$

We will now apply Proposition 2 and Theorem 1 of Granville and Soundararajan [5], where instead of considering the function

$$
f_{p}(n)= \begin{cases}1-\frac{1}{p} & \text { if } p \mid n \\ -\frac{1}{p} & \text { otherwise }\end{cases}
$$

we use the function

$$
f_{p}(n)= \begin{cases}t_{r}-\frac{1}{p} \sum_{j=1}^{k} t_{j} & \text { if } p \mid\left(n+a_{r}\right) \\ -\frac{1}{p} \sum_{j=1}^{k} t_{j} & \text { otherwise }\end{cases}
$$

where it is clear that, except for a finite number of primes p, each prime p divides $n+a_{r}$ for at most one a_{r}.

Using this newly defined function $f_{p}(n)$ and following exactly the same steps as in the proof of Proposition 2 of Granville and Soundararajan, we obtain that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{H(n)-\sum_{j=1}^{k} t_{j} \log \log n}{\sqrt{\log \log n}}<z\right\}=\Phi\left(\frac{z}{\sqrt{\sum_{j=1}^{k} t_{j}^{2}}}\right) \tag{12}
\end{equation*}
$$

In other words, $H(n)$ has a Gaussian distribution with mean value

$$
\sum_{j=1}^{k} t_{j} \log \log n
$$

and standard deviation

$$
\sqrt{\sum_{j=1}^{k} t_{j}^{2} \cdot \log \log n}
$$

Because of the moments of a Gaussian distribution, statement (12) is equivalent to

$$
\begin{align*}
\lim _{x \rightarrow \infty} \frac{1}{x} & \sum_{n \leq x}\left(\frac{H(n)-\sum_{j=1}^{k} t_{j} \log \log n}{\sqrt{\log \log n}}\right)^{m} \\
& =G(m)\left(\sum_{j=1}^{k} t_{j}^{2}\right)^{m / 2} \quad(m=1,2, \ldots) \tag{13}
\end{align*}
$$

where, for each positive integer m,

$$
G(m)= \begin{cases}\prod_{1 \leq j \leq m / 2}(2 j-1) & \text { if } m \text { is odd } \\ 0 & \text { if } m \text { is even }\end{cases}
$$

By expanding the left-hand side of (13) using the Multinomial Theorem, we may rewrite it (for each positive integer m) as

$$
\begin{equation*}
\sum_{\substack{0 \leq u_{i} \leq m, i=1, \ldots, k \\ u_{1}+\cdots+u_{k}=m}} \lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \frac{m!}{u_{1}!\cdots u_{k}!} \prod_{1 \leq j \leq k} t_{j}^{u_{j}}\left(\frac{\omega\left(n+a_{j}\right)-\log \log n}{\sqrt{\log \log n}}\right)^{u_{j}} \tag{14}
\end{equation*}
$$

By considering (14) as a function of $t_{1}, t_{2}, \ldots, t_{k}$ and comparing the coefficients with those on the right-hand side of (13), we obtain, for each positive integer m,

$$
\begin{gathered}
\frac{m!}{u_{1}!\cdots u_{k}!} \lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \prod_{1 \leq j \leq k}\left(\frac{\omega\left(n+a_{j}\right)-\log \log n}{\sqrt{\log \log x}}\right)^{u_{j}} \\
=G(m) \frac{(m / 2)!}{\left(u_{1} / 2\right)!\cdots\left(u_{k} / 2\right)!}
\end{gathered}
$$

or equivalently

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \prod_{1 \leq j \leq k}\left(\frac{\omega\left(n+a_{j}\right)-\log \log n}{\sqrt{\log \log x}}\right)^{u_{j}}=\prod_{1 \leq j \leq k} G\left(u_{j}\right) . \tag{15}
\end{equation*}
$$

Since the right-hand side of (15) corresponds to the centered moments of a multivariate independent Gaussian distribution, the validity of (11) follows, thereby completing the proof.

Proposition 8. Let g stand for any of the functions ω, Ω or τ. Let $a_{1}, a_{2}, \ldots, a_{k}$ be any permutation of the integers $0,1, \ldots, k-1$. Then,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: g\left(n+a_{j}\right)<g\left(n+a_{j+1}\right), j=1, \ldots, k-1\right\}=\frac{1}{k!} .
$$

Proof. In the case $g=\omega$, the result follows from Proposition 7, namely by simple integration of (11). As for $g=\Omega$, observe that it is easy to show that

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \lim _{x \rightarrow \infty} \frac{1}{x} \#\{n \leq x: \Omega(n)-\omega(n)>K\}=0 . \tag{16}
\end{equation*}
$$

Hence, using (16) and integrating (11), Proposition 7 holds for $g=\Omega$. Finally, as Proposition 7 holds for $g=\omega$ and $g=\Omega$, the inequality $2^{\omega(n)} \leq \tau(n) \leq 2^{\Omega(n)}$ implies that it also holds for $g=\tau$, thus completing the proof.

Theorem 9. Let $f(n)=\omega(n)$ or $\Omega(n)$ or $\tau(n)$. Then,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \frac{1}{\delta_{f}(n)}=2(2 \log 2-1)
$$

Proof. In light of Remark 6 and of Proposition 8, the result is immediate.
Theorem 10. Let $a<b$ be positive integers. For any real-valued arithmetic function f and any interval $I=[a, b[$ of length $N=b-a$,

$$
\sum_{n \in I} \frac{1}{\delta_{f}(n)} \geq \frac{2}{3} N-\frac{2}{3}
$$

Proof. We conduct the proof using induction on N. First observe that Theorem 10 holds for small values of N. For instance, if $N=1$,

$$
\sum_{n \in I} \frac{1}{\delta_{f}(n)}=\frac{1}{\delta_{f}(a)}>0=\frac{2}{3}-\frac{2}{3} .
$$

If $N=2$, then since at least one of $\delta_{f}(n)$ and $\delta_{f}(n+1)$ must be 1 , it follows that

$$
\sum_{n \in I} \frac{1}{\delta_{f}(n)}=\frac{1}{\delta_{f}(a)}+\frac{1}{\delta_{f}(a+1)}>1>\frac{2}{3}=\frac{2}{3} \cdot 2-\frac{2}{3}
$$

We will now assume that the result holds for every integer smaller than N and prove that it must therefore hold for N. We shall do this by distinguishing three possible cases:
(i) either $\delta_{f}(a)=1$ or $\delta_{f}(b-1)=1$;
(ii) case (i) is not satisfied and there exists a positive integer $k \in] a, b-2[$ such that both $\delta_{f}(k)=1$ and $\delta_{f}(k+1)=1$;
(iii) neither of the two previous cases holds.

In case (i), we can assume without any loss of generality that $\delta_{f}(a)=1$, in which case

$$
\sum_{n \in I} \frac{1}{\delta_{f}(n)}=1+\sum_{a+1 \leq n<b} \frac{1}{\delta_{f}(n)}
$$

Using our induction hypothesis, we get that

$$
1+\sum_{a+1 \leq n<b} \frac{1}{\delta_{f}(n)} \geq 1+\frac{2}{3}(N-1)-\frac{2}{3}=\frac{2}{3} N-\frac{1}{3}>\frac{2}{3} N-\frac{2}{3}
$$

proving the theorem in case (i).
Suppose now that case (ii) is satisfied. Then, there is an integer $k \in] a, b-2[$ such that $\delta_{f}(k)=\delta_{f}(k+1)=1$, in which case

$$
\sum_{n \in I} \frac{1}{\delta_{f}(n)}=\sum_{a \leq n<k} \frac{1}{\delta_{f}(n)}+2+\sum_{k+2 \leq n<b} \frac{1}{\delta_{f}(n)}
$$

Again, using our induction hypothesis we have that the right-hand side is larger or equal to

$$
\frac{2}{3}(k-a)-\frac{2}{3}+2+\frac{2}{3}(b-k-2)-\frac{2}{3}=\frac{2}{3} N-\frac{2}{3}
$$

proving the theorem in case (ii).
We now consider case (iii). In this situation, N has to be odd, since the sum starts with the term $1 / \delta_{f}(a)<1$ and ends with the term $1 / \delta_{f}(b-1)<1$, because every second value of $\delta_{f}(n)$ must be 1 . Assume that a is odd, in which case $b-1$ is odd. The case a and $b-1$ even can be treated in a similar way. Hence, it is at
odd integers n that $\delta_{f}(n)>1$, in which case we must have both $f(n-1)>f(n)$ and $f(n+1)>f(n)$. Recall the definition

$$
\delta_{f}(n):=\min _{\substack{1 \leq m \neq n \\ f(m) \leq f(n)}}|m-n|
$$

now since the integer m at which this minimum occurs must be odd (since for the other integers m, the even ones, we have $\delta_{f}(m)=1$), it follows that for an odd $n=2 j+1$, we have

$$
\delta_{f}(2 j+1)=2 \min _{\substack{1 \leq k \neq j \\ f(2 k+1) \leq f(2 j+1)}}|k-j|,
$$

so that we may write

$$
\begin{align*}
\sum_{\substack{n \in[a, b[\\
n \text { odd }}} \frac{1}{\delta_{f}(n)} & =\sum_{j \in\left[\frac{a-1}{2}, \frac{b}{2}[\right.} \frac{1}{\delta_{f}(2 j+1)} \\
& =\frac{1}{2} \sum_{j \in\left[\frac{a-1}{2}, \frac{b}{2}[\right.} \frac{1}{\min _{\substack{1 \leq k \neq j \\
f(2 k+1) \leq f(2 j+1)}}|k-j|} \\
& =\frac{1}{2} \sum_{j \in\left[\frac{a-1}{2}, \frac{b}{2}[\right.} \frac{1}{\min _{\substack{1 \leq k \neq j \\
g(k) \leq g(j)}}|k-j|} \\
& =\frac{1}{2} \sum_{j \in\left[\frac{a-1}{2}, \frac{b}{2}[\right.} \frac{1}{\delta_{g}(j)}, \tag{17}
\end{align*}
$$

where we have set $g(j):=f(2 j+1)$. Now since the interval $\left[\frac{a-1}{2}, \frac{b}{2}[\right.$ is of length $\frac{N+1}{2}<N$, we can apply our induction hypothesis and write that the last expression in (17) is no larger than

$$
\frac{1}{2} \cdot \frac{2}{3}\left(\frac{N+1}{2}-1\right)
$$

It follows from this that

$$
\sum_{n \in I} \frac{1}{\delta_{f}(n)} \geq \frac{N-1}{2}+\frac{1}{2} \cdot \frac{2}{3}\left(\frac{N+1}{2}-1\right)=\frac{2}{3}(N-1)
$$

as needed to be proved. This completes the proof of the theorem.

In the statement of Theorem 10, is there any hope that one could replace the constant $\frac{2}{3}$ by a larger one? The answer is 'no', as the following result shows.

Theorem 11. Let $\alpha_{0, q}(n), \alpha_{1, q}(n), \alpha_{2, q}(n), \ldots, \alpha_{k, q}(n)$ be the digits of n when written in base q, that is,

$$
n=\sum_{j=0}^{k} \alpha_{j, q}(n) q^{j}
$$

Then the function $f=g_{q}$ defined by

$$
\begin{equation*}
g_{q}(n)=\sum_{j=0}^{k} \alpha_{j, q}(n) q^{k-j} \tag{18}
\end{equation*}
$$

has the following property:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \frac{1}{\delta_{f}(n)}=\frac{q}{q+1} \tag{19}
\end{equation*}
$$

Remark. Observe that $g_{q}(n)$ is the number obtained by writing the basis q digits of n in reverse order. In a sense, the result claims that the function g_{2} is the one that provides the minimal value for the sum of the reciprocals of the index of isolation.

Remark 12. Let n be written in basis $q \geq 2$, that is,

$$
n:=\sum_{j=0}^{k} \alpha_{j, q}(n) q^{j}
$$

Let m be the smallest integer such that $\alpha_{m, q}(n)$ is greater than zero. Then, under the assumption that n is not a perfect power of q, it is easy to verify that

$$
\delta_{g_{q}}(n)=q^{m}
$$

On the other hand, if n is a perfect power of q, say $n=q^{k}$, we have

$$
\delta_{g_{q}}(n)=q^{k-1}(q-1)
$$

Proof of Theorem 11. We shall only consider the case $q=2$, since the general case can be treated similarly. We observe that $\delta_{g_{2}}(n)=1$ if and only if n is odd. More generally, in light of Remark 12, we have

$$
\delta_{g_{2}}(n)=2^{k} \text { if and only if } \frac{n}{2^{k}} \text { is an odd integer } \quad(k \geq 0)
$$

We can therefore write

$$
\sum_{n \leq x} \frac{1}{\delta_{g_{2}}(n)}=\sum_{k=0}^{[\log x / \log 2]} \frac{1}{2^{k}} \cdot \#\left\{n \leq x: \frac{n}{2^{k}} \equiv 1 \quad(\bmod 2)\right\}
$$

It is easy to see that

$$
\#\left\{n \leq x: \frac{n}{2^{k}} \equiv 1 \quad(\bmod 2)\right\}=\frac{x}{2^{k+1}}+O(1)
$$

so that

$$
\sum_{n \leq x} \frac{1}{\delta_{f}(n)}=\sum_{k=0}^{[\log x / \log 2]} \frac{x}{2^{2 k+1}}+O\left(\sum_{k \geq 0} \frac{1}{2^{k}}\right)=\frac{2}{3} x+O(1)
$$

which proves (19) in the case $q=2$, thus completing the proof of the theorem.
Theorem 13. For real numbers y, w such that $\frac{2}{3} \leq y \leq w \leq 1$, there exists an arithmetic function f such that

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \frac{1}{\delta_{f}(n)}=y \quad \text { and } \quad \limsup _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \frac{1}{\delta_{f}(n)}=w \tag{20}
\end{equation*}
$$

Proof. The function $1 / \delta_{g_{2}}$ has a mean value of $\frac{2}{3}$, while it is clear that the mean value of the reciprocal of the index of isolation of any monotone function h is 1 . We shall construct a function that behaves piecewise like g_{2} and piecewise like h so that the mean value of the reciprocal of its isolation index will be a pondered mean of the values $\frac{2}{3}$ and 1 . We first define real numbers $s, t \in[0,1]$ in such a way that $s+(1-s) \frac{2}{3}=y$ and $t+(1-t) \frac{2}{3}=w$. Now consider the intervals

$$
I_{j}:=\left[2^{2^{j}}, 2^{2^{j+1}}[\quad(j=1,2,3, \ldots)\right.
$$

For j even and for each integer $m \in\left[1,2^{2^{j}-j}\left(2^{2^{j}}-1\right)\right]$, define the families of subintervals $K_{j, m}$ and $L_{j, m}$ as follows:

$$
K_{j, m}:=\left[2^{2^{j}}+(m-1) 2^{j}, 2^{2^{j}}+(m-1+s) \cdot 2^{j}[\right.
$$

and

$$
L_{j, m}:=\left[2^{2^{j}}+(m-1+s) 2^{j}, 2^{2^{j}}+m 2^{j}[\right.
$$

so that

$$
I_{j}=\bigcup_{m=1}^{2^{2^{j}-j}}\left(2^{2^{j}}-1\right)\left(K_{j, m} \cup L_{j, m}\right)
$$

For j odd, we replace the number s by t in the definition of the subintervals $K_{j, m}$ and $L_{j, m}$. For simplicity, we define implicitly $A_{j, m}, B_{j, m}, C_{j, m}, D_{j, m}$ as

$$
K_{j, m}=\left[A_{j, m}, B_{j, m}[\right.
$$

and

$$
L_{j, m}=\left[C_{j, m}, D_{j, m}[\right.
$$

We are now ready to define a function f satisfying (20). We define f piecewise in the following manner. If $n \in K_{j, m}$, then set

$$
f(n)=n-A_{j, m}
$$

while if $n \in L_{j, m}$, set

$$
f(n)=g_{2}\left(n-C_{j, m}\right)
$$

Assume first that j is even. Then,

$$
\begin{align*}
\sum_{n \in I_{j}} \frac{1}{\delta_{f}(n)} & =\sum_{m} \sum_{n \in K_{j, m}} \frac{1}{\delta_{f}(n)}+\sum_{m} \sum_{n \in L_{j, m}} \frac{1}{\delta_{f}(n)} \\
& =\sum_{m}\left(B_{j, m}-A_{j, m}+O(1)\right)+\sum_{m} \frac{2}{3}\left(D_{j, m}-C_{j, m}+O(1)\right) \\
& =\sum_{m}\left(s 2^{j}+O(1)\right)+\sum_{m}\left(\frac{2}{3}(1-s) 2^{j}+O(1)\right) \\
& =\sum_{m}\left(y 2^{j}+O(1)\right) \\
& =y\left(2^{2^{j+1}}-2^{2^{j}}\right)+O\left(\frac{2^{2^{j+1}}}{2^{j}}\right) \tag{21}
\end{align*}
$$

If j is odd, we obtain in a similar fashion

$$
\begin{equation*}
\sum_{n \in I_{j}} \frac{1}{\delta_{f}(n)}=w\left(2^{2^{j+1}}-2^{2^{j}}\right)+O\left(\frac{2^{2^{j+1}}}{2^{j}}\right) \tag{22}
\end{equation*}
$$

Let x be a large real number. Let j^{*} be the largest integer such that $2^{2^{j^{*}}}<x$ and let m^{*} be the largest integer such that $D_{j^{*}, m^{*}} \leq x$. We then have

$$
\begin{align*}
\sum_{n \leq x} \frac{1}{\delta_{f}(n)} & =\sum_{n<2^{2^{j^{*}-1}}} \frac{1}{\delta_{f}(n)}+\sum_{n \in I_{j^{*}-1}} \frac{1}{\delta_{f}(n)}+\sum_{2^{2^{j}} \leq n \leq x} \frac{1}{\delta_{f}(n)} \\
& =\Sigma_{1}+\Sigma_{2}+\Sigma_{3} \tag{23}
\end{align*}
$$

say. On the one hand, we trivially get

$$
\begin{equation*}
\Sigma_{1}=O\left(2^{2^{j^{*}-1}}\right) \tag{24}
\end{equation*}
$$

while assuming $j^{*}-1$ even, we obtain, using (21),

$$
\begin{equation*}
\Sigma_{2}=y \cdot 2^{2^{j^{*}}}+O\left(\frac{2^{2^{j^{*}}}}{2^{j^{*}}}\right) \tag{25}
\end{equation*}
$$

Finally,

$$
\Sigma_{3}=\sum_{m \leq m^{*}} \sum_{n \in L_{j^{*}, m}} \frac{1}{\delta_{f}(n)}+\sum_{m \leq m^{*}} \sum_{n \in K_{j^{*}, m}} \frac{1}{\delta_{f}(n)}+O\left(2^{j^{*}}\right)
$$

which yields, in light of (22) (since j^{*} is odd),

$$
\begin{equation*}
\Sigma_{3}=w\left(x-2^{2^{j^{*}}}\right)+O\left(2^{j^{*}}+m^{*}\right) \tag{26}
\end{equation*}
$$

Using (24), (25) and (26) in (23), we get

$$
\sum_{n \leq x} \frac{1}{\delta_{f}(n)}=y 2^{2^{j^{*}}}+w\left(x-2^{2^{j^{*}}}\right)+O\left(\frac{x}{\log x}\right)
$$

which completes the proof of the theorem.

5 The Mean Value of the Index of Isolation

While the mean value of the reciprocal of the index of isolation gives information on the local behavior of a function f, the mean value of the index of isolation itself gives information on the very isolated numbers.

Theorem 14. Let f be a real-valued arithmetic function. Let a and b be two positive integers such that $b-a=N$. Suppose furthermore that for all $m \in[a, b[$, $f(m) \geq f(a)$. Then

$$
\begin{equation*}
\sum_{n \in] a, b[} \delta_{f}(n) \leq \frac{N \log N}{2 \log 2} \tag{27}
\end{equation*}
$$

Proof. We prove Theorem 14 by induction on N. The result holds for $N=1$, because the left-hand side of (27) is 0 (since the interval of summation contains no integers), yielding the inequality $0 \leq 0$. It also holds for $N=2$, because in this case we have $\delta_{f}(a+1)=1$, yielding the inequality $1 \leq 1$. So, let us assume that
(27) is true for all intervals] a, b [with $a-b=N$ for some integer $N>1$. We shall prove that under the hypothesis that $b-a=N+1$ and that for all $m \in] a, b[$, $f(m) \geq f(a)$ and $f(m) \geq f(b)$, we have

$$
\begin{equation*}
\sum_{a+1 \leq n \leq b-1} \delta_{f}(n) \leq \frac{N}{2} \frac{\log N}{\log 2} \tag{28}
\end{equation*}
$$

We prove (28) by using induction on N. Clearly, the result is true for $N=1$ and $N=2$. Assume that it is true for $N-1$ and let us prove that it is true for N. Let n^{*} be an integer such that $\left.n^{*} \in\right] a, b\left[\right.$ and $f(m) \geq f\left(n^{*}\right)$ for all $\left.m \in\right] a, b[$. We thus have

$$
\sum_{a+1 \leq n \leq b-1} \delta_{f}(n) \leq \min \left(n^{*}-a-1, b-n^{*}-1\right) .
$$

Using our induction hypothesis, we have

$$
\sum_{a+1 \leq n \leq n^{*}-1} \delta_{f}(n) \leq \frac{n^{*}-a}{2} \frac{\log \left(n^{*}-a\right)}{\log 2}
$$

and

$$
\sum_{n^{*}+1 \leq n \leq b-1} \delta_{f}(n) \leq \frac{b-n^{*}}{2} \frac{\log \left(b-n^{*}\right)}{\log 2}
$$

Without any loss of generality, we can assume that $\left.\left.n^{*} \in\right] a, a+(b-a) / 2\right]$, so that

$$
\begin{equation*}
\sum_{a+1 \leq n \leq b-1} \delta_{f}(n) \leq n^{*}-a-1+\frac{n^{*}-a}{2} \frac{\log \left(n^{*}-a\right)}{\log 2}+\frac{b-n^{*}}{2} \frac{\log \left(b-n^{*}\right)}{\log 2} \tag{29}
\end{equation*}
$$

Assuming for now that n^{*} is a real variable, and taking the derivative of the righthand side of (29) with respect to n^{*}, we obtain

$$
1+\frac{\log \left(n^{*}-a\right)}{2 \log 2}-\frac{\log \left(b-n^{*}\right)}{2 \log 2}
$$

Since the second derivative is positive, the right-hand side of (29) reaches its maximum value at the end points, that is, either when $n^{*}=a+1$ or $n^{*}=(b+a) / 2$. In the first case, we get

$$
\sum_{a+1 \leq n \leq b-1} \delta_{f}(n) \leq \frac{(N-1) \log (N-1)}{2 \log 2} \leq \frac{N \log N}{2 \log 2}
$$

In the second case, that is, when $n^{*}=(b+a) / 2$, we obtain

$$
\sum_{a+1 \leq n \leq b-1} \delta_{f}(n) \leq \frac{N}{2}-1+\frac{N \log (N / 2)}{2 \log 2}=\frac{N \log N}{2 \log 2}-1 \leq \frac{N \log N}{2 \log 2}
$$

thus proving (28) in all cases.
We are now ready to complete the proof of Theorem 14, that is, to remove the condition $f(m) \geq f(b)$. For this, we use induction.

Let $\left.n_{0} \in\right] a, b[$ be an integer such that for all $m \in] a, b\left[, f(m) \geq f\left(n_{0}\right)\right.$. We can write

$$
\sum_{a+1 \leq n \leq b-1} \delta_{f}(n) \leq \sum_{a+1 \leq n \leq n_{0}-1} \delta_{f}(n)+n_{0}-a-1+\sum_{n_{0}+1 \leq n \leq b-1} \delta_{f}(n)
$$

Using our induction hypothesis, we obtain

$$
\sum_{a+1 \leq n \leq n_{0}-1} \delta_{f}(n) \leq \frac{\left(n_{0}-a\right) \log \left(n_{0}-a\right)}{2 \log 2}
$$

and

$$
\sum_{n_{0}+1 \leq n \leq b-1} \delta_{f}(n) \leq \frac{\left(b-n_{0}\right) \log \left(b-n_{0}\right)}{2 \log 2}
$$

From the last three estimates, it follows that
$\sum_{a+1 \leq n \leq b-1} \delta_{f}(n) \leq n_{0}-a-1+\frac{\left(n_{0}-a\right) \log \left(n_{0}-a\right)}{2 \log 2}+\frac{\left(b-n_{0}\right) \log \left(b-n_{0}\right)}{2 \log 2}$.
Proceeding as we did to estimate the right-hand side of (29), we obtain that the right-hand side of formula (30) is less than $\frac{N \log N}{2 \log 2}$, which completes the proof of the theorem.

Theorem 15. As $x \rightarrow \infty$,

$$
\sum_{n \leq x} \delta_{\omega}(n) \ll x \log \log x
$$

Proof. For each $x \geq 2$,

$$
\begin{align*}
\sum_{n \leq x} \delta_{\omega}(n) & =\sum_{d} \sum_{\substack{n \leq x \\
\omega(n)=d}} \delta_{\omega}(n) \\
& =\sum_{d \leq 10 \log \log x} \sum_{\substack{n \leq x \\
\omega(n)=d}} \delta_{\omega}(n)+\sum_{d>10 \log \log x} \sum_{\substack{n \leq x \\
\omega(n)=d}} \delta_{\omega}(n) \tag{31}
\end{align*}
$$

Clearly, for any fixed $d \geq 1$,

$$
\sum_{\substack{n \leq x \\ \omega(n)=d}} \delta_{\omega}(n) \leq 2 x
$$

Therefore,

$$
\begin{equation*}
\sum_{d \leq 10 \log \log x} \sum_{\substack{n \leq x \\ \omega(n)=d}} \delta_{\omega}(n) \leq 20 x \log \log x \tag{32}
\end{equation*}
$$

Let x be large and fixed, and consider the set $S:=\{n \leq x: \omega(n)>10 \log \log x\}$. Write S as the union of disjoint intervals $S=I_{1} \cup I_{2} \cup \cdots \cup I_{k}$, and let ℓ_{j} stand for the length of the interval I_{j}. We have from Theorem 14 that

$$
\begin{equation*}
\sum_{n \in I_{j}} \delta_{\omega}(n) \leq \frac{\ell_{j} \log \ell_{j}}{2 \log 2} \tag{33}
\end{equation*}
$$

On the other hand, one can show that

$$
\begin{equation*}
\sum_{j=1}^{k} \ell_{j}=\# S=\sum_{\substack{n \leq x \\ \omega(n)>10 \log \log x}} 1=o\left(\frac{x}{\log x}\right) \quad(x \rightarrow \infty) \tag{34}
\end{equation*}
$$

(see, for instance, relation (18) in De Koninck, Doyon and Luca [3]).
It follows from (33) and (34) that

$$
\begin{equation*}
\sum_{n \in S} \delta_{\omega}(n) \leq \sum_{j=1}^{k} \frac{\ell_{j} \log \ell_{j}}{2 \log 2} \leq \frac{\log x}{2 \log 2} \cdot o\left(\frac{x}{\log x}\right)=o(x) \quad(x \rightarrow \infty) \tag{35}
\end{equation*}
$$

Substituting (32) and (35) in (31) completes the proof of the theorem.
Remark. Using a computer, one can observe that, for $x=10^{9}$,

$$
\frac{1}{x \log \log x} \sum_{n \leq x} \delta_{\omega}(n) \approx 0.60
$$

Theorem 16. Let the function g_{q} be defined as in (18). Then

$$
\sum_{1 \leq n \leq N} \delta_{g_{q}}(n)=\frac{(q-1) N \log N}{q \log q}+O(N)
$$

so that the function g_{2} is the function for which the sums of the index of isolation is maximal.

Proof. Let n be written in base $q \geq 2$, that is,

$$
n:=\sum_{j=0}^{k} \alpha_{j, q}(n) q^{j}
$$

In light of Remark 12, we get, letting k_{0} be the largest integer such that $q^{k_{0}} \leq N$,

$$
\begin{aligned}
\sum_{n \leq N} \delta_{g_{q}}(n) & =\sum_{\substack{n \leq N \\
n \neq q^{k}}} \delta_{g_{q}}(n)+\sum_{\substack{n \leq N \\
n=q^{k}}} \delta_{g_{q}}(n) \\
& =\sum_{m \leq \log N / \log q} q^{m} \cdot \#\left\{n \leq N: \delta_{g_{q}}(n)=q^{m}\right\}+\sum_{q^{k} \leq N} q^{k-1}(q-1) \\
& =\sum_{m \leq \log N / \log q} q^{m} \cdot\left(\frac{q-1}{q^{m+1}} N+O(1)\right)+(q-1) \sum_{q^{k} \leq N} q^{k-1} \\
& =\frac{q-1}{q} N \frac{\log N}{\log q}+O(N)+(q-1) \frac{q^{k_{0}}-1}{q-1} \\
& =\frac{q-1}{q} N \frac{\log N}{\log q}+O(N)
\end{aligned}
$$

thus completing the proof of the theorem.

6 Computational Data and Open Problems

If $n=n_{k}$ stands for the smallest positive integer n such that

$$
\begin{equation*}
\delta(n)=\delta(n+1)=\cdots=\delta(n+k-1)=1 \tag{36}
\end{equation*}
$$

then we have the following table:

k	1	2	3	4	5
n_{k}	1	1	1	91	91

k	6	7	8	9	10
n_{k}	169	2737	26536	67311	535591

k	11	12	13	14	15
n_{k}	3021151	26817437	74877777	657240658	785211337

Some open problems concerning the sequence $n_{k}, k=1,2,3, \ldots$, are the following:
(i) Prove that n_{k} exists for each integer $k \geq 16$.
(ii) Estimate the size of n_{k} as a function of k. Also, is it true that $n_{k} \leq k$! for each integer $k \geq 5$?
(iii) Prove that for any fixed $k \geq 3$, there are infinitely many integers n such that (36) is satisfied. The fact that the matter is settled for $k=2$ follows immediately from the Balog result stated at the beginning of Section 3.

Interesting questions also arise from the study of the function $\Delta(n)$ first mentioned in Section 2. For instance, let m_{k} stand for the smallest number m for which

$$
\begin{equation*}
\Delta(m)=\Delta(m+1)=\cdots=\Delta(m+k-1) \tag{37}
\end{equation*}
$$

Then

- $m_{2}=14$, with $\Delta(14)=\Delta(15)=4$;
- $m_{3}=33$, with $\Delta(33)=\Delta(34)=\Delta(35)=4 ;$
- $m_{4}=2189815$, with $\Delta\left(m_{4}+i\right)=12$ for $i=0,1,2,3$;
- $m_{5}=7201674$, with $\Delta\left(m_{5}+i\right)=14$ for $i=0,1,2,3,4$;
- if m_{6} exists, then $m_{6}>1500000000$.

Specific questions are the following:
(i) Prove that m_{k} exists for each integer $k \geq 6$.
(ii) Estimate the size of m_{k} as a function of k.
(iii) Prove that for any fixed $k \geq 3$, there are infinitely many integers m such that (37) is satisfied.

Acknowledgments. The authors would like to thank the referee for some very helpful suggestions, which led to the improvement of this paper.

Bibliography

[1] A. Baker, Transcendental Number Theory, Cambridge University Press, London, 1975.
[2] A. Balog, On triplets with descending largest prime factors, Studia Sci. Math. Hungar. 38 (2001), 45-50.
[3] J. M. De Koninck, N. Doyon and F. Luca, Sur la quantité de nombres économiques, Acta Arithmetica 127 (2007), no. 2, 125-143.
[4] P. Erdős and C. Pomerance, On the largest prime factors of n and $n+1$, Aequationes Math. 17 (1978), 311-321.
[5] A. Granville and K. Soundararajan, Sieving and the Erdős-Kac theorem, in: Equidistribution in Number Theory. An Introduction (Montreal, Canada, July 11-22, 2005), pp. 15-27, NATO Science Series II: Mathematics, Physics and Chemistry 237, Sprin-ger-Verlag, Amsterdam, 2007.
[6] M. Langevin, Quelques applications de nouveaux résultats de Van der Poorten, Sém. Delange-Pisot-Poitou 17 (1975/76), No. G12, 11 pp.
[7] R. Tijdeman, On the maximal distance between integers composed of small primes, Compos. Math. 28 (1974), 159-162.

Received March 21, 2010; revised November 29, 2010; accepted February 7, 2011.

Author information

Jean-Marie De Koninck, Département de mathématiques et de statistique,
Université Laval, Québec, Québec G1V 0A6, Canada.
E-mail: jmdk@mat.ulaval.ca
Nicolas Doyon, Département de mathématiques et de statistique,
Université Laval, Québec, Québec G1V 0A6, Canada.
E-mail: nicolas.doyon@mat.ulaval.ca

[^0]: Research work supported in part by a grant from NSERC.

