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1 Introduction

Let P(n) stand for the largest prime factor of the integer n > 2 and set P(1) = 1.
Let o be the set of all prime numbers p; < py < ---. A well known result of
[.M. Vinogradov [7] asserts that, given any irrational number «, the sequence ap,,, n =
1,2,..., is uniformly distributed in [0,1]. In 2005, Banks, Harman and Shparlinski
[1] proved that for every irrational number «, the sequence aP(n), n = 1,2,..., is
uniformly distributed mod 1. They did so by using the well known Weyl criteria (see
the book of Kuipers and Niederreiter [5]) and thus by establishing that

1
(1.1) e ; e(aP(n)) = 0.

Let M stand for the set of all complex valued multiplicative functions and let M
be the subset of those functions f € M such that | f(n)| < 1 forn =1,2,... Daboussi
(see Daboussi and Delange [2]) proved that given f € M and any irrational number
«, then

lim sup — Z f(n =0,
xHOOf M n<x
where e(z) := exp{2miz}.

In this paper, we first generalize (1.1) by showing that for any irrational number
a and any function f € M, we have ) . f(n)e(aP(n)) = o(x). We further show
that this later estimate also holds if one replaces e(aP(n)) by T(P(n)), where T is
any function defined on primes satisfying |7'(p)| = 1 for all primes p and such that
> p<e L'(p) = o(m(x)), where 7(z) stands for the number of primes < x.

We then move our interest to shifted primes by establishing that (1.1) holds if one
replaces P(n) by P(n — 1), provided f € M satisfies an additional condition.

Finally, we examine the counting function E(z,q,a) == #{p <z : P(p—1)=a
(mod ¢)}. In [1], Banks, Harman and Shparlinski proved that

li(x)

E(z,q,a) < 3@ (logq < (logz)'/®),

where the constant implicit in < is absolute, with li(z / oot and ¢ stands for
ogt

li(x)

¢(q)

the Euler function, and mentioned that the matching lower bound E(z,q,a) >



should most likely hold as well, but could not prove it. Here we prove their guess to
be true.

In what follows, ¢, ¢q, ¢, ... always denote absolute real constants.

2 Main results

Let M, be the subset of those functions f € M such that |f(n)|=1forn=1,2,...

Theorem 1. Given an irrational number « and a function f € My, then

lim = 37 fme(aP(n) = .

n<x
where e(z) := exp{2miz}.

Theorem 2. Let f € My. Let T : ¢ — C be such that |T'(p)| = 1 for each p € p
and such that ) _ T(p) = o(m(x)), where 7(x) stands for the number of primes not
exceeding x. Then

Tim 37 f)T(P(n)) = 0.

n<x

Note that one can show that Theorems 1 and 2 remain valid when replacing P(n)
by Py(n), the k-th largest prime factor of n.

Theorem 3. Given an arbitrary fixed number A > 0, there exists an absolute
constant ¢ > 0 such that, for all x > 2,

li(x)

Bloga) 2 “ol0)

((a,9) =1, ¢ < (logz)*).

R(f(p)p™™)
p

1
Theorem 4. Let f € M; and assume that Z
p

converges for some

t € R. Then, given any irrational number «,

g}erolOZf(n) e(aP(n—1))=0.

n<x

3 Preliminary results

The following two lemmas are essentially due to Haldsz [4]. We state them as follows.



Lemma 1. Let f € M with |f(n)] < 1 for all n € N. Assume that the series
zzl—%U@Wi%)
> p
constant Cy € C and a slowly oscillating function Lo(u), with |Lo(u)| = 1, such that

is convergent for some real number ayg. Then, there exists a

> f(n) = Co Lo(log ) &7 + o(x).

n<x

REMARK. Observe that the constant Cj is nonzero if there exists at least one integer
r > 0 for which f(2") # —1.

Lemma 2. Let f € M with |f(n)| <1 for all n € N. Then,

> f(n) =o(x)

n<x
if "
Z 1 - (f(p)p_l )
- p
diverges for every real number b or if f(2") = —1 forr =1,2,....

The next lemma, which may be of independent interest, plays a crucial role in
what follows.

Lemma 3. Let (a(n)),>1 be a sequence of complex numbers of modulus 1 and set
A(x) =3, ., a(n). Also let 7 € R and set A,(z) :== > . a(n)n. If A(z) = o(x),
then A,(z) = o(z).

n<x

REMARK. As a consequence of Lemma 3, it follows that if A, () = o(z) for some
real number 71, then A, (z) = o(x) for every real number 7.

PROOF OF LEMMA 3. Since A(z) = o(x), there exist decreasing functions ¢(z) and
d(z), both tending to 0 as x — oo, such that

(3.1) [A(z +y) — A(z)| < d(2)y,

uniformly for e(z)z <y < z,
Now observe that

Ao+y) = Az) = 37 3 a(n)emiont)

z<n<lzr+y

= 27(A(x +y) — Ax)) + O (!T| Z log g) :

r<n<lz+y



Therefore,

y?
(3.2) [A-(z +y) = Ar(2)] < |Alz +y) = Al@)[ + el |-
We shall now prove that

(3.3) lim sup [A- (X))

= 0.
X—o00 X

To do so, we first let M > 0 be an arbitrarily large integer and choose X large enough
so that we have both §(2) < 557 and £(3%) < 755. Finally let z = X/M. Since

A (Mz) = Ar(@) + ) (A (jo) = A-((j — D)),

=2
it follows, in light of (3.1) and (3.2), that

M

A, (M2)] < JA(2)] + ) 1A (jx) = A((j = 1)a)|

Jj=2

M-1 M1

<zt Y wd(r) talrlr Y S
=1 =1 J
j j

< x4 axMé(z) + cox|T|log M,

from which it follows that

A (Mx 1 log M
P S g+ el

which in turn implies that

A (X))

lim sup
X—o00

Since M can be taken arbitrarily large, (3.3) follows, thus completing the proof of
Lemma 3.

4 The proofs of Theorems 1 and 2

Let f € My, a an irrational number and S(z) := _ __ f(n). Assume for now that
f is completely multiplicative. We shall consider separately the two cases
S S
) tim 28—, iy 2@

r—o00 I Xz

40 asz — .



It is well known (see Tenenbaum [6]) that

41)  d(zy) =#{n<z:Pn) <y} =1+o0))rplu)  (z— 00),

where p(u) stands for the Dickman function and u := (logz)/(logy) is fixed.
Therefore, it is clear that, for a fixed positive § < %

lim = (#{n < 2: P(n) <o’} + #{n <a: P(n) > ')

= xlggo% (¢(m, x5) +x — (x, xl_é))
(4.2) =p(1/8)+1—p(1/(1—9)) < 0.

So, let 0 < § < 1 be fixed. For some prime ¢, 2° < ¢ < 2'7?, define

= Z f(n) and D, = H .

n<x <p<z
P(n)<q 1=p=

Observe that for any n < x, one has P(n) < ¢ if and only if ged(n, D,) = 1. Using
the fact that f is completely multiplicative, it follows that

(4.3) = 3" uld) f(d)S(x/d).

d| Dy

Now consider the sum

So=Si) = > flg Sy(x/q).

r<g<al =9

It follows from (4.2) that

Zf — 2| < eqdx.

n<x

It follows from this last estimate that Theorem 1 will be proved (in this case) if
we can show that 3, = 3 (z) tends to 0 as z — oo.

Now since S(z) = o(z), there exists a function &;(x) which tends to 0 as x — oo
and such that |S(z)| < ey(z) - z.

From (4.3) and the definition of ¥, we have

IR IO M+ R D

rd<g<al =9 d|Dq d|Dg
dg<azl— 52 931752 <qgd<z

(4.4) = ¥4+ S,



say. Clearly,

Sa < oal) > H < )

rd<g<al =9 q<p<z

|
S 0551(11762) Z ogw

rd<g<al—9 q IOg q

2. 1
(45) < C6€1(£C6 )5

In order to estimate ¥ g, we proceed as follows. For a fixed prime ¢, each divisor
d in the sum lies in [z,29°2], where z = 2!79" /q. Splitting this interval into dyadic
subintervals of the form [27z,27712], we observe that

Z : 7H(1__> 10gq

d[Dg p<q
de)2d 2,291 2]

QU=

Since the maximum value of j in the above expression is cg6? log z, it follows that

log x < o6 log x — 16,

(46) EB S 01052 Z

rd<g<al =9

qlogq 0log x

Using (4.5) and (4.6) in (4.4), we obtain that

2
2 J

81(1‘

5 Y

< 011(5 + Cgq

which implies that
< 0.

lim sup

Tr—00

|31 ()]

Since § can be chosen arbitrarily small, it follows that |¥,(z)|/z — 0 as z — oo, which
completes the proof of Theorem 1 in case (i), when f is assumed to be completely
multiplicative, a fact that we only used to deduce (4.3).

To drop this last condition, we proceed as follows. We define f; = f;, € M as
follows: f1(p®) = f(p®) if p & [2°,217%] and f1(p®) = f(p)® otherwise. Set

=Y filn)

n<x

and, for 2° < g < 2179, let

S (x) =Y u(d) f(d)SD (x/d).

d| Dy



In light of these definitions, it is easy to see that

}S(:E)—S(l)(x)‘gx Z l<<:1c1_5

2
rd<g<al =9

and
Y (f(n) = fu(n))e(aP(n))| < 8z + ',
n<x
so that the Theorem is proved in case (i) without the restriction that f is completely

multiplicative.

It remains to consider case (ii). In this case, it follows from Lemma 2 that there
R(f (p)p~")
p

1 —
exists a real number 7 for which g converges. From Lemma 3, we

p
have that, as © — oo,

1 1 ,
— P 0 d - “Te(aP 0.
LD f)elaP () =0 and 23 el ()

In light of these observations, it is sufficient to consider the case 7 = 0, that is

(4.7) Z #W is convergent.

p

1
Let f(p") = e(F(p")) with —3 < F(p") < =. It is clear that (4.7) holds if and

only if

(4.8) D

PR &

DN | —

Let Y be a fixed large number and set
F
AX,Y = Z ﬂ
Y<p<X p

Further define the multiplicative functions fy(n) and gy (n) by

o f") it p<Y,
fY(p)'_{ 1 if p>Y

and ) it v
o p") it p>Y,
gY(p ) T { 1 if P < Y.



It is clear that f(n) = fy(n) - gy(n).

Further let
=Y F(p)

p"n
p>Y

It follows from the Turan-Kubilius Inequality that

F*(p")

2
= 012.’13By,

(4.9) D Gy (n) = Axy* <cna )

n<z p>Y
r>1

say. From (4.8), it follows that By — 0 as Y — oo. On the other hand, since
gy(n) = e(Gy(n)), it is clear, in light of (4.9), that

Z lgy(n) —e AXY)| < 013:(:BY
n<x

Therefore,

(4.10) Zf ) —e(—Axy) ny n))| < cuxBy.

n<x n<x

We shall now establish that

(4.11) . Z fy(n)e(aP(n)) — 0 (x — 0).

We further define the multiplicative function };(n) by

N 1 if p>YYr,
frv') '_{ fy (") otherwise.

First observe that

> frme(@P(n) =Y fy(n)e(aP(n))| <

nlx nlx

(4.12)

where 1(Y) - 0 as Y — oc.
Let the function hy(n) be the function defined implicitly by

=> hy(d)

dln

It is easy to see that



and that similarly hy (p") =0if p > Y.

On the other hand, since hy (p") = };(p’") - };(pr_l), it follows that hy(p") =0
if pr=t > Y.

From the definition of hy, it is clear that

(4.13) > fyme(aPn) =Y " hy(d) Y e(aP(dm)).

n<z d<z dm<zx

If hy(d) # 0, then p"||d implies that p < Y and p"~' < Y, so that p" < Y2
Consequently, d < Y2 ) < y2Y Furthermore, hy (d) < 27,
For a fixed positive integer d, we have

(4.14) > e(@P(dm))= Y e(dP(m)+0 | > 1
m<z/d m<z/d P(Tn?iéd(d)

Using the main result of Banks, Harman and Shparlinski [1], namely that for any
fixed irrational number «,

Tim 3" e(aP(n) =0

n<x
we have, using (4.14) in (4.13), that
1 e —
4.15 lim — P =0
(4.15) Jim 3 5 FeelaP(m) =0

Hence, it follows from estimate (4.15), taking into account (4.12), that (4.11) is
proved. Finally, gathering (4.10) and (4.11), Theorem 1 is proved.

Theorem 2 can be established along the lines of the proof of Theorem 1 and its proof
will therefore be omitted.

5 The proof of Theorem 3
Let 0 <my <o < % It is clear that

E(,Qa) > Y  wxQ1- Y w1

2 <Q<z"2 Q<Q!
Q= a (mod q) 2 <Q<a"2

Q= a (mod q)
(5.1) N

say, where as usual 7(z;b,a) := #{p < z : p = a (mod b)}. It follows from the
Bombieri-Vinogradov Theorem that

(5.2) Si=li(r) ) 0 1_ [T ((logx)A) ’

2 <Q<z"2
Q= a (mod q)




VT

m, a condition which is equivalent to
ogw

assuming that x” <

1 loglog x
5.3 - — 2A + :
(53) 5> (24+5) L%

Summing over ) allows us to write (5.2) as

b s () o)

uniformly for ¢ < (log z)¢, where D is any preassigned value.
In order to estimate X5, we use standard sieve techniques. Actually > represents
the number of solutions of p — 1 = bQQ’ < x, where b, ), Q' vary as follows:

Q=a (modgq), Qelz™ 2™, Q<Q, b=12.3,...

We first fix b and @), and we assume that there is at least one pair of numbers

p, Q' which is a solution of p — 1 = bQQ’ < z, in which case we have b < z'72" and
bQ < z'=™. Let n; be close to 1/2. Then we have
(5.5)
x
Epqg:=#{p,Q such that p— 1 =0QQ <z, Q=a (mod q)} <cis—5——.
log® z ¢(bQ)

Using the well known estimate ;. 1/6(b) < ciglogy, it follows from (5.5) that

x log(z/@Q?)
(5.6) Yy = %Eb,Q < a5 002 C16 Z O0-1

1 & T M <Q<x"2
T 1

< -
= “Mogz ¢(q)

Choosing 7, so that it satisfies (5.3) and 7, so that ¢17(1—2n;) < 3, and then gathering
(5.4) and (5.6) in (5.1), we obtain that

E(z,q,a) 2 ; (1og m) li(z)

thus completing the proof of Theorem 3.

(1 —2m)log ®.
m

6 The proof of Theorem 4

Again using the analogue of Lemma 3, namely in the form that

1 Pn—1)=0 += 1 P(n—1)=0
mggﬁZf e(aP(n—1)) = xﬂ]&xzf e(aP(n—1)) =0,

n<x n<x

10



we may assume that 7 = 0, that is that

< Q.

1-%(f(p)
2y

Arguing as in the proof of case (ii) of Theorem 1, we reduce the problem to the proof
that the expression

(6.1) " frme(aP(n—1)) =Y hy(d) Y e(aP(dm — 1))

n<z d<z m<z/d

is o(z) as x — oc.
First let us define

(z,y;a,q) :=#{n<zx:Pn)<y, n=a (modq)}.

Since, in the first sum on the right hand side of (6.1), d runs over a finite set of
integers which does not change as * — oo, it is enough to prove that

) 1
(6.2) )}13;0 % ﬂ;(e(odj(dm —1))=0.

We have P(dm—1) =qifdn—1=quv, P(v) < g, thatis qv+1 =0 (mod d), v = ¢,
(mod d), P(v) < q, v < x/q. This quantity is precisely ( d, q; 4y, d).
It follows that

S e(aP(dm—1) = 3 e(aghi qd,q,e ).

m<X g<xd

Let € > 0 be an arbitrary real number. It follows from (4.2) that

(6.3) S elaPm-1)= 3 el gl d)+ R,

m<x reE<g<xl—e

where |R,| < ex. It has been established by Granville [3] that, if ged(a,d) = 1 and
d¢ <y < x, then

(6.4 V(wya.d) ~ 59(ey) (@ oo).

Observing that

log xd xd
o5 0) = 1+ oy (50 1)

11



we have, in light of (6.4), that the right hand side of (6.3) is, as © — oo, equal to

wd Y p(M—l)M—I—O(l)xd 3 p(logmd—l)l—l—Rz

reE<g<zli—e log q q rE<g<zli—e log q q
In order to prove (6.2), it remains to show that
(6.5) Si(z) = o(x) and So(z) = o(x).

First we set

1—¢ loga’ e log

1 logd 1 log d
Jx::[ 14089 2 4 8

log xd

log q
and that in this interval, p is bounded, and therefore,

If ¢ € [2°,2'¢], then

— 1 € J,. On the other hand, note that J, C [11:, ﬂ,

66)  Sw)<olad 3 T <o(l)rlog(l/e) =o(z) (v — o),

reE<g<zl—¢

which proves the second estimate in (6.5).
To estimate Sp(x), we proceed as follows. First set

¢ <q<y

By using the theorem of I.M. Vinogradov according to which

S elag)

¢ <q<y

1

max =d(x) -0 asxz— o0,
2z <y<w 7T(y)

we obtain immediately that

X |B(y)| = d1(x) = 0 asz — oc.

On the other hand, since

1 1
Z —Slog( ogy> holds for z° < y < 227,

elog x
z¢<q<y q &

it follows that

max |B(y)| = da(x) = 0 asz — 0.
2 <y<a

12



From the definitions of S;(x) and B(y), we have

Si(z) = xd / sz (lfg‘”d - 1) dB(u)

. ogu
1—e
log xd *
= xd —1|B
o p (P22 1) Ba) )
1—¢
v log xd log xd
: d B(u)p' —1) ———du.
(6.7) T /xs (wp ( log u ) u(log u)? "

Since both p(u) and p'(u) are bounded in J,, it follows from (6.7) and the above
bounds on B(u) that

1 w7 og xd
(6.8) —$1(a) BT gy (z — oo),

<do(l)+d 0(1)/

-~ u(logu)?
1—e

T 1 (1—¢)logz dv 1 (1—¢)logz 1 1 1
(6.9) / —du:/ w_1 —(L- |
x*® U(lOg U,)2 elogx v? v clogz € 1—¢ IOg.T

Gathering (6.6), (6.8) and (6.9) completes the proof of (6.5), as required. Since € > 0
is arbitrary, it follows from (6.3) that

On the other hand,

éZe(aP(dm —1) =0 (z— )

n<zx

for every d, thus proving (6.2) and thereby (6.1), which completes the proof of The-
orem 4.
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