Exponential sums involving the largest prime factor function

Jean-Marie De Koninck and Imre Kátai

May 10, 2010 Edition

1 Introduction

Let $P(n)$ stand for the largest prime factor of the integer $n \geq 2$ and set $P(1)=1$. Let \wp be the set of all prime numbers $p_{1}<p_{2}<\cdots$. A well known result of I.M. Vinogradov [7] asserts that, given any irrational number α, the sequence $\alpha p_{n}, n=$ $1,2, \ldots$, is uniformly distributed in [0, 1]. In 2005, Banks, Harman and Shparlinski [1] proved that for every irrational number α, the sequence $\alpha P(n), n=1,2, \ldots$, is uniformly distributed mod 1 . They did so by using the well known Weyl criteria (see the book of Kuipers and Niederreiter [5]) and thus by establishing that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} e(\alpha P(n))=0 \tag{1.1}
\end{equation*}
$$

Let \mathcal{M} stand for the set of all complex valued multiplicative functions and let $\widetilde{\mathcal{M}}$ be the subset of those functions $f \in \mathcal{M}$ such that $|f(n)| \leq 1$ for $n=1,2, \ldots$ Daboussi (see Daboussi and Delange [2]) proved that given $f \in \widetilde{\mathcal{M}}$ and any irrational number α, then

$$
\lim _{x \rightarrow \infty} \sup _{f \in \widetilde{\mathcal{M}}} \frac{1}{x} \sum_{n \leq x} f(n) e(n \alpha)=0
$$

where $e(z):=\exp \{2 \pi i z\}$.
In this paper, we first generalize (1.1) by showing that for any irrational number α and any function $f \in \mathcal{M}_{1}$, we have $\sum_{n \leq x} f(n) e(\alpha P(n))=o(x)$. We further show that this later estimate also holds if one replaces $e(\alpha P(n))$ by $T(P(n))$, where T is any function defined on primes satisfying $|T(p)|=1$ for all primes p and such that $\sum_{p \leq x} T(p)=o(\pi(x))$, where $\pi(x)$ stands for the number of primes $\leq x$.

We then move our interest to shifted primes by establishing that (1.1) holds if one replaces $P(n)$ by $P(n-1)$, provided $f \in \mathcal{M}_{1}$ satisfies an additional condition.

Finally, we examine the counting function $E(x, q, a):=\#\{p \leq x: P(p-1) \equiv a$ $(\bmod q)\}$. In [1], Banks, Harman and Shparlinski proved that

$$
E(x, q, a) \ll \frac{\operatorname{li}(x)}{\phi(q)} \quad\left(\log q \leq(\log x)^{1 / 3}\right)
$$

where the constant implicit in \ll is absolute, with $\operatorname{li}(x):=\int_{2}^{x} \frac{d t}{\log t}$ and ϕ stands for the Euler function, and mentioned that the matching lower bound $E(x, q, a) \gg \frac{\operatorname{li}(x)}{\phi(q)}$
should most likely hold as well, but could not prove it. Here we prove their guess to be true.

In what follows, c, c_{1}, c_{2}, \ldots always denote absolute real constants.

2 Main results

Let \mathcal{M}_{1} be the subset of those functions $f \in \mathcal{M}$ such that $|f(n)|=1$ for $n=1,2, \ldots$
Theorem 1. Given an irrational number α and a function $f \in \mathcal{M}_{1}$, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) e(\alpha P(n))=0
$$

where $e(z):=\exp \{2 \pi i z\}$.
Theorem 2. Let $f \in \mathcal{M}_{1}$. Let $T: \wp \rightarrow \mathbb{C}$ be such that $|T(p)|=1$ for each $p \in \wp$ and such that $\sum_{p \leq x} T(p)=o(\pi(x))$, where $\pi(x)$ stands for the number of primes not exceeding x. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) T(P(n))=0
$$

Note that one can show that Theorems 1 and 2 remain valid when replacing $P(n)$ by $P_{k}(n)$, the k-th largest prime factor of n.

Theorem 3. Given an arbitrary fixed number $A>0$, there exists an absolute constant $c>0$ such that, for all $x \geq 2$,

$$
E(x, q, a) \geq c \frac{\operatorname{li}(x)}{\phi(q)} \quad\left((a, q)=1, q \leq(\log x)^{A}\right)
$$

Theorem 4. Let $f \in \mathcal{M}_{1}$ and assume that $\sum_{p} \frac{1-\Re\left(f(p) p^{-i t}\right)}{p}$ converges for some $t \in \mathbb{R}$. Then, given any irrational number α,

$$
\lim _{x \rightarrow \infty} \sum_{n \leq x} f(n) e(\alpha P(n-1))=0
$$

3 Preliminary results

The following two lemmas are essentially due to Halász [4]. We state them as follows.

Lemma 1. Let $f \in \mathcal{M}$ with $|f(n)| \leq 1$ for all $n \in \mathbb{N}$. Assume that the series $\sum_{p} \frac{1-\Re\left(f(p) p^{-i a_{0}}\right)}{p}$ is convergent for some real number a_{0}. Then, there exists a constant $C_{0} \in \mathbb{C}$ and a slowly oscillating function $L_{0}(u)$, with $\left|L_{0}(u)\right|=1$, such that

$$
\sum_{n \leq x} f(n)=C_{0} L_{0}(\log x) x^{1+i a_{0}}+o(x)
$$

Remark. Observe that the constant C_{0} is nonzero if there exists at least one integer $r \geq 0$ for which $f\left(2^{r}\right) \neq-1$.

Lemma 2. Let $f \in \mathcal{M}$ with $|f(n)| \leq 1$ for all $n \in \mathbb{N}$. Then,

$$
\sum_{n \leq x} f(n)=o(x)
$$

if

$$
\sum_{p} \frac{1-\Re\left(f(p) p^{-i b}\right)}{p}
$$

diverges for every real number b or if $f\left(2^{r}\right)=-1$ for $r=1,2, \ldots$.
The next lemma, which may be of independent interest, plays a crucial role in what follows.
Lemma 3. Let $(a(n))_{n \geq 1}$ be a sequence of complex numbers of modulus 1 and set $A(x):=\sum_{n \leq x} a(n)$. Also let $\tau \in \mathbb{R}$ and set $A_{\tau}(x):=\sum_{n \leq x} a(n) n^{i \tau}$. If $A(x)=o(x)$, then $A_{\tau}(x)=o(x)$.

Remark. As a consequence of Lemma 3, it follows that if $A_{\tau_{1}}(x)=o(x)$ for some real number τ_{1}, then $A_{\tau}(x)=o(x)$ for every real number τ.

Proof of Lemma 3. Since $A(x)=o(x)$, there exist decreasing functions $\varepsilon(x)$ and $\delta(x)$, both tending to 0 as $x \rightarrow \infty$, such that

$$
\begin{equation*}
|A(x+y)-A(x)| \leq \delta(x) y \tag{3.1}
\end{equation*}
$$

uniformly for $\varepsilon(x) x \leq y \leq x$,
Now observe that

$$
\begin{aligned}
A_{\tau}(x+y)-A_{\tau}(x) & =x^{i \tau} \sum_{x<n \leq x+y} a(n) e^{i \tau \log (n / x)} \\
& =x^{i \tau}(A(x+y)-A(x))+O\left(|\tau| \sum_{x<n \leq x+y} \log \frac{n}{x}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|A_{\tau}(x+y)-A_{\tau}(x)\right| \leq|A(x+y)-A(x)|+c_{1}|\tau| \frac{y^{2}}{x} \tag{3.2}
\end{equation*}
$$

We shall now prove that

$$
\begin{equation*}
\limsup _{X \rightarrow \infty} \frac{\left|A_{\tau}(X)\right|}{X}=0 . \tag{3.3}
\end{equation*}
$$

To do so, we first let $M>0$ be an arbitrarily large integer and choose X large enough so that we have both $\delta\left(\frac{X}{M}\right)<\frac{1}{M^{2}}$ and $\varepsilon\left(\frac{X}{M}\right)<\frac{1}{M^{2}}$. Finally let $x=X / M$. Since

$$
A_{\tau}(M x)=A_{\tau}(x)+\sum_{j=2}^{M}\left(A_{\tau}(j x)-A_{\tau}((j-1) x)\right),
$$

it follows, in light of (3.1) and (3.2), that

$$
\begin{aligned}
\left|A_{\tau}(M x)\right| & \leq\left|A_{\tau}(x)\right|+\sum_{j=2}^{M}\left|A_{\tau}(j x)-A_{\tau}((j-1) x)\right| \\
& \leq x+\sum_{j=1}^{M-1} x \delta(j x)+c_{1}|\tau| x \sum_{j=1}^{M-1} \frac{1}{j} \\
& \leq x+x M \delta(x)+c_{2} x|\tau| \log M
\end{aligned}
$$

from which it follows that

$$
\frac{\left|A_{\tau}(M x)\right|}{M x} \leq \frac{1}{M}+\delta(x)+c_{2}|\tau| \frac{\log M}{M}
$$

which in turn implies that

$$
\limsup _{X \rightarrow \infty} \frac{\left|A_{\tau}(X)\right|}{X} \leq c_{3}|\tau| \frac{\log M}{M} .
$$

Since M can be taken arbitrarily large, (3.3) follows, thus completing the proof of Lemma 3.

4 The proofs of Theorems 1 and 2

Let $f \in \mathcal{M}_{1}, \alpha$ an irrational number and $S(x):=\sum_{n \leq x} f(n)$. Assume for now that f is completely multiplicative. We shall consider separately the two cases
(i) $\lim _{x \rightarrow \infty} \frac{S(x)}{x}=0$,
(ii) $\frac{S(x)}{x} \nrightarrow 0 \quad$ as $x \rightarrow \infty$.

It is well known (see Tenenbaum [6]) that

$$
\begin{equation*}
\psi(x, y):=\#\{n \leq x: P(n) \leq y\}=(1+o(1)) x \rho(u) \quad(x \rightarrow \infty) \tag{4.1}
\end{equation*}
$$

where $\rho(u)$ stands for the Dickman function and $u:=(\log x) /(\log y)$ is fixed.
Therefore, it is clear that, for a fixed positive $\delta<\frac{1}{2}$,

$$
\begin{align*}
\lim _{x \rightarrow \infty} & \frac{1}{x}\left(\#\left\{n \leq x: P(n) \leq x^{\delta}\right\}+\#\left\{n \leq x: P(n)>x^{1-\delta}\right\}\right) \\
& =\lim _{x \rightarrow \infty} \frac{1}{x}\left(\psi\left(x, x^{\delta}\right)+x-\psi\left(x, x^{1-\delta}\right)\right) \\
& =\rho(1 / \delta)+1-\rho(1 /(1-\delta)) \ll \delta . \tag{4.2}
\end{align*}
$$

So, let $0<\delta<\frac{1}{2}$ be fixed. For some prime $q, x^{\delta}<q<x^{1-\delta}$, define

$$
S_{q}(x):=\sum_{\substack{n \leq x \\ P(n)<q}} f(n) \quad \text { and } \quad D_{q}=\prod_{q \leq p \leq x} p
$$

Observe that for any $n \leq x$, one has $P(n)<q$ if and only if $\operatorname{gcd}\left(n, D_{q}\right)=1$. Using the fact that f is completely multiplicative, it follows that

$$
\begin{equation*}
S_{q}(x)=\sum_{d \mid D_{q}} \mu(d) f(d) S(x / d) \tag{4.3}
\end{equation*}
$$

Now consider the sum

$$
\Sigma_{1}:=\Sigma_{1}(x)=\sum_{x^{\delta}<q<x^{1-\delta}} f(q) e(\alpha q) S_{q}(x / q)
$$

It follows from (4.2) that

$$
\left|\sum_{n \leq x} f(n) e(\alpha P(n))-\Sigma_{1}\right| \leq c_{4} \delta x
$$

It follows from this last estimate that Theorem 1 will be proved (in this case) if we can show that $\Sigma_{1}=\Sigma_{1}(x)$ tends to 0 as $x \rightarrow \infty$.

Now since $S(x)=o(x)$, there exists a function $\varepsilon_{1}(x)$ which tends to 0 as $x \rightarrow \infty$ and such that $|S(x)| \leq \varepsilon_{1}(x) \cdot x$.

From (4.3) and the definition of Σ_{1}, we have

$$
\begin{align*}
\left|\Sigma_{1}\right| & \leq x \sum_{x^{\delta}<q<x^{1-\delta}} \frac{1}{q} \sum_{\substack{d \mid D_{q} \\
d q<x^{1-\delta^{2}}}} \frac{\varepsilon_{1}\left(x^{\delta^{2}}\right)}{d}+x \sum_{\substack{d \mid D_{q} \\
x^{1-\delta^{2} \leq q d<x}}} \frac{1}{q d} \\
& =x \Sigma_{A}+\Sigma_{B}, \tag{4.4}
\end{align*}
$$

say. Clearly,

$$
\begin{align*}
\Sigma_{A} & \leq \varepsilon_{1}\left(x^{\delta^{2}}\right) \sum_{x^{\delta}<q<x^{1-\delta}} \frac{1}{q} \prod_{q \leq p<x}\left(1+\frac{1}{p}\right) \\
& \leq c_{5} \varepsilon_{1}\left(x^{\delta^{2}}\right) \sum_{x^{\delta}<q<x^{1-\delta}} \frac{\log x}{q \log q} \\
& \leq c_{6} \varepsilon_{1}\left(x^{\delta^{2}}\right) \frac{1}{\delta} . \tag{4.5}
\end{align*}
$$

In order to estimate Σ_{B}, we proceed as follows. For a fixed prime q, each divisor d in the sum lies in $\left[z, x^{\delta^{2}} z\right]$, where $z=x^{1-\delta^{2}} / q$. Splitting this interval into dyadic subintervals of the form $\left[2^{j} z, 2^{j+1} z\right]$, we observe that

$$
\sum_{\substack{\left.d \mid D_{q} \\ d \in\right] 2_{z} 2^{j+1} 1_{z}}} \frac{1}{d} \leq c_{7} \prod_{p<q}\left(1-\frac{1}{p}\right) \leq \frac{c_{8}}{\log q} .
$$

Since the maximum value of j in the above expression is $c_{9} \delta^{2} \log x$, it follows that

$$
\begin{equation*}
\Sigma_{B} \leq c_{10} \delta^{2} \sum_{x^{\delta}<q<x^{1-\delta}} \frac{\log x}{q \log q} \leq c_{11} \delta^{2} \frac{\log x}{\delta \log x}=c_{11} \delta \tag{4.6}
\end{equation*}
$$

Using (4.5) and (4.6) in (4.4), we obtain that

$$
\left|\frac{\Sigma_{1}}{x}\right| \leq c_{11} \delta+c_{6} \frac{\varepsilon_{1}\left(x^{\delta^{2}}\right)}{\delta}
$$

which implies that

$$
\limsup _{x \rightarrow \infty} \frac{\left|\Sigma_{1}(x)\right|}{x} \ll \delta .
$$

Since δ can be chosen arbitrarily small, it follows that $\left|\Sigma_{1}(x)\right| / x \rightarrow 0$ as $x \rightarrow \infty$, which completes the proof of Theorem 1 in case (i), when f is assumed to be completely multiplicative, a fact that we only used to deduce (4.3).

To drop this last condition, we proceed as follows. We define $f_{1}=f_{1, x} \in \mathcal{M}$ as follows: $f_{1}\left(p^{\alpha}\right)=f\left(p^{\alpha}\right)$ if $p \notin\left[x^{\delta}, x^{1-\delta}\right]$ and $f_{1}\left(p^{\alpha}\right)=f(p)^{\alpha}$ otherwise. Set

$$
S^{(1)}(x):=\sum_{n \leq x} f_{1}(n),
$$

and, for $x^{\delta}<q<x^{1-\delta}$, let

$$
S_{q}^{(1)}(x):=\sum_{d \mid D_{q}} \mu(d) f(d) S^{(1)}(x / d) .
$$

In light of these definitions, it is easy to see that

$$
\left|S(x)-S^{(1)}(x)\right| \leq x \sum_{x^{\delta}<q<x^{1-\delta}} \frac{1}{q^{2}} \ll x^{1-\delta}
$$

and

$$
\left|\sum_{n \leq x}\left(f(n)-f_{1}(n)\right) e(\alpha P(n))\right| \ll \delta x+x^{1-\delta}
$$

so that the Theorem is proved in case (i) without the restriction that f is completely multiplicative.

It remains to consider case (ii). In this case, it follows from Lemma 2 that there exists a real number τ for which $\sum_{p} \frac{1-\Re\left(f(p) p^{-i \tau}\right)}{p}$ converges. From Lemma 3, we have that, as $x \rightarrow \infty$,

$$
\frac{1}{x} \sum_{n \leq x} f(n) e(\alpha P(n)) \rightarrow 0 \quad \text { and } \quad \frac{1}{x} \sum_{n \leq x} f(n) n^{-i \tau} e(\alpha P(n)) \rightarrow 0
$$

In light of these observations, it is sufficient to consider the case $\tau=0$, that is

$$
\begin{equation*}
\sum_{p} \frac{1-\Re(f(p))}{p} \quad \text { is convergent. } \tag{4.7}
\end{equation*}
$$

Let $f\left(p^{r}\right)=e\left(F\left(p^{r}\right)\right)$ with $-\frac{1}{2} \leq F\left(p^{r}\right) \leq \frac{1}{2}$. It is clear that (4.7) holds if and only if

$$
\begin{equation*}
\sum_{p} \frac{F^{2}(p)}{p}<\infty \tag{4.8}
\end{equation*}
$$

Let Y be a fixed large number and set

$$
A_{X, Y}:=\sum_{Y<p<X} \frac{F(p)}{p} .
$$

Further define the multiplicative functions $f_{Y}(n)$ and $g_{Y}(n)$ by

$$
f_{Y}\left(p^{r}\right):=\left\{\begin{array}{cl}
f\left(p^{r}\right) & \text { if } \quad p \leq Y, \\
1 & \text { if } \quad p>Y
\end{array}\right.
$$

and

$$
g_{Y}\left(p^{r}\right):=\left\{\begin{array}{cll}
f\left(p^{r}\right) & \text { if } \quad p>Y, \\
1 & \text { if } \quad p \leq Y .
\end{array}\right.
$$

It is clear that $f(n)=f_{Y}(n) \cdot g_{Y}(n)$.
Further let

$$
G_{Y}(n):=\sum_{\substack{p^{r} \| n \\ p>Y}} F\left(p^{r}\right) .
$$

It follows from the Turán-Kubilius Inequality that

$$
\begin{equation*}
\sum_{n \leq x}\left|G_{Y}(n)-A_{X, Y}\right|^{2} \leq c_{12} x \sum_{\substack{p \geq Y \\ r \geq 1}} \frac{F^{2}\left(p^{r}\right)}{p^{r}}=c_{12} x B_{Y}^{2}, \tag{4.9}
\end{equation*}
$$

say. From (4.8), it follows that $B_{Y} \rightarrow 0$ as $Y \rightarrow \infty$. On the other hand, since $g_{Y}(n)=e\left(G_{Y}(n)\right)$, it is clear, in light of (4.9), that

$$
\sum_{n \leq x}\left|g_{Y}(n)-e\left(A_{X, Y}\right)\right|^{2} \leq c_{13} x B_{Y}^{2}
$$

Therefore,

$$
\begin{equation*}
\left|\sum_{n \leq x} f(n) e(\alpha P(n))-e\left(-A_{X, Y}\right) \sum_{n \leq x} f_{Y}(n) e(\alpha P(n))\right| \leq c_{14} x B_{Y} \tag{4.10}
\end{equation*}
$$

We shall now establish that

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} f_{Y}(n) e(\alpha P(n)) \rightarrow 0 \quad(x \rightarrow \infty) \tag{4.11}
\end{equation*}
$$

We further define the multiplicative function $\widetilde{f_{Y}}(n)$ by

$$
\widetilde{f_{Y}}\left(p^{r}\right):=\left\{\begin{array}{ccc}
1 & \text { if } & p>Y^{1 / r} \\
f_{Y}\left(p^{r}\right) & & \text { otherwise }
\end{array}\right.
$$

First observe that

$$
\begin{equation*}
\left|\sum_{n \leq x} f_{Y}(n) e(\alpha P(n))-\sum_{n \leq x} \widetilde{f_{Y}}(n) e(\alpha P(n))\right| \leq \sum_{\substack{p^{r} \geq Y \\ p \leq Y}} \frac{x}{p^{r}} \leq \varepsilon_{1}(Y) x \tag{4.12}
\end{equation*}
$$

where $\varepsilon_{1}(Y) \rightarrow 0$ as $Y \rightarrow \infty$.
Let the function $h_{Y}(n)$ be the function defined implicitly by

$$
\widetilde{f_{Y}}(n)=\sum_{d \mid n} h_{Y}(d)
$$

It is easy to see that

$$
h_{Y}(p)=\left\{\begin{array}{cll}
\widetilde{f_{Y}}(p)-1 & \text { if } \quad p \leq Y, \\
0 & \text { if } \quad p>Y,
\end{array}\right.
$$

and that similarly $h_{Y}\left(p^{r}\right)=0$ if $p>Y$.
On the other hand, since $h_{Y}\left(p^{r}\right)=\widetilde{f_{Y}}\left(p^{r}\right)-\widetilde{f_{Y}}\left(p^{r-1}\right)$, it follows that $h_{Y}\left(p^{r}\right)=0$ if $p^{r-1}>Y$.

From the definition of h_{Y}, it is clear that

$$
\begin{equation*}
\sum_{n \leq x} \widetilde{f_{Y}}(n) e(\alpha P(n))=\sum_{d \leq x} h_{Y}(d) \sum_{d m \leq x} e(\alpha P(d m)) . \tag{4.13}
\end{equation*}
$$

If $h_{Y}(d) \neq 0$, then $p^{r} \| d$ implies that $p<Y$ and $p^{r-1} \leq Y$, so that $p^{r} \leq Y^{2}$. Consequently, $d \leq Y^{2 \pi(Y)} \leq Y^{2 Y}$. Furthermore, $h_{Y}(d) \leq 2^{\pi(Y)}$.

For a fixed positive integer d, we have

$$
\begin{equation*}
\sum_{m \leq x / d} e(\alpha P(d m))=\sum_{m \leq x / d} e(d P(m))+O\left(\sum_{\substack{m \leq x / d \\ P(m) \leq P(d)}} 1\right) \tag{4.14}
\end{equation*}
$$

Using the main result of Banks, Harman and Shparlinski [1], namely that for any fixed irrational number α,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} e(\alpha P(n))=0
$$

we have, using (4.14) in (4.13), that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \widetilde{f_{Y}}(n) e(\alpha P(n))=0 \tag{4.15}
\end{equation*}
$$

Hence, it follows from estimate (4.15), taking into account (4.12), that (4.11) is proved. Finally, gathering (4.10) and (4.11), Theorem 1 is proved.

Theorem 2 can be established along the lines of the proof of Theorem 1 and its proof will therefore be omitted.

5 The proof of Theorem 3

Let $0<\eta_{1}<\eta_{2}<\frac{1}{2}$. It is clear that

$$
\begin{align*}
E(x, Q, a) & \geq \sum_{\substack{x^{\eta_{1}<Q<x^{\eta_{2}}} \\
Q \equiv a(\bmod q)}} \pi(x ; Q, 1)-\sum_{\substack{Q<Q^{\prime} \\
Q^{\eta_{1}}=a<x^{\eta_{2}} \\
Q_{a}(\bmod q)}} \pi\left(x ; Q Q^{\prime}, 1\right) \\
& =\Sigma_{1}-\Sigma_{2} . \tag{5.1}
\end{align*}
$$

say, where as usual $\pi(x ; b, a):=\#\{p \leq x: p \equiv a(\bmod b)\}$. It follows from the Bombieri-Vinogradov Theorem that

$$
\begin{equation*}
\Sigma_{1}=\operatorname{li}(x) \sum_{\substack{x^{\eta_{1}}<Q \ll^{\eta_{2}} \\ Q \equiv a(\bmod q)}} \frac{1}{Q-1}+O\left(\frac{x}{(\log x)^{A}}\right) \tag{5.2}
\end{equation*}
$$

assuming that $x^{\eta_{2}} \leq \frac{\sqrt{x}}{(\log x)^{2 A+5}}$, a condition which is equivalent to

$$
\begin{equation*}
\frac{1}{2}-\eta_{2} \geq(2 A+5) \frac{\log \log x}{\log x} \tag{5.3}
\end{equation*}
$$

Summing over Q allows us to write (5.2) as

$$
\begin{equation*}
\Sigma_{1}=\left(\log \frac{\eta_{2}}{\eta_{1}}\right) \frac{\operatorname{li}(x)}{\phi(q)}+O\left(\frac{x}{(q \log x)^{D}}\right) \tag{5.4}
\end{equation*}
$$

uniformly for $q \leq(\log x)^{c}$, where D is any preassigned value.
In order to estimate Σ_{2}, we use standard sieve techniques. Actually Σ_{2} represents the number of solutions of $p-1=b Q Q^{\prime} \leq x$, where b, Q, Q^{\prime} vary as follows:

$$
Q \equiv a \quad(\bmod q), \quad Q \in\left[x^{\eta_{1}}, x^{\eta_{2}}\right], \quad Q<Q^{\prime}, \quad b=1,2,3, \ldots
$$

We first fix b and Q, and we assume that there is at least one pair of numbers p, Q^{\prime} which is a solution of $p-1=b Q Q^{\prime} \leq x$, in which case we have $b<x^{1-2 \eta_{1}}$ and $b Q<x^{1-\eta_{1}}$. Let η_{1} be close to $1 / 2$. Then we have

$$
\begin{equation*}
E_{b, Q}:=\#\left\{p, Q^{\prime} \text { such that } p-1=b Q Q^{\prime} \leq x, Q \equiv a \quad(\bmod q)\right\} \leq c_{15} \frac{x}{\log ^{2} x \phi(b Q)} \tag{5.5}
\end{equation*}
$$

Using the well known estimate $\sum_{b \leq y} 1 / \phi(b) \leq c_{16} \log y$, it follows from (5.5) that

$$
\begin{align*}
\Sigma_{2}=\sum_{b, Q} E_{b, Q} & \leq c_{15} \frac{x}{\log ^{2} x} c_{16} \sum_{x^{\eta_{1}<Q<x^{\eta_{2}}}} \frac{\log \left(x / Q^{2}\right)}{Q-1} \tag{5.6}\\
& \leq c_{17} \frac{x}{\log x} \frac{1}{\phi(q)}\left(1-2 \eta_{1}\right) \log \frac{\eta_{2}}{\eta_{1}}
\end{align*}
$$

Choosing η_{2} so that it satisfies (5.3) and η_{1} so that $c_{17}\left(1-2 \eta_{1}\right)<\frac{1}{2}$, and then gathering (5.4) and (5.6) in (5.1), we obtain that

$$
E(x, q, a) \geq \frac{1}{2}\left(\log \frac{\eta_{2}}{\eta_{1}}\right) \frac{\operatorname{li}(x)}{\phi(q)}
$$

thus completing the proof of Theorem 3.

6 The proof of Theorem 4

Again using the analogue of Lemma 3, namely in the form that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) n^{i \tau} e(\alpha P(n-1))=0 \quad \Longleftrightarrow \quad \lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) e(\alpha P(n-1))=0
$$

we may assume that $\tau=0$, that is that

$$
\sum_{p} \frac{1-\Re(f(p))}{p}<\infty
$$

Arguing as in the proof of case (ii) of Theorem 1, we reduce the problem to the proof that the expression

$$
\begin{equation*}
\sum_{n \leq x} \widetilde{f_{Y}}(n) e(\alpha P(n-1))=\sum_{d \leq x} h_{Y}(d) \sum_{m \leq x / d} e(\alpha P(d m-1)) \tag{6.1}
\end{equation*}
$$

is $o(x)$ as $x \rightarrow \infty$.
First let us define

$$
\psi(x, y ; a, q):=\#\{n \leq x: P(n) \leq y, n \equiv a \quad(\bmod q)\} .
$$

Since, in the first sum on the right hand side of (6.1), d runs over a finite set of integers which does not change as $x \rightarrow \infty$, it is enough to prove that

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{1}{X} \sum_{m \leq X} e(\alpha P(d m-1))=0 \tag{6.2}
\end{equation*}
$$

We have $P(d m-1)=q$ if $d m-1=q \nu, P(\nu) \leq q$, that is $q \nu+1 \equiv 0(\bmod d), \nu \equiv \ell_{q}$ $(\bmod d), P(\nu) \leq q, \nu \leq x / q$. This quantity is precisely $\psi\left(\frac{x d}{q}, q ; \ell_{q}, d\right)$.

It follows that

$$
\sum_{m \leq X} e(\alpha P(d m-1))=\sum_{q<x d} e(\alpha q) \psi\left(\frac{x d}{q}, q ; \ell_{q}, d\right)
$$

Let $\varepsilon>0$ be an arbitrary real number. It follows from (4.2) that

$$
\begin{equation*}
\sum_{m \leq x} e(\alpha P(d m-1))=\sum_{x^{\varepsilon}<q<x^{1-\varepsilon}} e(\alpha q) \psi\left(\frac{x d}{q}, q ; \ell_{q}, d\right)+R_{x} \tag{6.3}
\end{equation*}
$$

where $\left|R_{x}\right| \leq \varepsilon x$. It has been established by Granville [3] that, if $\operatorname{gcd}(a, d)=1$ and $d^{1+\varepsilon} \leq y \leq x$, then

$$
\begin{equation*}
\psi(x, y ; a, d) \sim \frac{1}{d} \psi(x, y) \quad(x \rightarrow \infty) \tag{6.4}
\end{equation*}
$$

Observing that

$$
\psi\left(\frac{x d}{q}, q\right)=(1+o(1)) \rho\left(\frac{\log x d}{\log q}-1\right) \frac{x d}{q} \quad(x \rightarrow \infty)
$$

we have, in light of (6.4), that the right hand side of (6.3) is, as $x \rightarrow \infty$, equal to

$$
\begin{aligned}
& x d \sum_{x^{\varepsilon}<q<x^{1-\varepsilon}} \rho\left(\frac{\log x d}{\log q}-1\right) \frac{e(\alpha q)}{q}+o(1) x d \sum_{x^{\varepsilon}<q<x^{1-\varepsilon}} \rho\left(\frac{\log x d}{\log q}-1\right) \frac{1}{q}+R_{x} \\
& \quad=S_{1}(x)+S_{2}(x)+R_{x} .
\end{aligned}
$$

In order to prove (6.2), it remains to show that

$$
\begin{equation*}
S_{1}(x)=o(x) \quad \text { and } \quad S_{2}(x)=o(x) \tag{6.5}
\end{equation*}
$$

First we set

$$
J_{x}:=\left[\frac{1}{1-\varepsilon}-1+\frac{\log d}{\log x}, \frac{1}{\varepsilon}-1+\frac{\log d}{\log x}\right] .
$$

If $q \in\left[x^{\varepsilon}, x^{1-\varepsilon}\right]$, then $\frac{\log x d}{\log q}-1 \in J_{x}$. On the other hand, note that $J_{x} \subseteq\left[\frac{1}{1-\varepsilon}, \frac{1}{\varepsilon}\right]$, and that in this interval, ρ is bounded, and therefore,

$$
\begin{equation*}
S_{2}(x) \ll o(1) x d \sum_{x^{\varepsilon}<q<x^{1-\varepsilon}} \frac{1}{q} \ll o(1) x \log (1 / \varepsilon)=o(x) \quad(x \rightarrow \infty) \tag{6.6}
\end{equation*}
$$

which proves the second estimate in (6.5).
To estimate $S_{1}(x)$, we proceed as follows. First set

$$
B(y):=\sum_{x^{\varepsilon} \leq q<y} \frac{e(\alpha q)}{q} .
$$

By using the theorem of I.M. Vinogradov according to which

$$
\max _{2 x^{\varepsilon} \leq y \leq x} \frac{1}{\pi(y)}\left|\sum_{x^{\varepsilon} \leq q<y} e(\alpha q)\right|=\delta(x) \rightarrow 0 \quad \text { as } x \rightarrow \infty,
$$

we obtain immediately that

$$
\max _{2 x^{\varepsilon} \leq y \leq x}|B(y)|=\delta_{1}(x) \rightarrow 0 \quad \text { as } x \rightarrow \infty .
$$

On the other hand, since

$$
\sum_{x^{\varepsilon} \leq q<y} \frac{1}{q} \leq \log \left(\frac{\log y}{\varepsilon \log x}\right) \text { holds for } x^{\varepsilon}<y \leq 2 x^{\varepsilon}
$$

it follows that

$$
\max _{x^{\varepsilon} \leq y \leq x}|B(y)|=\delta_{2}(x) \rightarrow 0 \quad \text { as } x \rightarrow \infty .
$$

From the definitions of $S_{1}(x)$ and $B(y)$, we have

$$
\begin{align*}
S_{1}(x)= & x d \int_{x^{\varepsilon}}^{x^{1-\varepsilon}} \rho\left(\frac{\log x d}{\log u}-1\right) d B(u) \\
= & \left.x d \rho\left(\frac{\log x d}{\log u}-1\right) B(u)\right|_{x^{\varepsilon}} ^{x^{1-\varepsilon}} \\
& \quad+x d \int_{x^{\varepsilon}}^{x^{1-\varepsilon}} B(u) \rho^{\prime}\left(\frac{\log x d}{\log u}-1\right) \frac{\log x d}{u(\log u)^{2}} d u . \tag{6.7}
\end{align*}
$$

Since both $\rho(u)$ and $\rho^{\prime}(u)$ are bounded in J_{x}, it follows from (6.7) and the above bounds on $B(u)$ that

$$
\begin{equation*}
\left|\frac{1}{x} S_{1}(x)\right| \leq d o(1)+d o(1) \int_{x^{\varepsilon}}^{x^{1-\varepsilon}} \frac{\log x d}{u(\log u)^{2}} d u \quad(x \rightarrow \infty) \tag{6.8}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\int_{x^{\varepsilon}}^{x^{1-\varepsilon}} \frac{1}{u(\log u)^{2}} d u=\int_{\varepsilon \log x}^{(1-\varepsilon) \log x} \frac{d v}{v^{2}}=\left.\frac{1}{v}\right|_{\varepsilon \log x} ^{(1-\varepsilon) \log x}=\left(\frac{1}{\varepsilon}-\frac{1}{1-\varepsilon}\right) \frac{1}{\log x} . \tag{6.9}
\end{equation*}
$$

Gathering (6.6), (6.8) and (6.9) completes the proof of (6.5), as required. Since $\varepsilon>0$ is arbitrary, it follows from (6.3) that

$$
\frac{1}{x} \sum_{n \leq x} e(\alpha P(d m-1)) \rightarrow 0 \quad(x \rightarrow \infty)
$$

for every d, thus proving (6.2) and thereby (6.1), which completes the proof of Theorem 4.

References

[1] W.D. Banks, G. Harman and I.E. Shparlinski, Distributional properties of the largest prime factor, Michigan Math. J. 53 (2005), 665-681.
[2] H. Daboussi and H. Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à 1, C.R. Acad. Sci. Paris, Ser. A, 278 (1974), 657-660.
[3] A. Granville, Smooth numbers: computational number theory and beyond, Algebraic Number Theory, MSRI Publications 44 (2008), 267-323.
[4] G. Halász, Über die Mittelwerte multiplikativen zahlentheoretischer Funktionen, Acta Math. Acad. Scient. Hungaricae 19 (1968), 365-404.
[5] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley \& Sons, New York, 1974.
[6] G. Tenenbaum, Introduction à la théorie analytique des nombres, Collection Échelles, Belin, 2008.
[7] I.M. Vinogradov, The method of trigonometric sums in the theory of numbers, translated, revised and annotated by A. Davenport and K.F.Roth, Interscience, New York, 1954.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

