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Abstract

Let ℳ1 stand for the set of all complex valued multiplicative functions
satisfying ∣f(n)∣ ≤ 1 for all n ∈ ℕ. Let Q(n) = �kn

k+�k−1n
k−1+⋅ ⋅ ⋅+�1n be a

polynomial with real coefficients and such that at least one among �k, . . . , �1 is
an irrational number. Given polynomials F1(x), . . . , Fs(x) ∈ ℤ[x] and strongly
multiplicative functions g1, . . . , gs satisfying certain conditions, consider the
sum Sf (x) :=

∑
n≤x f(n)ℓ(n)e(Q(n)), where ℓ(n) := g1(F1(n)) ⋅ ⋅ ⋅ gs(Fs(n)).

We prove that supf∈ℳ1

∣Sf (x)∣
x → 0 as x → ∞ and obtain an analogue result

when sums run over primes.

Subject classification numbers: 11L07, 11N37
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1 Introduction

Let ℳ1 stand for the set of all complex valued multiplicative functions such that
∣f(n)∣ ≤ 1 for all n ∈ ℕ. Daboussi (see Daboussi and Delange [1]) proved that given
any irrational number �,

lim
x→∞

sup
f∈ℳ1

1

x

∑
n≤x

f(n)e(n�) = 0,

where e(r) := exp{2�ir}. A paper by the second author [3] contains a survey of some
generalizations of this result.

A well known result of I.M. Vinogradov [6] asserts that ifQ(n) = �kn
k+�k−1n

k−1+
⋅ ⋅ ⋅ + �1n is a polynomial with real coefficients and such that at least one among
�k, . . . , �1 is an irrational number, then

(1.1) lim
x→∞

1

�(x)

∑
p≤x

e(Q(p)) = 0.

Under the same conditions, the second author [4] proved that

(1.2) sup
f∈ℳ1

∣∣∣∣∣1x∑
n≤x

f(n)e(Q(n))

∣∣∣∣∣→ 0 as x→∞,

1Work supported in part by a grant from NSERC.
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thereby generalizing a famous result of H. Daboussi (see [1]).
Recently, we [2] also considered such types of sums but on shifted primes. In

particular, letting f be a multiplicative function such that ∣f(n)∣ = 1 for all n ∈ ℕ
and such that, for some real number � ,∑

p

1−ℜ(f(p)p−i� )

p
<∞,

and T be a function defined on prime numbers satisfying ∣T (p)∣ = 1 for each prime p
and

lim
x→∞

1

�(x; d,−1)

∑
p≤x

p≡−1 (mod d)

T (p) = 0

for every fixed integer d > 0, we established that

lim
x→∞

1

�(x)

∑
p≤x

f(p+ 1)T (p) = 0.

Here, we further generalize some of these results. First, let f ∈ℳ1 and letQ(x) be
as above. Given polynomials F1(x), . . . , Fs(x) ∈ ℤ[x] (which take only positive values
at positive arguments) and strongly multiplicative functions g1, . . . , gs, consider the
arithmetic function

(1.3) ℓ(n) := g1(F1(n)) ⋅ ⋅ ⋅ gs(Fs(n)).

We shall study the sum

(1.4) Sf (x) :=
∑
n≤x

f(n)ℓ(n)e(Q(n))

as well as an analog sum running on prime numbers.

2 Some notations and the general set up

For each integer n ≥ 2, let !(n) stand for the number of distinct prime factors of n
and let P (n) be the largest prime factor of n. As usual, � will stand for the Möbius
function.

A strongly additive (resp. multiplicative) function f is an additive (resp. multi-
plicative) function for which f(pa) = f(p) for each positive integer a and each prime
p. For instance, the function ! is a strongly additive function, while the function
'(n)/n, where ' stands for the Euler function, is a strongly multiplicative function.

We use �(x) to denote the number of primes p ≤ x, while �(x; k, ℓ) will stand
for the number of primes p ≤ x such that p ≡ ℓ (mod k). As usual, we define

the logarithmic integral by li(x) :=

∫ x

2

dt

log t
. In this paper, c denotes an absolute
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constant but not necessarily the same at each occurrence, while the letters p and q,
with or without subscript, always stand for primes.

Let F1(x), . . . , Fs(x) be polynomials with integer coefficients which take only pos-
itive values at positive arguments. For j = 1, . . . , s, let �j(d) stand for the number
of solutions of Fj(n) ≡ 0 (mod d). Moreover, let �(d1, . . . , ds) be the number of
solutions of the congruence system Fj(n) ≡ 0 (mod dj), j = 1, . . . , s.

Let g1, . . . , gs be complex valued multiplicative functions each satisfying the fol-
lowing four conditions:

(i) ∣gj(n)∣ = 1 for all n ∈ ℕ;

(ii) gj is strongly multiplicative;

(iii) lim
p→∞

gj(p) = 1;

(iv)
∑
p

ℜ(1− gj(p))�j(p)
p

<∞.

Given K > 1, then for each j = 1, . . . , s, we shall write gj(n) = gj(n∣K)ℎj(n∣K),
where

gj(n∣K) =
∏
p∣n
p≤K

gj(p) and ℎj(n∣K) =
∏
p∣n
p>K

gj(p).

Let also tj(n∣K) be the Möbius transform of gj(n∣K), that is the function defined
implicitly by

gj(n∣K) =
∑
d∣n

tj(n∣K).

It is clear that tj(n∣K) is a multiplicative function defined on prime powers by

tj(p
�∣K) =

{
gj(p)− 1 if � = 1 and p ≤ K,
0 otherwise.

Consequently,

gj(n∣K) =
∑
d∣n

P (d)≤K

tj(d∣K).

Observe that in this last summation, it is enough to let the sum run over the squarefree
divisors d.

We now define the strongly multiplicative functions f1, . . . , fs implicitly by

gj(p) = eifj(p) choosing − � < fj(p) ≤ �.

Note that it follows from the above condition (iii) that

lim
p→∞

fj(p) = 0 (j = 1, . . . , s).
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Observe also that condition (iv) can be rewritten in the form

∑
p

f 2
j (p)�j(p)

p
<∞.

Moreover, for j = 1, . . . , s, let

Aj(x∣K) :=
∑

K<q≤x

fj(q)�j(q)

q
(j = 1, . . . , s)

and

A∗j(x∣K) :=
∑

K<q≤x1/5

fj(q)�j(q)

q − 1
(j = 1, . . . , s).

Finally, let

f̃j(n∣K) =
∑
p∣n
p>K

fj(p) (j = 1, . . . , s).

3 The main results

Theorem 1. Let F1, . . . , Fs and g1, . . . , gs be defined as in Section 2, with ℓ being
defined by (1.3), while Sf (x) is defined in (1.4). Then

sup
f∈ℳ1

∣Sf (x)∣
x

→ 0 as x→∞.

Theorem 2. With the notation of Theorem 1, we have∣∣∣∣∣ 1

li(x)

∑
q≤x

ℓ(q)e(Q(q))

∣∣∣∣∣→ 0 as x→∞.

4 Preliminary lemmas

Lemma 1. As x→∞, for j = 1, . . . , s,

(4.1)
∑
n≤x

(
f̃j(Fj(n)∣K)− Aj(x∣K)

)2
≤ cx

∑
q>K

f 2
j (q)�j(q)

q
+ o(x)

and

(4.2)
∑
q≤x

(
f̃j(Fj(q)∣K)− A∗j(x∣K)

)2
≤ c li(x)

∑
q>K

f 2
j (q)�j(q)

q
+ o(li(x)).
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Proof. The proof of (4.1) and (4.2) can be established by a classical method of Turán
extended by Kubilius, with the additional use of the Bombieri-Vinogradov inequality
in the case of (4.2) using the fact that fj(p) → 0 as p → ∞. One can obtain these
basic concepts in the recent book of Tenenbaum [5].

As an immediate consequence of Lemma 1, we obtain the following result.

Lemma 2. There is a function �(K) which tends to 0 as K → ∞ such that, for
j = 1, . . . , s,

1

x

∑
n≤x

∣∣ℎj(Fj(n)∣K)e−iAj(x∣K) − 1
∣∣ ≤ �(K)

and
1

li(x)

∑
q≤x

∣∣∣ℎj(Fj(q)∣K)e−iA
∗
j (x∣K) − 1

∣∣∣ ≤ �(K).

From this lemma, the following follows immediately.

Lemma 3. With �(K) as in Lemma 2, then, for j = 1, . . . , s,

(4.3)
1

x

∑
n≤x

∣∣gj(Fj(n))− gj(Fj(n)∣K)eiAj(x∣K)
∣∣ ≤ �(K)

and
1

li(x)

∑
q≤x

∣∣gj(Fj(q))− gj(Fj(q)∣K)eiAj(x∣K)
∣∣ ≤ �(K).

5 Proof of Theorem 1

Let K be a large number. It follows from (4.3) that

(5.1)
1

x

∣∣∣Sf (x)− ei(A1(x∣K)+⋅⋅⋅+As(x∣K))S
(K)
f (x)

∣∣∣ ≤ c�(K),

where
S
(K)
f (x) =

∑
n≤x

f(n)ℓK(n)e(Q(n))

with
ℓK(n) = g1(F1(n)∣K) ⋅ ⋅ ⋅ gs(Fs(n)∣K).

Observe that in (5.1), the constant c does not depend on K.
We claim that it is enough to prove that

(5.2) sup
f∈ℳ1

∣S(K)
f (x)∣
x

→ 0 as x→∞.
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Indeed, using (5.2) in (5.1), it follows that

sup
f∈ℳ1

∣S(K)
f (x)∣
x

≤ c�(K) as x→∞,

thereby implying that

lim
x→∞

sup
f∈ℳ1

∣S(K)
f (x)∣
x

≤ c�(K).

Since this last inequality holds for every K and since �(K) → 0 as K → ∞, the
theorem will follow.

So, let us prove (5.2).
First, we define

ℬ(d1, . . . , ds) = {n ∈ ℕ : Fj(n) ≡ 0 (mod dj) for j = 1, . . . , s},

so that

S
(K)
f (x) =

∑
d1,...,ds

�2(dj)=1 for j=1,...,s

P (dj)≤K for j=1,...,s

t1(d1∣K) ⋅ ⋅ ⋅ ts(ds∣K)
∑
n≤x

n∈ℬ(d1,...,ds)

f(n)e(Q(n)).

Observe that in the above sum, t1(d1∣K) ⋅ ⋅ ⋅ ts(ds∣K) ∕= 0 for only finitely many choices
of d1, . . . , ds, the number of choices depending only on K. So, let D = d1 ⋅ ⋅ ⋅ ds. If
n0 ∈ ℬ(d1, . . . , ds), then n ∈ ℬ(d1, . . . , ds) whenever n ≡ n0 (mod d1 ⋅ ⋅ ⋅ ds). This
means that ℬ(d1, . . . , ds) is a collection of arithmetical progressions mod D. We can
therefore write that there exists a positive integer J such that

(5.3) ℬ(d1, . . . , ds) = {n : n ≡ ℓj (mod D), j = 1, . . . , J}.

We shall therefore focus our attention on one of the above arithmetic progressions, in
which case we obtain∑

n≤x
n≡ℓj (mod D)

f(n)e(Q(n)) =
1

D

D−1∑
a=0

∑
n≤x

f(n)e

(
Q(n) + a

(
n− ℓj
D

))

=
1

D

D−1∑
a=0

e

(
−aℓj
D

)∑
n≤x

f(n)e
(
Q(n) +

an

D

)
.

Let us apply estimate (1.2) with Q(n) replaced by Qa(n) = Q(n) +
an

D
. Since Qa(n)

has an irrational coefficient, it follows that

sup
f∈ℳ1

1

x

∣∣∣∣∣∑
n≤x

f(n)e(Qa(n))

∣∣∣∣∣→ 0 as x→∞.

Since we only have to consider a finite number of sums (recall that we have only J
congruences), this completes the proof of Theorem 1.
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6 The proof of Theorem 2

Proceeding essentially as we did in the proof of Theorem 1, we may write

1

li(x)

∑
q≤x

∣∣ℓ(q)− ei(A∗1(x∣K)+⋅⋅⋅+A∗s(x∣K))ℓK(q)
∣∣ ≤ c�(K),

so that it is enough to prove that, for every fixed K,

(6.1)
∑
q≤x

ℓK(q)e(Q(q)) = o(li(x)) as x→∞.

The left hand side of (6.1) can be written as∑
d1,...,ds

�2(dj)=1 for j=1,...,s

P (dj)≤K for j=1,...,s

t1(d1∣K) ⋅ ⋅ ⋅ ts(ds∣K)
∑
p≤x

p∈ℬ(d1,...,ds)

e(Q(p)),

where ℬ(d1, . . . , ds) is as in (5.3). Therefore

∑
p≤x

p∈ℬ(d1,...,ds)

e(Q(p)) =
J∑
j=0

∑
p≤x

p≡ℓj (mod D)

e(Q(p))

=
J∑
j=0

(ℓj ,D)=1

∑
p≤x

p≡ℓj (mod D)

e(Q(p)) +O(!(D)).

Now, since

∑
p≤x

p≡ℓj (mod D)

e(Q(p)) =
1

D

D−1∑
a=0

e

(
−aℓj
D

)∑
p≤x

e
(
Q(p) +

ap

D

)
,

it follows, in light of the Vinogradov estimate (1.1), that the last sum on the right
hand side of (6.1) is o(li(x)) as x→∞, thus completing the proof of Theorem 2.
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