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Abstract

Let My stand for the set of all complex valued multiplicative functions
satisfying | f(n)| < 1 for alln € N. Let Q(n) = agnf +ap_1n* '+ -+anbea
polynomial with real coefficients and such that at least one among g, ..., a; is
an irrational number. Given polynomials Fi(z),..., Fs(z) € Z]z] and strongly
multiplicative functions gy, ..., gs satisfying certain conditions, consider the
sum Sy(z) = ), o, f(n)l(n)e(Q(n)), where £(n) := g1(F1(n)) - gs(Fs(n)).

We prove that sup ey, ‘Sfagx)l

when sums run over primes.

— 0 as ¢ — oo and obtain an analogue result
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1 Introduction

Let M stand for the set of all complex valued multiplicative functions such that
|f(n)] <1 for all n € N. Daboussi (see Daboussi and Delange [1]) proved that given
any irrational number «,

1
lim sup — fn)e(na) =0,
Jim sup &3 fn)eo

where e(r) := exp{2mir}. A paper by the second author [3] contains a survey of some
generalizations of this result.

A well known result of .M. Vinogradov [6] asserts that if Q(n) = agnf+ay_n*~1+
---+ apn is a polynomial with real coefficients and such that at least one among
Qg, ..., a1 is an irrational number, then

1
(1.1) lim —— ) e(Q(p)) =0.
T—00 W(m) I;
Under the same conditions, the second author [4] proved that
1
x

(1.2) sup
feMy

—0 as T — 00,

> f(n)e(Q(n))
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thereby generalizing a famous result of H. Daboussi (see [1]).

Recently, we [2] also considered such types of sums but on shifted primes. In
particular, letting f be a multiplicative function such that |f(n)] = 1 for all n € N
and such that, for some real number 7,

< 00,

3 1=R(f(p)p™)

» p

and T be a function defined on prime numbers satisfying |T'(p)| = 1 for each prime p
and .
lim — T(p) =0
500 m(x;d,—1) Z 9

p<z
p=—1 (mod d)

for every fixed integer d > 0, we established that

lim %) > fp+1)T(p) =0.

T—00 7'{'(

Here, we further generalize some of these results. First, let f € M; and let Q(z) be

as above. Given polynomials F(x), ..., Fy(z) € Z[z] (which take only positive values
at positive arguments) and strongly multiplicative functions ¢y, ..., gs, consider the
arithmetic function

(1.3) t(n) := g1(F1(n)) - - gs(Fi(n)).

We shall study the sum

(1.4) Sp(x) =Y f(n)t(n)e(Q(n))

as well as an analog sum running on prime numbers.

2 Some notations and the general set up

For each integer n > 2, let w(n) stand for the number of distinct prime factors of n
and let P(n) be the largest prime factor of n. As usual, u will stand for the Mobius
function.

A strongly additive (resp. multiplicative) function f is an additive (resp. multi-
plicative) function for which f(p*) = f(p) for each positive integer a and each prime
p. For instance, the function w is a strongly additive function, while the function
©(n)/n, where ¢ stands for the Euler function, is a strongly multiplicative function.

We use 7(z) to denote the number of primes p < z, while 7(z;k, ¢) will stand

for the number of primes p < x such that p = ¢ (mod k). As usual, we define
Todt

the logarithmic integral by li(x) := ol In this paper, ¢ denotes an absolute
2 108

2



constant but not necessarily the same at each occurrence, while the letters p and g,
with or without subscript, always stand for primes.

Let Fi(x),..., Fs(z) be polynomials with integer coefficients which take only pos-
itive values at positive arguments. For j = 1,...,s, let p;(d) stand for the number
of solutions of F;(n) = 0 (mod d). Moreover, let p(dy,...,ds) be the number of
solutions of the congruence system Fj(n) =0 (mod d;), j=1,...,s

Let g1,...,gs be complex valued multiplicative functions each satisfying the fol-
lowing four conditions:

(i) lgj(n)] =1 for all n € N;
(ii) g; is strongly multiplicative;

(iii) lim g;(p) =1,

p—0o0

< Q.

) Y R(L —g;(p)p;(p)

v
(p p

Given K > 1, then for each j = 1,...,s, we shall write g;(n) = g;(n|K)h;(n|K),

where
gj(n|K) = H gi(p and h;(n|K) H gi(p

pln
p<K p>K

Let also t;(n|K) be the Mobius transform of g;(n|K), that is the function defined

implicitly by Z
g;(n|K) tj(n|K).
dln

It is clear that t;(n|K) is a multiplicative function defined on prime powers by

ey J 9ip) =1 fa=1landp<K,
L) = { 0 otherwise.

Consequently,

gi(n|K) = > t;(d|K).

dln
P(d)<K

Observe that in this last summation, it is enough to let the sum run over the squarefree
divisors d.

We now define the strongly multiplicative functions fi, ..., fs implicitly by
gi(p) = €i®) choosing — 7 < f;(p) < .
Note that it follows from the above condition (iii) that

lim f;(p) = (j=1,...,9).

p—o0



Observe also that condition (iv) can be rewritten in the form

3 f7(0)p;(p) .

» p
Moreover, for j =1,...,s, let
K) fj =1
LL” Z (.7 - 7'--78)
K<q<lzx
and

Aa|K) = > f]q_l (G=1,...,5).

K<q<zl/3

Finally, let

FtlK) =" filp)  (G=1,....5)

pln
p>K

3 The main results

Theorem 1. Let F,..., F, and g1,...,9s be defined as in Section 2, with { being
defined by (1.3), while S¢(x) is defined in (1.4). Then

LT
feMy x

as r — OQ.

Theorem 2. With the notation of Theorem 1, we have

@;aq)e(@(q)) 50 asz oo
4 Preliminary lemmas
Lemma 1. Asz — 00, forj=1,...,s,
(4.1) > (FEmIK) - AK)) < 2}:{ + ofx)
and 7

(42 > (FFIK) - ;(xu())Q <cli()y" 5@ i),

q<z >K q



Proof. The proof of (4.1) and (4.2) can be established by a classical method of Turan
extended by Kubilius, with the additional use of the Bombieri-Vinogradov inequality
in the case of (4.2) using the fact that f;(p) — 0 as p — co. One can obtain these
basic concepts in the recent book of Tenenbaum [5]. O]

As an immediate consequence of Lemma 1, we obtain the following result.

Lemma 2. There is a function §(K) which tends to 0 as K — oo such that, for
g=1...,s,
—Z\h n)|K)e ) — 1] < §(K)
n<x

and

JF(@K)e 456 — 1] < 5(K).

li(x) =
From this lemma, the following follows immediately.

Lemma 3. With §(K) as in Lemma 2, then, for j =1,... s,

(4.3) —Z!gg 9i (Ey ()| K)e M| < §(K)

n<z

and

7 20 1905 (0) = (B (@) )] < (1),

q<z

5 Proof of Theorem 1

Let K be a large number. It follows from (4.3) that
1 )
(5.1) —|Spla) — I ACHN G ()| < (K,

where

S7 (@) = Y F(n)lx(n)e(Q(n)
n<x
with
(k(n) = g1 (F1(n)|K) - - gs(Fi(n)| K).
Observe that in (5.1), the constant ¢ does not depend on K.
We claim that it is enough to prove that

1577 (@)
(5.2) sup ——— — 0 as T — 00.
femMy x



Indeed, using (5.2) in (5.1), it follows that

K

|57 ()]
sup ————— < ¢§(K) as T — 00,
femMy T

thereby implying that
. 57 ()]
lim sup ——— < cd(K).
T—00 f6M1 €T

Since this last inequality holds for every K and since 6(K) — 0 as K — oo, the
theorem will follow.

So, let us prove (5.2).

First, we define

B(dy,...,ds)={neN:Fj(n)=0 (moddy) forj=1,...,s},

so that
K
S (z) = S tdIK) () YT f()e(Qn).
u2(dj)g’-£;rd;:1,m,s nes(?sz”,ds)

P(dj)SK for j=1,..., s

Observe that in the above sum, ¢ (d|K) - - - t5(ds| K) # 0 for only finitely many choices
of di,...,ds, the number of choices depending only on K. So, let D = d;y---d,. If
no € B(dy,...,ds), then n € B(dy,...,ds) whenever n = ng (mod d; ---ds). This

means that B(dy, ..., ds) is a collection of arithmetical progressions mod D. We can
therefore write that there exists a positive integer J such that
(5.3) B(dy,...,ds) ={n:n=¢{; (mod D), j=1,...,J}

We shall therefore focus our attention on one of the above arithmetic progressions, in
which case we obtain

> fme@m) = %DZ_IZfW (WH“(RB@D

Let us apply estimate (1.2) with Q(n) replaced by Q.(n) = Q(n) + %. Since Qq(n)

has an irrational coefficient, it follows that

— 0 as r — 00.

> f(n)e(Qa(n))

n<z

1
sup —
fem; T

Since we only have to consider a finite number of sums (recall that we have only J
congruences), this completes the proof of Theorem 1.
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6 The proof of Theorem 2

Proceeding essentially as we did in the proof of Theorem 1, we may write

ZV (| K)+-4A%(x |K))£K(q)| < C(5(K>,

so that it is enough to prove that, for every fixed K,

(6.1) S tel@)e(Q@) = olli(z)  as = oo,

q<z

The left hand side of (6.1) can be written as

S t(da] K)ot ds K) > e(QUp)),

where B(dy, . ..,ds) is as in (5.3). Therefore

dooe@p) = > D Q)

p<z 7=0 p<z
pEB(dy,...,ds) p:Zj (mod D)

- Z Z e(Q(p)) + O(w(D)).

=0
(l D) 1 p=¢; (mod D)

Now, since
S e =5 (S) S (a0 + ).

P=L; (mod D)

it follows, in light of the Vinogradov estimate (1.1), that the last sum on the right
hand side of (6.1) is o(li(z)) as  — oo, thus completing the proof of Theorem 2.
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