Exponential sums and arithmetic functions at polynomial values

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai

Édition du 16 juillet 2011

Abstract

Let \mathcal{M}_{1} stand for the set of all complex valued multiplicative functions satisfying $|f(n)| \leq 1$ for all $n \in \mathbb{N}$. Let $Q(n)=\alpha_{k} n^{k}+\alpha_{k-1} n^{k-1}+\cdots+\alpha_{1} n$ be a polynomial with real coefficients and such that at least one among $\alpha_{k}, \ldots, \alpha_{1}$ is an irrational number. Given polynomials $F_{1}(x), \ldots, F_{s}(x) \in \mathbb{Z}[x]$ and strongly multiplicative functions g_{1}, \ldots, g_{s} satisfying certain conditions, consider the $\operatorname{sum} S_{f}(x):=\sum_{n \leq x} f(n) \ell(n) e(Q(n))$, where $\ell(n):=g_{1}\left(F_{1}(n)\right) \cdots g_{s}\left(F_{s}(n)\right)$. We prove that $\sup _{f \in \mathcal{M}_{1}} \frac{\left|S_{f}(x)\right|}{x} \rightarrow 0$ as $x \rightarrow \infty$ and obtain an analogue result when sums run over primes.

Subject classification numbers: 11L07, 11N37
Key words: exponential sums, multiplicative functions

1 Introduction

Let \mathcal{M}_{1} stand for the set of all complex valued multiplicative functions such that $|f(n)| \leq 1$ for all $n \in \mathbb{N}$. Daboussi (see Daboussi and Delange [1]) proved that given any irrational number α,

$$
\lim _{x \rightarrow \infty} \sup _{f \in \mathcal{M}_{1}} \frac{1}{x} \sum_{n \leq x} f(n) e(n \alpha)=0
$$

where $e(r):=\exp \{2 \pi i r\}$. A paper by the second author [3] contains a survey of some generalizations of this result.

A well known result of I.M. Vinogradov [6] asserts that if $Q(n)=\alpha_{k} n^{k}+\alpha_{k-1} n^{k-1}+$ $\cdots+\alpha_{1} n$ is a polynomial with real coefficients and such that at least one among $\alpha_{k}, \ldots, \alpha_{1}$ is an irrational number, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} e(Q(p))=0 \tag{1.1}
\end{equation*}
$$

Under the same conditions, the second author [4] proved that

$$
\begin{equation*}
\sup _{f \in \mathcal{M}_{1}}\left|\frac{1}{x} \sum_{n \leq x} f(n) e(Q(n))\right| \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{1.2}
\end{equation*}
$$

[^0]thereby generalizing a famous result of H. Daboussi (see [1]).
Recently, we [2] also considered such types of sums but on shifted primes. In particular, letting f be a multiplicative function such that $|f(n)|=1$ for all $n \in \mathbb{N}$ and such that, for some real number τ,
$$
\sum_{p} \frac{1-\Re\left(f(p) p^{-i \tau}\right)}{p}<\infty
$$
and T be a function defined on prime numbers satisfying $|T(p)|=1$ for each prime p and
$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x ; d,-1)} \sum_{\substack{p \leq x \\ p \equiv-1 \\(\bmod d)}} T(p)=0
$$
for every fixed integer $d>0$, we established that
$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} f(p+1) T(p)=0
$$

Here, we further generalize some of these results. First, let $f \in \mathcal{M}_{1}$ and let $Q(x)$ be as above. Given polynomials $F_{1}(x), \ldots, F_{s}(x) \in \mathbb{Z}[x]$ (which take only positive values at positive arguments) and strongly multiplicative functions g_{1}, \ldots, g_{s}, consider the arithmetic function

$$
\begin{equation*}
\ell(n):=g_{1}\left(F_{1}(n)\right) \cdots g_{s}\left(F_{s}(n)\right) \tag{1.3}
\end{equation*}
$$

We shall study the sum

$$
\begin{equation*}
S_{f}(x):=\sum_{n \leq x} f(n) \ell(n) e(Q(n)) \tag{1.4}
\end{equation*}
$$

as well as an analog sum running on prime numbers.

2 Some notations and the general set up

For each integer $n \geq 2$, let $\omega(n)$ stand for the number of distinct prime factors of n and let $P(n)$ be the largest prime factor of n. As usual, μ will stand for the Möbius function.

A strongly additive (resp. multiplicative) function f is an additive (resp. multiplicative) function for which $f\left(p^{a}\right)=f(p)$ for each positive integer a and each prime p. For instance, the function ω is a strongly additive function, while the function $\varphi(n) / n$, where φ stands for the Euler function, is a strongly multiplicative function.

We use $\pi(x)$ to denote the number of primes $p \leq x$, while $\pi(x ; k, \ell)$ will stand for the number of primes $p \leq x$ such that $p \equiv \ell(\bmod k)$. As usual, we define the logarithmic integral by $\operatorname{li}(x):=\int_{2}^{x} \frac{d t}{\log t}$. In this paper, c denotes an absolute
constant but not necessarily the same at each occurrence, while the letters p and q, with or without subscript, always stand for primes.

Let $F_{1}(x), \ldots, F_{s}(x)$ be polynomials with integer coefficients which take only positive values at positive arguments. For $j=1, \ldots, s$, let $\rho_{j}(d)$ stand for the number of solutions of $F_{j}(n) \equiv 0(\bmod d)$. Moreover, let $\rho\left(d_{1}, \ldots, d_{s}\right)$ be the number of solutions of the congruence system $F_{j}(n) \equiv 0\left(\bmod d_{j}\right), j=1, \ldots, s$.

Let g_{1}, \ldots, g_{s} be complex valued multiplicative functions each satisfying the following four conditions:
(i) $\left|g_{j}(n)\right|=1$ for all $n \in \mathbb{N}$;
(ii) g_{j} is strongly multiplicative;
(iii) $\lim _{p \rightarrow \infty} g_{j}(p)=1$;
(iv) $\sum_{p} \frac{\Re\left(1-g_{j}(p)\right) \rho_{j}(p)}{p}<\infty$.

Given $K>1$, then for each $j=1, \ldots, s$, we shall write $g_{j}(n)=g_{j}(n \mid K) h_{j}(n \mid K)$, where

$$
g_{j}(n \mid K)=\prod_{\substack{p \mid n \\ p \leq K}} g_{j}(p) \quad \text { and } \quad h_{j}(n \mid K)=\prod_{\substack{p \mid n \\ p>K}} g_{j}(p)
$$

Let also $t_{j}(n \mid K)$ be the Möbius transform of $g_{j}(n \mid K)$, that is the function defined implicitly by

$$
g_{j}(n \mid K)=\sum_{d \mid n} t_{j}(n \mid K)
$$

It is clear that $t_{j}(n \mid K)$ is a multiplicative function defined on prime powers by

$$
t_{j}\left(p^{\alpha} \mid K\right)= \begin{cases}g_{j}(p)-1 & \text { if } \alpha=1 \text { and } p \leq K \\ 0 & \text { otherwise }\end{cases}
$$

Consequently,

$$
g_{j}(n \mid K)=\sum_{\substack{d \mid n \\ P(d) \leq K}} t_{j}(d \mid K) .
$$

Observe that in this last summation, it is enough to let the sum run over the squarefree divisors d.

We now define the strongly multiplicative functions f_{1}, \ldots, f_{s} implicitly by

$$
g_{j}(p)=e^{i f_{j}(p)} \text { choosing }-\pi<f_{j}(p) \leq \pi
$$

Note that it follows from the above condition (iii) that

$$
\lim _{p \rightarrow \infty} f_{j}(p)=0 \quad(j=1, \ldots, s)
$$

Observe also that condition (iv) can be rewritten in the form

$$
\sum_{p} \frac{f_{j}^{2}(p) \rho_{j}(p)}{p}<\infty
$$

Moreover, for $j=1, \ldots, s$, let

$$
A_{j}(x \mid K):=\sum_{K<q \leq x} \frac{f_{j}(q) \rho_{j}(q)}{q} \quad(j=1, \ldots, s)
$$

and

$$
A_{j}^{*}(x \mid K):=\sum_{K<q \leq x^{1 / 5}} \frac{f_{j}(q) \rho_{j}(q)}{q-1} \quad(j=1, \ldots, s)
$$

Finally, let

$$
\widetilde{f}_{j}(n \mid K)=\sum_{\substack{p \mid n \\ p>K}} f_{j}(p) \quad(j=1, \ldots, s) .
$$

3 The main results

Theorem 1. Let F_{1}, \ldots, F_{s} and g_{1}, \ldots, g_{s} be defined as in Section 2, with ℓ being defined by (1.3), while $S_{f}(x)$ is defined in (1.4). Then

$$
\sup _{f \in \mathcal{M}_{1}} \frac{\left|S_{f}(x)\right|}{x} \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

Theorem 2. With the notation of Theorem 1, we have

$$
\left|\frac{1}{l i(x)} \sum_{q \leq x} \ell(q) e(Q(q))\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

4 Preliminary lemmas

Lemma 1. As $x \rightarrow \infty$, for $j=1, \ldots, s$,

$$
\begin{equation*}
\sum_{n \leq x}\left(\tilde{f}_{j}\left(F_{j}(n) \mid K\right)-A_{j}(x \mid K)\right)^{2} \leq c x \sum_{q>K} \frac{f_{j}^{2}(q) \rho_{j}(q)}{q}+o(x) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{q \leq x}\left(\widetilde{f}_{j}\left(F_{j}(q) \mid K\right)-A_{j}^{*}(x \mid K)\right)^{2} \leq c \operatorname{li}(x) \sum_{q>K} \frac{f_{j}^{2}(q) \rho_{j}(q)}{q}+o(\operatorname{li}(x)) \tag{4.2}
\end{equation*}
$$

Proof. The proof of (4.1) and (4.2) can be established by a classical method of Turán extended by Kubilius, with the additional use of the Bombieri-Vinogradov inequality in the case of (4.2) using the fact that $f_{j}(p) \rightarrow 0$ as $p \rightarrow \infty$. One can obtain these basic concepts in the recent book of Tenenbaum [5].

As an immediate consequence of Lemma 1, we obtain the following result.
Lemma 2. There is a function $\delta(K)$ which tends to 0 as $K \rightarrow \infty$ such that, for $j=1, \ldots, s$,

$$
\frac{1}{x} \sum_{n \leq x}\left|h_{j}\left(F_{j}(n) \mid K\right) e^{-i A_{j}(x \mid K)}-1\right| \leq \delta(K)
$$

and

$$
\frac{1}{\operatorname{li}(x)} \sum_{q \leq x}\left|h_{j}\left(F_{j}(q) \mid K\right) e^{-i A_{j}^{*}(x \mid K)}-1\right| \leq \delta(K)
$$

From this lemma, the following follows immediately.
Lemma 3. With $\delta(K)$ as in Lemma 2, then, for $j=1, \ldots, s$,

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x}\left|g_{j}\left(F_{j}(n)\right)-g_{j}\left(F_{j}(n) \mid K\right) e^{i A_{j}(x \mid K)}\right| \leq \delta(K) \tag{4.3}
\end{equation*}
$$

and

$$
\frac{1}{\operatorname{li}(x)} \sum_{q \leq x}\left|g_{j}\left(F_{j}(q)\right)-g_{j}\left(F_{j}(q) \mid K\right) e^{i A_{j}(x \mid K)}\right| \leq \delta(K)
$$

5 Proof of Theorem 1

Let K be a large number. It follows from (4.3) that

$$
\begin{equation*}
\frac{1}{x}\left|S_{f}(x)-e^{i\left(A_{1}(x \mid K)+\cdots+A_{s}(x \mid K)\right)} S_{f}^{(K)}(x)\right| \leq c \delta(K) \tag{5.1}
\end{equation*}
$$

where

$$
S_{f}^{(K)}(x)=\sum_{n \leq x} f(n) \ell_{K}(n) e(Q(n))
$$

with

$$
\ell_{K}(n)=g_{1}\left(F_{1}(n) \mid K\right) \cdots g_{s}\left(F_{s}(n) \mid K\right)
$$

Observe that in (5.1), the constant c does not depend on K.
We claim that it is enough to prove that

$$
\begin{equation*}
\sup _{f \in \mathcal{M}_{1}} \frac{\left|S_{f}^{(K)}(x)\right|}{x} \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{5.2}
\end{equation*}
$$

Indeed, using (5.2) in (5.1), it follows that

$$
\sup _{f \in \mathcal{M}_{1}} \frac{\left|S_{f}^{(K)}(x)\right|}{x} \leq c \delta(K) \quad \text { as } x \rightarrow \infty
$$

thereby implying that

$$
\lim _{x \rightarrow \infty} \sup _{f \in \mathcal{M}_{1}} \frac{\left|S_{f}^{(K)}(x)\right|}{x} \leq c \delta(K)
$$

Since this last inequality holds for every K and since $\delta(K) \rightarrow 0$ as $K \rightarrow \infty$, the theorem will follow.

So, let us prove (5.2).
First, we define

$$
\mathcal{B}\left(d_{1}, \ldots, d_{s}\right)=\left\{n \in \mathbb{N}: F_{j}(n) \equiv 0 \quad\left(\bmod d_{j}\right) \text { for } j=1, \ldots, s\right\}
$$

so that

$$
S_{f}^{(K)}(x)=\sum_{\substack{d_{1}, \ldots, d_{s} \\
\begin{array}{c}
\mu^{2}\left(d_{j}\right)=1 \text { for } j=1, \ldots, s \\
P\left(d_{j}\right) \leq K \text { for } j=1, \ldots, s
\end{array}}} t_{1}\left(d_{1} \mid K\right) \cdots t_{s}\left(d_{s} \mid K\right) \sum_{\substack{n \leq x \\
n \in \mathcal{B}\left(d_{1}, \ldots, d_{s}\right)}} f(n) e(Q(n))
$$

Observe that in the above sum, $t_{1}\left(d_{1} \mid K\right) \cdots t_{s}\left(d_{s} \mid K\right) \neq 0$ for only finitely many choices of d_{1}, \ldots, d_{s}, the number of choices depending only on K. So, let $D=d_{1} \cdots d_{s}$. If $n_{0} \in \mathcal{B}\left(d_{1}, \ldots, d_{s}\right)$, then $n \in \mathcal{B}\left(d_{1}, \ldots, d_{s}\right)$ whenever $n \equiv n_{0}\left(\bmod d_{1} \cdots d_{s}\right)$. This means that $\mathcal{B}\left(d_{1}, \ldots, d_{s}\right)$ is a collection of arithmetical progressions mod D. We can therefore write that there exists a positive integer J such that

$$
\begin{equation*}
\mathcal{B}\left(d_{1}, \ldots, d_{s}\right)=\left\{n: n \equiv \ell_{j} \quad(\bmod D), j=1, \ldots, J\right\} \tag{5.3}
\end{equation*}
$$

We shall therefore focus our attention on one of the above arithmetic progressions, in which case we obtain

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
n \equiv \ell_{j}(\bmod D)}} f(n) e(Q(n)) & =\frac{1}{D} \sum_{a=0}^{D-1} \sum_{n \leq x} f(n) e\left(Q(n)+a\left(\frac{n-\ell_{j}}{D}\right)\right) \\
& =\frac{1}{D} \sum_{a=0}^{D-1} e\left(-\frac{a \ell_{j}}{D}\right) \sum_{n \leq x} f(n) e\left(Q(n)+\frac{a n}{D}\right) .
\end{aligned}
$$

Let us apply estimate (1.2) with $Q(n)$ replaced by $Q_{a}(n)=Q(n)+\frac{a n}{D}$. Since $Q_{a}(n)$ has an irrational coefficient, it follows that

$$
\sup _{f \in \mathcal{M}_{1}} \frac{1}{x}\left|\sum_{n \leq x} f(n) e\left(Q_{a}(n)\right)\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

Since we only have to consider a finite number of sums (recall that we have only J congruences), this completes the proof of Theorem 1.

6 The proof of Theorem 2

Proceeding essentially as we did in the proof of Theorem 1, we may write

$$
\frac{1}{\operatorname{li}(x)} \sum_{q \leq x}\left|\ell(q)-e^{i\left(A_{1}^{*}(x \mid K)+\cdots+A_{s}^{*}(x \mid K)\right)} \ell_{K}(q)\right| \leq c \delta(K),
$$

so that it is enough to prove that, for every fixed K,

$$
\begin{equation*}
\sum_{q \leq x} \ell_{K}(q) e(Q(q))=o(\operatorname{li}(x)) \quad \text { as } x \rightarrow \infty \tag{6.1}
\end{equation*}
$$

The left hand side of (6.1) can be written as

$$
\sum_{\substack{d_{1}, \ldots, d_{s} \\ \mu^{2}\left(d_{j}\right)=1 \text { for } j=1, \ldots, s \\ P\left(d_{j}\right) \leq K \text { for } j=1, \ldots, s}} t_{1}\left(d_{1} \mid K\right) \cdots t_{s}\left(d_{s} \mid K\right) \sum_{\substack{p \leq x \\ p \in \mathcal{B}\left(d_{1}, \ldots, d_{s}\right)}} e(Q(p)),
$$

where $\mathcal{B}\left(d_{1}, \ldots, d_{s}\right)$ is as in (5.3). Therefore

$$
\begin{aligned}
\sum_{\substack{p \leq x \\
p \in \mathcal{B}\left(d_{1}, \ldots, d_{s}\right)}} e(Q(p)) & =\sum_{j=0}^{J} \sum_{\substack{\left.p \leq x \\
p \equiv \ell_{j} \leq \bmod D\right)}} e(Q(p)) \\
& =\sum_{\substack{j=0 \\
\left(\ell_{j}, D\right)=1}}^{J} \sum_{p \equiv \ell_{j} \backslash x}^{p(\bmod D)}
\end{aligned} e(Q(p))+O(\omega(D)) .
$$

Now, since

$$
\sum_{\substack{p \leq x \\ p \equiv \ell_{j} \\(\bmod D)}} e(Q(p))=\frac{1}{D} \sum_{a=0}^{D-1} e\left(-\frac{a \ell_{j}}{D}\right) \sum_{p \leq x} e\left(Q(p)+\frac{a p}{D}\right),
$$

it follows, in light of the Vinogradov estimate (1.1), that the last sum on the right hand side of (6.1) is $o(\operatorname{li}(x))$ as $x \rightarrow \infty$, thus completing the proof of Theorem 2.

References

[1] H. Daboussi and H. Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à 1, C.R. Acad. Sci. Paris, Ser. A, 278 (1974), 657-660.
[2] J.M. De Koninck and I. Kátai, Exponential sums involving arithmetic functions and shifted primes, Journal of Combinatorics and Number Theory (to appear).
[3] I. Kátai, Some remarks on a theorem of H. Daboussi, Math. Pannon. 19 (2008), no. 1, 71-80.
[4] I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hung. 47 (1-2) (1986), 223-225.
[5] G. Tenenbaum, Introduction à la théorie analytique des nombres, Éditions Belin, Paris, 2008.
[6] I.M. Vinogradov, The method of trigonometric sums in the theory of numbers, translated, revised and annotated by A. Davenport and K.F.Roth, Interscience, New York, 1954.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

JMDK, le 16 juillet 2011; fichier: exponential-sums-poly-July2011.tex

[^0]: ${ }^{1}$ Work supported in part by a grant from NSERC.

