Arithmetic functions evaluated at polynomial values

JEAN-MARIE DE KONINCK, NICOLAS DOYON AND IMRE KÁTAI

This paper is dedicated to Professor János Galambos on the occasion of his seventieth anniversary

Édition du 14 novembre 2009

1 Introduction

Let $f : \mathbb{N} \to \mathbb{Z} \setminus \{0\}$ be a multiplicative function which is constant at prime arguments and let F_1, F_2, \ldots, F_t be polynomials with integer coefficients. We establish minimal conditions on the polynomials F_i 's which guaranty that

 $\lim_{x \to \infty} \frac{1}{x} \# \{ n \le x : f(F_j(n)) | f(F_{j+1}(n)) \text{ for } i = 1, 2, \dots, t-1 \} \text{ exists.}$

Given $g \in \mathbb{Z}[x]$, we let $\rho_g(m) = \#\{u \mod m : g(u) \equiv 0 \pmod{m}\}$ and we write Discr(g) to denote the discriminant of g. Given $Q_1, Q_2 \in \mathbb{Z}[x]$, we let $\text{Res}(Q_1, Q_2)$ stand for their resultant.

Given a positive integer n, we let $\tau(n)$ stand for the number of divisors of n and, for any fixed integer $k \ge 1$, we let $\tau_k(n)$ stand for the number of ways one can write n as the product of k positive integers taking into account the order in which they are written. For each $n \ge 2$, let $\beta(n)$ stand for the product of the exponents in the prime factorization of n, with $\beta(1) = 1$. Let $\omega(n)$ stand for the number of distinct prime factors of $n \ge 2$, with $\omega(1) = 0$.

Let $\pi(x; k, \ell)$ stand for the number of primes $p \leq x$ such that $p \equiv \ell \pmod{k}$.

We denote by $LCM(a_1, \ldots, a_k)$ the least common multiple of the positive integers a_1, \ldots, a_k . In what follows, c, c_1, c_2, \ldots stand for absolute positive constants, while p and q, with or without subscripts, always stand for prime numbers.

At times, we shall also write x_1 for $\log x$, x_2 for $\log \log x$, and so on.

2 Main results

Theorem 1. Let $f : \mathbb{N} \to \mathbb{Z} \setminus \{0\}$ be a multiplicative function which is constant at prime arguments. Given distinct irreducible primitive monic polynomials Q_1, Q_2, \ldots, Q_h each of degree no larger than 3, define $F(x) := Q_1(x)Q_2(x)\cdots Q_h(x)$. For each $\nu = 1, 2, \ldots, t$, let $c_1^{(\nu)}, c_2^{(\nu)}, \ldots, c_h^{(\nu)}$ be distinct integers, $F_{\nu}(x) = \prod_{j=1}^h Q_j(x + c_j^{(\nu)})$ $(\nu = 1, 2, \ldots, t)$. Let us assume that $(F_{\nu}(x), F_{\mu}(x)) = 1$ if $\nu \neq \mu$. Then, there exists a non negative constant d_0 such that

$$\lim_{x \to \infty} \frac{1}{x} \# \{ n \le x : f(F_{\ell}(n)) \text{ divides } f(F_{\ell+1}(n)) \text{ for } \ell = 1, 2, \dots, t-1 \} = d_0.$$

Remark 1. The condition $(F_{\nu}(x), F_{\mu}(x)) = 1$ for $\nu \neq \mu$ holds if the numbers $c_1^{(\nu)}, \ldots, c_h^{(\nu)}$ ($\nu = 1, \ldots, t$) are chosen in such a manner that $Q_j(x+c_j^{(\nu)}) \neq Q_i(x+c_i^{(\mu)})$ holds whenever $i \neq j$ for arbitrary values of ν and μ .

Remark 2. Interesting arithmetic functions to which one can apply Theorem 1 are $\tau(n)$, $\tau_k(n)$, $\beta(n)$ and also a(n), the number of finite non isomorphic abelian groups with n elements (studied in particular by Ivić [4]).

Remark 3. From the proof of Theorem 1, the following assertion follows:

If there exists at least one positive integer n_0 such that

$$f(F_{\ell}(n_0))$$
 divides $f(F_{\ell+1}(n_0))$ $(\ell = 1, \dots, t-1),$

then $d_0 > 0$.

Theorem 2. Let f be as in Theorem 1 and let Q_1, Q_2, \ldots, Q_h be distinct irreducible primitive monic polynomials of degree no larger than 2. Then define F(x) and $F_{\nu}(x)$ $(\nu = 1, 2, \ldots, t)$ as in Theorem 1. Then, there exists a non negative constant e_0 such that

$$\lim_{x \to \infty} \frac{1}{\pi(x)} \# \{ p \le x : f(F_{\ell}(p)) \text{ divides } f(F_{\ell+1}(p)) \text{ for } \ell = 1, 2, \dots, t-1 \} = e_0.$$

3 Preliminary lemmas

Lemma 1. Given $F_1, F_2 \in \mathbb{Z}[x]$, which are relatively prime, then the congruences

 $F_1(m) \equiv 0 \pmod{a}$ and $F_2(m) \equiv 0 \pmod{a}$

have common roots for at most finitely many a's.

Proof. A proof of this result was established by Tanaka [8].

Lemma 2. Let F(m) be an arbitrary primitive polynomial with integer coefficients and of degree ν . Let D be the discriminant of F and assume that $D \neq 0$. Let $\rho(m)$ be the number of solutions n of $F(n) \equiv 0 \pmod{m}$. Then ρ is a multiplicative function whose values on the prime powers satisfy

$$\rho(p^{\alpha}) \qquad \begin{cases} = \rho(p) & \text{if } p \not\mid D, \\ \leq 2D^2 & \text{if } p \mid D. \end{cases}$$

Moreover, there exists a positive constant c = c(f) such that $\rho(p^{\alpha}) \leq c$ for all prime powers p^{α} .

Proof. This assertion is well known.

3

Proof. For a proof, see the book of Hooley [3] (pp. 62-69).

such that the degree of each of its irreducible factors is of degree no larger than 3. Let Y(x) be a function which tends to $+\infty$ as $x \to +\infty$. Then $\lim_{x \to \infty} \frac{1}{x} \{ n \le x : p^2 | F(n) \text{ for some } p > Y(x) \} = 0.$

Proof. For a proof, see the book of Iwaniec and Kowalski [5].
$$\Box$$

Lemma 7. Let F be a square-free integer coefficients polynomial of positive degree

$$\sum_{k \le \sqrt{x}/(\log^B x)} \max_{(k,\ell)=1} \max_{y \le x} \left| \pi(x;k,\ell) - \frac{1}{\varphi(k)} \right| = O\left(\frac{1}{\log^A x}\right)$$

Lemma 6. (BOMBIERI-VINOGRADOV THEOREM) Given any fixed number A > 0,

Moreover, an appropriate choice for B(A) is 2A + 6.

 $\sum \max \max \left| \pi(x; k, \ell) - li(x) \right| = O\left(-x \right)$

holds uniformly, as $(\ell, k) = 1$, for $k < \log^A x$.

Proof. For a proof, see the book of Prachar [7].

there exists a number B = B(A) > 0 such that

(*ii*) $\sum_{n \le x} \frac{\rho(p)}{p} = \log \log x + C + O\left(\frac{1}{\log x}\right).$

Proof. This result is due to Landau [6].

Proof. For a proof, see the book of Halberstam and Richert [2].

Lemma 5 > 0 such that

for every fi

Lemma 4. (BRUN-TITCHMARSH INEQUALITY) There exists a positive constant
$$c_3$$

such that
 $\pi(x;k,\ell) < c_3 \frac{x}{\varphi(k)\log(x/k)}.$

. (SIEGEL-WALFISZ THEOREM) There exists a constant
$$c$$
:
xed number $A > 0$, the estimate

> 0, the estimate

$$\pi(x; k, \ell) - \frac{li(x)}{\langle \ell \rangle} = O\left(xe^{-c\sqrt{\log x}}\right)$$

$$\pi(x; k, \ell) = \frac{li(x)}{c\sqrt{\log n}} = O\left(xe^{-c\sqrt{\log n}}\right)$$

$$\pi(x;k,\ell) - rac{li(x)}{\varphi(k)} = O\left(xe^{-c\sqrt{\log k}}\right)$$

$$\pi(x,\kappa,\epsilon) = \frac{1}{\varphi(k)} = O\left(xe\right)$$

(i) $\sum_{x \le x} \rho(p) = \frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right);$

Lemma 3. If $a \in \mathbb{O}[x]$ is an irreducible polynomial and $\rho(m)$ stands for the number

of residue classes mod m for which
$$g(n) \equiv 0 \pmod{m}$$
, then

 \square

Lemma 8. Let F and Y be as in Lemma 7. Assume that each of the irreducible factors of F is of degree no larger than 2 and that $F(0) \neq 0$. Then

$$\lim_{x \to \infty} \frac{1}{\pi(x)} \{ p \le x : q^2 | F(p) \text{ for some } q > Y(x) \} = 0$$

Proof. For a proof, see the book of Hooley [3] (pp. 69-72).

Lemma 9. Let f(n) be a real valued non negative arithmetic function. Let a_n , n = $1, \ldots, N$, be a sequence of integers. Let r be a positive real number, and let $p_1 < p_2 <$ $\cdots < p_s \leq r$ be prime numbers. Set $Q = p_1 \cdots p_s$. If d|Q, then let

(3.1)
$$\sum_{\substack{n=1\\a_n\equiv 0\pmod{d}}}^{N} f(n) = \eta(d)X + R(N,d),$$

where X and R are real numbers, $X \ge 0$, and $\eta(d_1d_2) = \eta(d_1)\eta(d_2)$ whenever d_1 and d_2 are co-prime divisors of Q.

Assume that for each prime $p, 0 \leq \eta(p) < 1$. Setting

$$I(N,Q) := \sum_{\substack{n=1 \ (a_n,Q)=1}}^{N} f(n),$$

then the estimate

$$I(N,Q) = \{1 + 2\theta_1 H\} X \prod_{p|Q} (1 + \eta(p)) + 2\theta_2 \sum_{\substack{d|Q \\ d \le z^3}} 3^{\omega(d)} |R(N,d)|$$

holds uniformly for $r \ge 2$, $\max(\log r, S) \le \frac{1}{8} \log z$, where $|\theta_1| \le 1$, $|\theta_2| \le 1$, and

$$H = \exp\left(-\frac{\log z}{\log r}\left\{\log\left(\frac{\log z}{S}\right) - \log\log\left(\frac{\log z}{S}\right) - \frac{2S}{\log z}\right\}\right)$$

and

$$S = \sum_{p|Q} \frac{\eta(p)}{1 - \eta(p)} \log p.$$

When these conditions are satisfied, there exists an absolute positive constant c such that $2H \leq c < 1$.

Proof. This result is Lemma 2.1 in the book of Elliott [1].

4 The first part of the proof of Theorem 1

Since $\rho_{Q_j(x)}(m) = \rho_{Q_j(x+c)}(m)$ for any constant c, it follows that $\rho_{F_{\nu}}(m) = \rho_{F_{\mu}}(m)$. Observe also that $\operatorname{Res}(Q_i, Q_j) \neq 0$ if $i \neq j$. We shall now define four sets of primes, namely $\wp_1, \wp_2, \wp_3, \wp_4$, as follows.

First, as elements of \wp_1 , we include

- 1. the prime divisors of $\prod_{1 \le i < j \le h} \operatorname{Res}(Q_i, Q_j),$
- 2. the prime divisors of $\prod_{1 \le i \le h} \text{Discr}(Q_i)$,
- 3. those primes p for which $t\rho_F(p) \ge p$,
- 4. and no other primes.

Then, let $\mathcal{N}(\wp_1)$ be the semigroup generated by the set of primes \wp_1 . Observe that:

- (a) If $(m, \mathcal{N}(\wp_1)) = 1$, then $\rho_F(m) = \rho_{Q_1}(m) + \ldots + \rho_{Q_h}(m)$.
- (b) If $(m_1m_2, \mathcal{N}(\wp_1)) = 1$ with $(m_1, m_2) = 1$, then $\rho_F(m_1m_2) = \rho_F(m_1) + \rho_F(m_2)$.
- (c) If $p \notin \wp_1$, then $\rho(p^a) = \rho(p)$ for each $a \in \mathbb{N}$.

Let Y = Y(x) be a large number. Moreover, let A_x and $\varepsilon(x)$ be such that $\varepsilon(x)A_x \to 0$ as $x \to \infty$, and define $r = r_x = x^{\varepsilon(x)}$.

We now define the other sets of primes \wp_2 , \wp_3 and \wp_4 (which depend on x) as follows:

Now consider the sets $\mathcal{N}(\wp_2)$, $\mathcal{N}(\wp_3)$, $\mathcal{N}(\wp_4)$, that is the semigroups generated respectively by the sets of primes \wp_2, \wp_3, \wp_4 .

For each positive integer ν , we now define $A(\nu)$, $B(\nu)$, $C(\nu)$ and $D(\nu)$ by

$$\nu = A(\nu)B(\nu)C(\nu)D(\nu),$$

where

$$A(\nu) \in \mathcal{N}(\wp_1), B(\nu) \in \mathcal{N}(\wp_2), C(\nu) \in \mathcal{N}(\wp_3), D(\nu) \in \mathcal{N}(\wp_4)$$

Finally, let $T(u) := \prod_{p < u} p$.

We now choose $\xi_1, \xi_2, \ldots, \xi_t \in \mathcal{N}(\wp_1)$ in such a way that there exists at least one solution $n = n_0$ of

(4.1)
$$F_{\nu}(n) \equiv 0 \pmod{\xi_{\nu}}, \quad \left(\frac{F_{\nu}(n)}{\xi_{\nu}}, \mathcal{N}(\wp_1)\right) = 1 \quad (\nu = 1, \dots, t).$$

Further define

$$\xi^* = \operatorname{LCM}(\xi_1, \dots, \xi_t),$$

$$\xi^{**} = \xi^* \prod_{p \in \wp_1} p.$$

Clearly, (4.1) holds for all those positive integers n for which $n \equiv n_0 \pmod{\xi^{**}}$.

Now let $\kappa = \kappa(\xi_1, \ldots, \xi_t)$ be the number of those residue classes $r \pmod{\xi^{**}}$ for which

(4.2)
$$F_{\nu}(r) \equiv 0 \pmod{\xi_{\nu}}, \quad \left(\frac{F_{\nu}(r)}{\xi_{\nu}}, \mathcal{N}(\wp_1)\right) = 1 \quad (\nu = 1, \dots, t)$$

holds. Note that, in the case where (4.1) has no solutions, we simply set $\kappa(\xi_1, \ldots, \xi_t) = 0$.

We now choose

$$m_1, \dots, m_t \in \mathcal{N}(\wp_2), \quad (m_i, m_j) = 1 \text{ if } i \neq j, \\ d_1, \dots, d_t \in \mathcal{N}(\wp_3), \quad (d_i, d_j) = 1 \text{ if } i \neq j.$$

With these notations in mind, we introduce the set

$$\mathcal{M}_x = \mathcal{M}_x(\xi_1, \dots, \xi_t; m_1, \dots, m_t; d_1, \dots, d_t)$$

(4.3) = { $n \le x : A(F_\ell(n)) = \xi_\ell, B(F_\ell(n)) = m_\ell, C(F_\ell(n)) = d_\ell \text{ for } \ell = 1, \dots, t$ }.

Observe that if $(m_i, m_j) > 1$ or $(d_i, d_j) > 1$ for some $i \neq j$, then

$$\mathcal{M}_x(\xi_1,\ldots,\xi_t;m_1,\ldots,m_t;d_1,\ldots,d_t)=\emptyset.$$

One can easily see that \mathcal{M}_x is the set of those integers $n \leq x$ for which

(4.4)
$$\xi_j m_j d_j | F_j(n), \quad \left(\frac{F_j(n)}{\xi_j m_j d_j}, T(r)\right) = 1 \quad \text{for } j = 1, \dots, t.$$

We now let $\mathcal{E}(\xi_1, \ldots, \xi_t)$ be the set of those integers n for which (4.4) holds for $j = 1, \ldots, t$ for an appropriate choice of $m_1, \ldots, m_t, d_1, \ldots, d_t$.

Let ν_1, \ldots, ν_t be those residues mod ξ^{**} for which $\mathcal{E}(\xi_1, \ldots, \xi_t)$ is covered exactly by

$$\bigcup_{u=1}^{t} \{n \le x : n \equiv \nu_u \pmod{\xi^{**}}\},\$$

that is, if $n \in \mathcal{E}(\xi_1, \ldots, \xi_t)$, then $n \equiv \nu_u \pmod{\xi^{**}}$ for some $u \in \{1, \ldots, \kappa\}$, and

$$\{n \le x : n \equiv \nu_u \pmod{\xi^{**}} \cap \mathcal{E}(\xi_1, \dots, \xi_t) \neq \emptyset$$

Now let $\xi_1, \ldots, \xi_t, \nu \in {\nu_1, \ldots, \nu_\kappa}$, where $\kappa = \kappa(\xi_1, \ldots, \xi_t)$ is fixed. Then the fact that $n \equiv \nu \pmod{\xi^{**}}$ guarantees that

$$\left(\frac{F_{\ell}(n)}{\xi_{\ell}},\xi^{**}\right) = 1 \qquad (\ell = 1,\dots,t)$$

holds.

We further define

$$\underline{m} = (m_1, \dots, m_t),$$

$$\underline{d} = (d_1, \dots, d_t),$$

and

$$\widetilde{\mathcal{M}}_x(\nu \pmod{\xi^{**}}; \underline{m}, \underline{d})$$

= { $n \le x : n \equiv \nu \pmod{\xi^{**}}, B(F_j(n)) = m_j, C(F_j(n)) = d_j \text{ for } j = 1, \dots, t$ }

Observe that, for each j = 1, ..., t, the number of solutions of $F_j(\nu + s\xi^{**}) \equiv 0 \pmod{m_j d_j} \mod m_1 \dots m_t d_1 \dots d_t$ is equal to $\rho(m_1 \dots m_t)\rho(d_1 \dots d_t)$.

Let μ_0 be one of these solutions, that is let $0 \leq \mu_0 < m_1 \dots m_t d_1 \dots d_t$, $F_j(\nu + \mu_0 \xi^{**}) \equiv 0 \pmod{m_j d_j}$ $(j = 1, \dots, t)$, and set

(4.5)
$$R = \xi^{**} m_1 \dots m_t d_1 \dots d_t.$$

We would like to estimate the size of the number of those integers $k \leq x/R$ for which

$$\varphi_j(k) := \frac{F_j(\nu + \mu_0 \xi^{**} + kR)}{\xi_j m_j d_j}$$

is coprime to T(r) for every $j = 1, \ldots, t$.

We shall only consider those $k \leq x/R$ for which m_j, d_j are both not very large, that is when $m_j \leq Y^{A_x}$ and $d_j \leq r^{A_x}$. Indeed, one can easily prove, in light of Lemma 7, that

(4.6)
$$\lim_{x \to \infty} \frac{1}{x} \# \{ n \le x : \max m_j > Y^{A_x} \text{ or } \max d_j > r^{A_x} \} = 0,$$

and we will therefore skip the proof. Now, define

(4.7)
$$\Phi(k) := \varphi_1(k) \cdots \varphi_t(k).$$

Since, if $p \in \wp_1$, then $\rho_{\varphi_j}(p^a) = \rho_{\varphi_j}(p) = 0$, it follows that $\rho_{\Phi}(p^a) = \rho_{\Phi}(p) = 0$. Furthermore, if $p \in \wp_2 \cup \wp_3$, then $\rho_{\varphi_j}(p^a) = \rho_{\varphi_j}(p)$ and we shall prove that

- (P1) if $p|d_j m_j$, then $\rho_{\varphi_j}(p) = 1$ and $\rho_{\varphi_\ell}(p) = 0$ for all $\ell \neq j$;
- (P2) if $(p, d_1m_1 \cdots d_tm_t) = 1$, then $\rho_{\varphi_j}(p) = \rho(p)$ for $j = 1, \dots, t$.

Consequently, assuming that (P1) and (P2) are true, and letting $\eta(M)$ stand for the number of those $k \pmod{M}$ for which $\Phi(k) \equiv 0 \pmod{M}$, we then have

(4.8)
$$\eta(p^a) = \begin{cases} 0 & \text{if } p \in \wp_1, \\ \rho_{\varphi_j}(p) = 1 & \text{if } p \in \wp_2 \cup \wp_3 \text{ and } p | d_j m_j, \\ t\rho(p) & \text{if } p \in \wp_2 \cup \wp_3 \text{ and } (p, d_1 m_1 \cdots d_t m_t) = 1. \end{cases}$$

We now prove (P1). We prove it only in the case j = 1, the general case being similar. Assume that $p|d_1$ (the same reasoning would work if one assumes that $p|m_1$). Let *a* be the positive integer defined by $p^a||d_1$. Then,

$$\varphi_1(k) \equiv 0 \pmod{p} \iff F_1(\nu + \mu_0 \xi^{**} + kR) \equiv 0 \pmod{p^{a+1}},$$

meaning that, since $\rho_{\varphi_1}(p)$ stands for the number of solutions k of $\varphi_1(k) \equiv 0 \pmod{p}$, while $\rho_{F_1}(p^{a+1})$ stands for the number of solutions of $F_1(\nu + \mu_0 \xi^{**} + kR) \equiv 0 \pmod{p^{a+1}}$, it follows that $\rho_{\varphi_1}(p) = \rho_{F_1}(p) = 1$. It remains to prove that $\rho_{\varphi_\ell}(p) = 0$ if $\ell \neq 1$. To do so, we assume that $\rho_{\varphi_\ell}(p) \neq 0$. In this case, we have that $p|\varphi_1(k_1)$ and $p|\varphi_\ell(k_2)$, in which case

$$F_1(\nu + \mu_0 \xi^{**} + k_1 R) \equiv 0 \pmod{p}, F_\ell(\nu + \mu_0 \xi^{**} + k_2 R) \equiv 0 \pmod{p}.$$

Now, in light of (4.5), we have that p|R, implying that

$$F_1(\nu + \mu_0 \xi^{**}) \equiv 0 \pmod{p}, F_\ell(\nu + \mu_0 \xi^{**}) \equiv 0 \pmod{p},$$

which is an impossible situation in light of Lemma 1, because $F_1(a) = 0$ and $F_2(a)$ cannot occur simultaneously due to the fact that $p \notin \wp_1$. This completes the proof of (P1).

The proof of (P2) is almost obvious. Indeed,

 a_k

$$\varphi_1(k) \equiv 0 \pmod{p} \iff F_1(\nu + \mu_0 \xi^{**} + kR) \equiv 0 \pmod{p}.$$

Thus, $F_1(u) \equiv 0 \pmod{p}$ holds for $u = u_1, \ldots, u_{\rho(p)} \mod{p}$, and therefore, $\nu + \mu_0 \xi^{**} + kR \equiv u_j \pmod{p}$ $(j = 1, \ldots, \rho(p))$ can be solved in k.

We now move on to estimate $\#\mathcal{M}$ and $\#\mathcal{\widetilde{M}}$ using Lemma 9. We choose Q = T(r), f(k) = 1, $a_k = \Psi(k)$ defined in (4.7), X = x/R (as in (4.5)) and η as defined in (4.8). We thus obtain

$$\sum_{\substack{k \le X \\ j \equiv 0 \pmod{d}}} 1 = \frac{\eta(d)}{d} X + R(X, d)$$

with

$$(4.9) |R(X,d)| \le t\rho(d).$$

With $I(X,Q) := \#\{k \leq X : (a_k,Q) = 1\}$, we obtain from Lemma 9 that

(4.10)
$$I(X,Q) = (1+O(H))\frac{x}{R}\prod_{p|Q} \left(1-\frac{\eta(p)}{p}\right) + O\left(\sum_{\substack{d|Q\\d\leq z^3}} 3^{\omega(d)}|R(X,d)|\right).$$

In light of (4.9), we have that

(4.11)
$$\sum_{\substack{d|Q\\d\leq z^3}} 3^{\omega(d)} |R(X,d)| \le t \sum_{\substack{d|Q\\d\leq z^3}} 3^{\omega(d)} \eta(d).$$

We shall prove that for $z \ge 2$,

(4.12)
$$\sum_{\substack{d \mid Q \\ d \le z^3}} 3^{\omega(d)} \eta(d) \le c z^3 (\log z)^K,$$

for a suitable large constant K.

(4.13)
$$\sum_{d \leq Y} 3^{\omega(d)} \eta(d) |\mu(d)| \log d \leq \sum_{pu \leq Y} 3^{\omega(pu)} (\log p) \eta(p) \eta(u) |\mu(u)| \leq 3 \sum_{u \leq Y} 3^{\omega(u)} \eta(u) |\mu(u)| \sum_{p \leq Y/u} \eta(p) \log p.$$

Since $\sum_{p \le Y/u} \eta(p) \log p \le c \frac{Y}{u}$, (4.13) becomes

$$\sum_{d \leq Y} 3^{\omega(d)} \eta(d) |\mu(d)| \log d \leq cY \sum_{u \leq Y} \frac{3^{\omega(u)} \eta(u)}{u} |\mu(u)|$$

$$\leq cY \prod_{p \leq Y} \left(1 + \frac{3\eta(p)}{p}\right) \leq cY \exp\left\{3 \sum_{p \leq Y} \frac{\eta(p)}{p}\right\}$$

$$(4.14) \leq cY \exp(3th \log \log Y) = cY (\log Y)^{3th}.$$

Let us write

(4.15)
$$\sum_{d \le Y} 3^{\omega(d)} \eta(d) |\mu(d)| = \sum_{d \le \sqrt{Y}} + \sum_{\sqrt{Y} < d \le Y} = S_1 + S_2,$$

say.

Clearly we have

$$(4.16) S_1 \ll \sqrt{Y} \cdot Y^{\varepsilon},$$

where $\varepsilon > 0$ can be taken arbitrarily small.

On the other hand, in light of (4.14), we have

(4.17)
$$S_2 \le \frac{2}{\log Y} \cdot cY (\log Y)^{3th} \ll Y (\log Y)^{3th-1}.$$

Setting $Y = z^3$ and using (4.16) and (4.17) in (4.14) proves (4.12).

We now move to obtain the size of S and to find an upper bound for H. First of all, since

$$0 < \frac{c_1}{p} < \frac{\eta(p)}{p - \eta(p)} < \frac{c_2}{p} \quad \text{if} \quad p \in \wp_2 \cup \wp_2,$$

while $\eta(p) = 0 \quad \text{if} \quad p \in \wp_1,$

it follows that

$$(4.18) S \asymp \log r \asymp \varepsilon(x) \log x$$

Let B(x) be a real valued function satisfying $B(x) \to 0$ and $B(x)/\varepsilon(x) \to +\infty$ as $x \to \infty$, and set $z = x^{B(x)}$.

Note that, in our context, the condition $\max(\log r, S) \ge \frac{1}{8} \log z$ (of Lemma 9) clearly holds for every large x.

Then, we have

$$H = \exp\left\{-\frac{\log z}{\varepsilon(x)\log x} \left[\log\left(\frac{\log z}{\varepsilon(x)\log x}\right) - \log\log\left(\frac{\log z}{\varepsilon(x)\log x}\right) - \frac{2\varepsilon(x)\log x}{\log z} + O(1)\right]\right\}.$$

From this representation, it follows that

$$0 \le H \le C \exp\left\{-\frac{1}{2}\frac{B(x)}{\varepsilon(x)}\log\left(\frac{B(x)}{\varepsilon(x)}\right)\right\} =: H_1,$$

for an appropriate constant C.

Hence, applying Lemma 9, we obtain

(4.19)
$$I(X,Q) = \{1 + O(H_1)\} \frac{x}{R} \prod_{p|Q} \left(1 - \frac{\eta(p)}{p}\right) + O\left(x^{3B(x)} \left[(\log x)B(x)\right]^K\right).$$

Now observe that

(4.20)
$$\prod_{p|Q} \left(1 - \frac{\eta(p)}{p}\right) = \prod_{\substack{p \in \wp_2\\(p,m_1 \cdot m_t) = 1}} \left(1 - \frac{t\rho_F(p)}{p}\right) \cdot \prod_{p|m_1 \cdot \cdot m_t} \left(1 - \frac{1}{p}\right)$$
$$\cdot \prod_{\substack{p \in \wp_3\\(p,d_1 \cdot \cdot \cdot d_t) = 1}} \left(1 - \frac{t\rho_F(p)}{p}\right) \cdot \prod_{p|d_1 \cdot \cdot \cdot d_t} \left(1 - \frac{1}{p}\right).$$

Summing up over all the $\kappa = \kappa(\xi_1, \ldots, \xi_t)$ residue classes mod ξ^{**} , we obtain that

$$\#\mathcal{M}_{x}(\xi_{1},\ldots,\xi_{t};m_{1},\ldots,m_{t};d_{1},\ldots,d_{t}) = \frac{\kappa(\xi_{1},\ldots,\xi_{t})x\rho_{F}(m_{1}\cdots m_{t}d_{1}\cdot d_{t})}{\xi^{**}m_{1}\cdots m_{t}d_{1}\cdot d_{t}} \cdot \frac{\varphi(m_{1}\ldots m_{t})}{m_{1}\cdots m_{t}} \cdot \frac{\varphi(d_{1}\ldots d_{t})}{d_{1}\cdots d_{t}} \\
\cdot \prod_{p\in\varphi_{2}\cup\varphi_{3}\atop (p,m_{1}\cdots m_{t}d_{1}\cdots d_{t})=1} \left(1 - \frac{t\rho_{F}(p)}{p}\right) \cdot (1 + \theta_{1}\kappa(\xi_{1},\ldots,\xi_{t})H_{1}) \\
+ O\left(x^{3B(x)}\left[(\log x)B(x)\right]^{K}\right).$$
(4.21)

Using the fact that

$$\sum_{p \in \wp_2 \cup \wp_3} \frac{\rho_F(p)}{p} = \sum_{j=1}^h \sum_{p \in \wp_2 \cup \wp_3} \frac{\rho_{Q_j}(p)}{p} = h \log \log x^{\varepsilon(x)} + c_2 + O\left(\frac{1}{\varepsilon(x)\log x}\right),$$

it follows that

$$\prod_{p \in \wp_2 \cup \wp_3} \left(1 - \frac{t\rho_F(p)}{p} \right) = \exp\left\{ -t \sum_{p \in \wp_2 \cup \wp_3} \frac{\rho_F(p)}{p} \right\} + c_1 + O\left(\frac{1}{\varepsilon(x)\log x}\right) \\
= \exp\{-th \log \log x^{\varepsilon(x)} + c_1 - tc_2\} \left(1 + O\left(\frac{1}{\varepsilon(x)\log x}\right) \right) \\$$
(4.22)
$$= \left(\frac{1}{\log x^{\varepsilon(x)}} \right)^{th} e^{c_3} \left(1 + O\left(\frac{1}{\varepsilon(x)\log x}\right) \right).$$

Thus, by defining the strongly multiplicative function λ on $\mathcal{N}(\wp_1 \cup \wp_2 \cup \wp_3)$ by

$$\lambda(p) = \begin{cases} 1 & \text{if } p \in \wp_1, \\ \left(1 - \frac{t\rho_F(p)}{p}\right)^{-1} \cdot \left(1 - \frac{1}{p}\right) & \text{if } p | m_1 \cdots m_t d_1 \cdots d_t, \\ 1 & \text{if } p \in \wp_2 \cup \wp_3 \text{ and } (p, m_1 \cdots m_t d_1 \cdots d_t) = 1. \end{cases}$$

,

then, in light in the above, (4.21) becomes

$$#\mathcal{M}_{x}(\xi_{1},\ldots,\xi_{t};m_{1},\ldots,m_{t};d_{1},\ldots,d_{t}) = \frac{x}{R} \frac{\kappa(\xi_{1},\ldots,\xi_{t})}{\xi^{**}} \cdot \frac{\varphi(m_{1}\ldots m_{t})}{m_{1}\cdots m_{t}} \cdot \frac{\varphi(d_{1}\ldots d_{t})}{d_{1}\cdots d_{t}} \\ \cdot \lambda(m_{1}\cdots m_{t})\lambda(d_{1}\cdots d_{t})\rho_{F}(m_{1}\cdots m_{t}d_{1}\cdots d_{t}) \\ \cdot \left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{th} e^{c_{3}} \left(1+O\left(\frac{1}{\varepsilon(x)\log x}\right)\right) \\ \cdot (1+\theta_{1}\kappa(\xi_{1},\ldots,\xi_{t})H_{1})+O\left(x^{3B(x)}\left[(\log x)B(x)\right]^{K}\right).$$

Now, from the estimates (4.21) and (4.23), we can formulate the following straightforward and important assertions:

Proposition 1. Let m'_1, \ldots, m'_t and d'_1, \ldots, d'_t be arbitrary permutations of m_1, \ldots, m_t and d_1, \ldots, d_t respectively. Then

$$\begin{aligned} |\#\mathcal{M}_x(\xi_1,\ldots,\xi_t;m_1,\ldots,m_t;d_1,\ldots,d_t) - \#\mathcal{M}_x(\xi_1,\ldots,\xi_t;m_1',\ldots,m_t';d_1',\ldots,d_t')| \\ &\leq \frac{cx\kappa(\xi_1,\ldots,\xi_t)}{\xi^{**}}\rho_F(m_1\cdots m_t d_1\cdots d_t) \cdot \left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{th} \left(\frac{1}{\varepsilon(x)\log x} + \kappa(\xi_1,\ldots,\xi_t)H_1\right) \\ &+ O\left(x^{3B(x)}\left[(\log x)B(x)\right]^K\right). \end{aligned}$$

Proposition 2. Let $M \in \mathcal{N}(\wp_1)$ and $D \in \mathcal{N}(\wp_2)$ be two square-free integers satisfying $M \leq Y^{A_x}$ and $D \leq r^{A_x}$. Assume that $M = m_1 \cdots m_t$ and $D = d_1 \cdots d_t$. Let m'_1, \ldots, m'_t and d'_1, \ldots, d'_t be permutations of m_1, \ldots, m_t and d_1, \ldots, d_t respectively. Then,

$$\begin{aligned} \left| #\mathcal{M}_x(\xi_1, \dots, \xi_t; m_1, \dots, m_t; d_1, \dots, d_t) - #\mathcal{M}_x(\xi_1, \dots, \xi_t; m'_1, \dots, m'_t; d'_1, \dots, d'_t) \right| \\ &\leq \frac{cx\kappa(\xi_1, \dots, \xi_t)}{\xi^{**}} \rho_F(MD) \cdot \left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{th} \left(\frac{1}{\varepsilon(x)\log x} + \kappa(\xi_1, \dots, \xi_t)H_1\right) \\ &\quad + O\left(x^{3B(x)} \left[(\log x)B(x) \right]^K \right). \end{aligned}$$

5 The second part of the proof of Theorem 1

Given a positive integer n, we write it as n = M(n)S(n), where M(n) is the squarefree part of n and S(n) the squarefull part of n. Then we clearly have $f(n) = U^{\omega(S(n))}f(M(n))$, where $U = q_1^{\beta_1} \cdots q_v^{\beta_v}$, say. With this set up, we may write $f(m) = f_1(m)f_2(m)$, where $f_2(m) \in \mathcal{N}(\{q_1, \ldots, q_v\})$ and $f_1(m) = f(m)/f_2(m)$ satisfies $(f_1(m), U) = 1$. Of course, f_1 and f_2 are easily seen to be multiplicative functions.

Writing $m = M(m) \cdot S(m)$, we have that

$$f(n)|f(m) \iff \begin{cases} (1) & f_1(S(n))|f_1(S(m)) \\ \text{and} \\ (2) & f_1(S(n)) \cdot U^{\omega(M(n))} \Big| f_1(S(m)) \cdot U^{\omega(M(m))} \end{cases}$$

Define L(S(n)) as the smallest (nonnegative) integer for which $f_2(S(n))$ divides $U^{L(S(n))}$. Then, in order for the condition f(n)|f(m) to be satisfied, it is sufficient that the conditions (1) and

(2)'
$$L(S(n)) + \omega(M(n)) \le \omega(M(m))$$

be satisfied, while it is necessary that conditions (1) and

(2)"
$$\omega(M(n)) \le \omega(M(m)) + L(S(m))$$

hold.

From this, it follows that in order to have

$$f(F(\ell(n)))|f(F(\ell+1}(n))) \quad (\ell = 1, \dots, t-1),$$

the conditions

(5.1)
$$f_1(S(F(\ell(n))))|f_1(S(F(\ell(n))))) \quad (\ell = 1, \dots, t-1)$$

and

(5.2)
$$L(S(f_{\ell}(n))) + \omega(M(F_{\ell}(n))) \le \omega(M(F_{\ell}(n)))$$

are sufficient, while the conditions (5.1) and

(5.3)
$$\omega(M(F_{\ell}(n))) \le \omega(M(F_{\ell+1}(n))) + L(S(f_{\ell+1})) \quad (\ell = 1, \dots, t-1)$$

are necessary.

Now, let S_1, \ldots, S_t be squarefull numbers. By using a method developed by Hooley (see [3], Chapter 4) and using also the Eratosthenian sieve, one can prove that

(5.4)
$$\frac{1}{x} \# \{ n \le x : S(F_{\ell}(n)) = S_{\ell}, \ \ell = 1, \dots, t \} = d(S_1, \dots, S_t) + O\left(\frac{x}{\log \log x}\right),$$

for some nonnegative constant $d(S_1, \ldots, S_t)$ which satisfy

$$\sum_{S_1,\ldots,S_t} d(S_1,\ldots,S_t) = 1,$$

and where the constant implied in the error term is absolute.

Let \mathcal{B} be the set of all those vectors (S_1, \ldots, S_t) for which S_1, \ldots, S_t are squarefull numbers and

(5.5)
$$f_1(S_\ell(n))|f_1(S_{\ell+1}(n)) \qquad (\ell = 1, \dots, t-1).$$

We will prove that

(5.6)
$$d_0 = \frac{1}{t!} \sum_{(S_1, \dots, S_t) \in \mathcal{B}} d(S_1, \dots, S_t).$$

Since

$$\sum_{\max(S_1,\ldots,S_t)\geq Y} d(S_1,\ldots,S_t) \to 0 \text{ as } Y \to \infty,$$

it is sufficient to prove that, for each fixed $(S_1, \ldots, S_t) \in \mathcal{B}$,

(5.7)
$$\frac{1}{x} \# \{ n \le x : S(F_{\ell}(n)) = S_{\ell}, \ f(F_{\ell}(n)) | f(F_{\ell+1}(n)) \ \text{for } \ell = 1, \dots, t \}$$
$$= \frac{1}{t!} d(S_1, \dots, S_t) + o(1) \qquad (x \to \infty).$$

Let Y be large enough so that $\max(S_1, \ldots, S_t) \leq Y$. We now move on to count the number of those integers $n \leq x$ for which both

(5.8)
$$S(F_{\ell}(n)) = S_{\ell} \quad (\ell = 1, \dots, t)$$

and

(5.9)
$$f(F_{\ell}(n))|f(F_{\ell+1}(n)) \qquad (\ell = 1, \dots, t)$$

hold. We must compute the number of those integers $n \leq x$ appearing in the set displayed in equation (4.3), with the additional condition $S(\xi_{\ell}m_{\ell}) = S_{\ell}$ and with also d_{ℓ} and $D(F_{\ell}(n))$ both squarefree for $\ell = 1, \ldots, t$. But it is clear that, choosing $\varepsilon(x) = 1/\log \log \log \log x$, we have

$$\omega(A(F_{\ell}(n))B(F_{\ell}(n))D(F_{\ell}(n))) \le \frac{c}{\varepsilon(x)} + Y \le c_1 \log \log \log \log x.$$

In light of (4.6), we only need to consider those $n \leq x$ for which

(5.10)
$$\max_{i=1,...,t} m_j \le Y^{A_x} \text{ and } \max_{i=1,...,t} d_j \le r^{A_x}$$

For now, fix $\xi_1, \ldots, \xi_t, m_1, \ldots, m_t, d_1, \ldots, d_t$ and assume that $\omega(d_i) \neq \omega(d_j)$ when $i \neq j$. Under these conditions, there exists one and only one permutation d_1^*, \ldots, d_t^* of d_1, \ldots, d_t for which $\omega(d_1^*) < \cdots < \omega(d_t^*)$.

In the event that $|\omega(d_i) - \omega(d_j)| \ge 2c_1 \log \log \log \log \log x$ whenever $i \ne j$, then (5.9) will hold for the corresponding number n.

Hence, it remains to prove that the sum of $\#\mathcal{M}_x(\xi_1,\ldots,\xi_t;m_1,\ldots,m_t;d_1,\ldots,d_t)$ running over all those $\xi_1,\ldots,\xi_t,m_1,\ldots,m_t,d_1,\ldots,d_t$ for which $|\omega(d_i) - \omega(d_j)| < 2c_1 \log \log \log \log x$ holds for some $i \neq j$ is o(x).

In order to prove this, observe that, in light of Proposition 1,

$$#\mathcal{M}_x(\xi_1,\ldots,\xi_t;m_1,\ldots,m_t;d_1,\ldots,d_t) \leq \frac{cx\kappa(\xi_1,\ldots,\xi_t)}{\xi^{**}}\rho_F(m_1\cdots m_t d_1\cdots d_t) \cdot \left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{th}.$$

For short, let us write $d_1 \Delta d_2$ to express the condition $\omega(d_1) \leq \omega(d_2) \leq \omega(d_1) + c_1 \log \log \log \log \log x$.

We then have

$$(5.11) \qquad \sum_{\substack{d_1,d_2\\d_1\Delta d_2}} \sum_{\substack{\xi_1,\ldots,\xi_t\\m_1,\ldots,m_t\\d_1,\ldots,d_t}} \#\mathcal{M}_x(\xi_1,\ldots,\xi_t;m_1,\ldots,m_t;d_1,\ldots,d_t) \\ \leq c(Y) \left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{th} x \sum_{\substack{d_1,d_2\\d_1\Delta d_2}} \frac{\rho_F(d_1d_2)}{d_1d_2} \sum_{\substack{d_3,\ldots,d_t\\d_3,\ldots,d_t}} \frac{\rho_F(d_3\ldots,d_t)}{d_3\ldots,d_t} \\ \leq c(Y) \left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{th} x \left(\sum_{d\in\mathcal{N}(\wp_3)} \frac{\rho_F(d)}{d}\right)^{t-2} \sum_{\substack{d_1,d_2\\d_1\Delta d_2}} \frac{\rho_F(d_1d_2)}{d_1d_2} \\ \leq c(Y) \left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{th} x \left(\log x^{\varepsilon(x)}\right)^{(t-2)h} \sum_{\substack{d_1,d_2\\d_1\Delta d_2}} \frac{\rho_F(d_1d_2)}{d_1d_2}.$$

Now, because

$$\sum_{\omega(d)=r} \frac{\rho_F(d)}{d} \le \frac{1}{r!} \left(\sum_{p \in \wp_3} \frac{\rho_F(p)}{p} \right)^r \le \frac{(h \log \log x + O(1))^r}{r!},$$

it follows, in light of Lemma 3, that, as $x \to \infty$,

$$(5.12) \sum_{\substack{d_1,d_2\\d_1 \Delta d_2}} \frac{\rho_F(d_1d_2)}{d_1d_2} \le \sum_{r=1}^{\infty} \frac{(h\log\log x + O(1))^r}{r!} \sum_{t=0}^{\lfloor c_1x_4 \rfloor} \frac{(hx_2 + O(1))^{t+r}}{(t+r)!} = o(\log^{2h} x).$$

Using (5.12) in (5.11), it follows that

$$\sum_{\substack{d_1,d_2\\d_1 \Delta d_2}} \sum_{\substack{\xi_1,\dots,\xi_t\\m_1,\dots,m_t\\d_1,\dots,d_t}} \# \mathcal{M}_x(\xi_1,\dots,\xi_t;m_1,\dots,m_t;d_1,\dots,d_t) = o(x)$$

thus proving our claim and thereby completing the proof of Theorem 1.

6 The proof of Theorem 2

The proof of Theorem 2 can be obtained along the same lines as that of Theorem 1. We only provide here the main ideas. Indeed, Hooley [3] proved that

$$\limsup_{x \to \infty} \frac{1}{\pi(x)} \# \{ p \le x : \text{for some } \ell, \ C(F_{\ell}(p)) D(F_{\ell}(p)) \neq \text{squarefree} \} = 0.$$

Using this result, the Siegel-Walfisz form of the Prime Number Theorem (Lemma 5) as well as the Bombieri-Vinogradov Inequality (Lemma 6), one can proceed as earlier and prove the analogues of Propositions 1 and 2, thereby easily completing the proof of Theorem 2.

7 Further applications

It is interesting to observe that the following two results are consequences of Proposition 1.

Theorem 3. Let F_1, \ldots, f_t be as in Theorem 1. Then,

$$\lim_{x \to \infty} \frac{1}{x} \# \{ n \le x : \frac{\omega(F_{\ell}(n)) - h \log \log x}{\sqrt{h \log \log x}} < y_{\ell}, \ \ell = 1, \dots, t \} = \phi(y_1) \dots \phi(y_t).$$

Theorem 4. Let F_1, \ldots, f_t be as in Theorem 2. Then,

$$\lim_{x \to \infty} \frac{1}{\pi(x)} \# \{ p \le x : \frac{\omega(F_{\ell}(p)) - h \log \log x}{\sqrt{h \log \log x}} < y_{\ell}, \ \ell = 1, \dots, t \} = \phi(y_1) \dots \phi(y_t)$$

8 Final remarks

We now state a few remarks shedding some light on the value of d_0 and whether it is strictly positive.

The main idea is that the value of d_0 as well as the fact that it is positive or zero depends on the values taken by f on squarefull numbers.

Remark 4. Let u(n) stand for the squarefull part of n, and v(n) for the part of n, which is coprime to f(p), that is

$$v(n) = \prod_{q^a \parallel a, (q, f(p))=1} q^a.$$

Under the additional assumption that f(p) > 1, then

$$d_0 = \frac{1}{t!} \lim_{x \to \infty} \frac{1}{x} \# \{ n < x : v(f(u(F_j(n))) | v(f(u(F_{j+1}(n))), j = 1, \dots, t-1) \}.$$

Indeed, let $\omega_k(n)$ be defined as

$$\omega_k(n) := \sum_{p^k \parallel n} 1.$$

Then, except for a set of density zero,

$$\min_{1 \le j < r \le t} |\omega_1(F_j(n)) - \omega_1(F_r(n))| > \left(\log \log(\max_{1 \le j \le t} F_j(n)) \right)^{1/3}.$$

Furthermore for any function g(n) tending to infinity with n, if u(n) stands for the squarefull part of n,

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n < x : \max_{1 \le j \le t} f(u(F_j(n))) > g(n) \right\} = 0.$$

From the above equations, it follows that except on a set of zero density,

 $f(F_j(n))|f(F)_{j+1}(n) \Longleftrightarrow v(f(u(F_j(n)))|v(f(u(F_{j+1}(n))),$

thus completing the proof of our claim.

Remark 5. The constant d_0 will be positive regardless of the polynomials F if and only if for any values of A and n, there exists a number m such that $p|m \Rightarrow p > A$ and v(f(u(n))|v(f(u(m))).

In order to prove this, first assume that the assumption does not hold. Let n_0 and A_0 be such that if $m > n_0$ and $v(f(u(n_0))|v(f(u(m)))$, then there is prime $p < A_0$ such that p|m. Set $t = (u(n_0) \prod_{p < A_0} p)^2$ and $F_j(n) = n + j$. Then for at least one $j, f(u(n_0))|f(n+j)$ while $(n+j+1, \prod_{p < A} p) = 1$. It follows that f(n+j) does not divide f(n+j+1). Assume now that the assumption holds. Let $F_j(n)$ be a suitable family of polynomials. Choose Y large enough such that for any t-uple m_1, \ldots, m_t of integers, and for any prime p > Y, there exists n such that $F_j(n) \equiv m_j \pmod{p}$. It follows that n can be chosen so that

$$v(f(u(F_i(n))))$$
 divides $v(f(u(F_{i+1}(n))))$,

thus completing the proof.

Remark 6. Assume that f is such that on prime powers p^a , we have $f(p^a) = g(a)$ for a certain function g. Then, for any value of t and any family of polynomials F_1, \ldots, F_t , we have that d_0 is strictly positive.

Indeed, this is an easy corollary of Remark 5.

The following remark provides perhaps the simplest instance for which $d_0 = 0$.

Remark 7. Let f be a multiplicative function such that f(p) = 1 and $f(p^a) = p^a$ if $a \ge 2$. Then there exists no integer n such that

$$f(n)|f(n+1)|f(n+2)|f(n+3)|f(n+4).$$

Indeed, for exactly one value of j = 0, 1, 2, 3, we have that n + j is divisible by 4. It follows that f(n + j) is even while f(n + j + 1) is odd, a non sense.

References

 P.D.T.A. Elliott, Probabilistic Number Theory I, Mean Value Theorems, Springer-Verlag, Berlin, 1979

- [2] H.H. Halberstam and H.E. Richert, Sieve Methods, Academic Press, London, 1974.
- [3] C. Hooley, Applications of Sieve Methods to the Theory of Numbers, Cambridge University Press, 1976.
- [4] A. Ivić, The Riemann Zeta-Function, Dover, New York, 1985.
- [5] H. Iwaniec and E. Kowalski, Analytic Number heory, AMS Colloquium Publications, Vol. 53, 2004.
- [6] E. Landau, Neuer Bewis der Primzahlsatzes und Bewis der primidealsatzes, Math. Ann. 56 (1903), 645-670.
- [7] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.
- [8] M. Tanaka, On the number of prime factors of integers I, Japan J. Math. 25 (1955), 1-20.

Jean-Marie De Koninck	Nicolas Doyon	Imre Kátai
Dép. de mathématiques	Dép. de mathématiques	Computer Algebra Department
Université Laval	Université Laval	Eötvös Loránd University
Québec	Québec	1117 Budapest
Québec G1V 0A6	Québec G1V 0A6	Pázmány Péter Sétány I/C
Canada	Canada	Hungary
jmdk@mat.ulaval.ca	nicolas.doyon@mat.ulaval.ca	katai@compalg.inf.elte.hu

JMDK, le 14 novembre 2009; fichier: tau-polynom-oct2009.tex