Arithmetic functions evaluated at polynomial values

Jean-Marie De Koninck, Nicolas Doyon and Imre Kátai

This paper is dedicated to Professor János Galambos on the occasion of his seventieth anniversary

Édition du 14 novembre 2009

1 Introduction

Let $f: \mathbb{N} \rightarrow \mathbb{Z} \backslash\{0\}$ be a multiplicative function which is constant at prime arguments and let $F_{1}, F_{2}, \ldots, F_{t}$ be polynomials with integer coefficients. We establish minimal conditions on the polynomials F_{i} 's which guaranty that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: f\left(F_{j}(n)\right) \mid f\left(F_{j+1}(n)\right) \text { for } i=1,2, \ldots, t-1\right\} \quad \text { exists. }
$$

Given $g \in \mathbb{Z}[x]$, we let $\rho_{g}(m)=\#\{u \bmod m: g(u) \equiv 0(\bmod m)\}$ and we write $\operatorname{Discr}(g)$ to denote the discriminant of g. Given $Q_{1}, Q_{2} \in \mathbb{Z}[x]$, we let $\operatorname{Res}\left(Q_{1}, Q_{2}\right)$ stand for their resultant.

Given a positive integer n, we let $\tau(n)$ stand for the number of divisors of n and, for any fixed integer $k \geq 1$, we let $\tau_{k}(n)$ stand for the number of ways one can write n as the product of k positive integers taking into account the order in which they are written. For each $n \geq 2$, let $\beta(n)$ stand for the product of the exponents in the prime factorization of n, with $\beta(1)=1$. Let $\omega(n)$ stand for the number of distinct prime factors of $n \geq 2$, with $\omega(1)=0$.

Let $\pi(x ; k, \ell)$ stand for the number of primes $p \leq x$ such that $p \equiv \ell(\bmod k)$.
We denote by $\operatorname{LCM}\left(a_{1}, \ldots, a_{k}\right)$ the least common multiple of the positive integers a_{1}, \ldots, a_{k}. In what follows, c, c_{1}, c_{2}, \ldots stand for absolute positive constants, while p and q, with or without subscripts, always stand for prime numbers.

At times, we shall also write x_{1} for $\log x, x_{2}$ for $\log \log x$, and so on.

2 Main results

Theorem 1. Let $f: \mathbb{N} \rightarrow \mathbb{Z} \backslash\{0\}$ be a multiplicative function which is constant at prime arguments. Given distinct irreducible primitive monic polynomials $Q_{1}, Q_{2}, \ldots, Q_{h}$ each of degree no larger than 3, define $F(x):=Q_{1}(x) Q_{2}(x) \cdots Q_{h}(x)$. For each $\nu=1,2, \ldots$, , let $c_{1}^{(\nu)}, c_{2}^{(\nu)}, \ldots, c_{h}^{(\nu)}$ be distinct integers, $F_{\nu}(x)=\prod_{j=1}^{h} Q_{j}\left(x+c_{j}^{(\nu)}\right)$ $(\nu=1,2, \ldots, t)$. Let us assume that $\left(F_{\nu}(x), F_{\mu}(x)\right)=1$ if $\nu \neq \mu$. Then, there exists a non negative constant d_{0} such that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: f\left(F_{\ell}(n)\right) \text { divides } f\left(F_{\ell+1}(n)\right) \text { for } \ell=1,2, \ldots, t-1\right\}=d_{0}
$$

Remark 1. The condition $\left(F_{\nu}(x), F_{\mu}(x)\right)=1$ for $\nu \neq \mu$ holds if the numbers $c_{1}^{(\nu)}, \ldots, c_{h}^{(\nu)}(\nu=1, \ldots, t)$ are chosen in such a manner that $Q_{j}\left(x+c_{j}^{(\nu)}\right) \neq Q_{i}\left(x+c_{i}^{(\mu)}\right)$ holds whenever $i \neq j$ for arbitrary values of ν and μ.

Remark 2. Interesting arithmetic functions to which one can apply Theorem 1 are $\tau(n), \tau_{k}(n), \beta(n)$ and also $a(n)$, the number of finite non isomorphic abelian groups with n elements (studied in particular by Ivić [4]).

Remark 3. From the proof of Theorem 1, the following assertion follows:
If there exists at least one positive integer n_{0} such that

$$
f\left(F_{\ell}\left(n_{0}\right)\right) \quad \text { divides } \quad f\left(F_{\ell+1}\left(n_{0}\right)\right) \quad(\ell=1, \ldots, t-1),
$$

then $d_{0}>0$.
Theorem 2. Let f be as in Theorem 1 and let $Q_{1}, Q_{2}, \ldots, Q_{h}$ be distinct irreducible primitive monic polynomials of degree no larger than 2. Then define $F(x)$ and $F_{\nu}(x)$ $(\nu=1,2, \ldots, t)$ as in Theorem 1. Then, there exists a non negative constant e_{0} such that

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: f\left(F_{\ell}(p)\right) \text { divides } f\left(F_{\ell+1}(p)\right) \text { for } \ell=1,2, \ldots, t-1\right\}=e_{0}
$$

3 Preliminary lemmas

Lemma 1. Given $F_{1}, F_{2} \in \mathbb{Z}[x]$, which are relatively prime, then the congruences

$$
F_{1}(m) \equiv 0 \quad(\bmod a) \quad \text { and } \quad F_{2}(m) \equiv 0 \quad(\bmod a)
$$

have common roots for at most finitely many a's.
Proof. A proof of this result was established by Tanaka [8].
Lemma 2. Let $F(m)$ be an arbitrary primitive polynomial with integer coefficients and of degree ν. Let D be the discriminant of F and assume that $D \neq 0$. Let $\rho(m)$ be the number of solutions n of $F(n) \equiv 0(\bmod m)$. Then ρ is a multiplicative function whose values on the prime powers satisfy

$$
\rho\left(p^{\alpha}\right) \quad \begin{cases}=\rho(p) & \text { if } p \nmid D \\ \leq 2 D^{2} & \text { if } p \mid D\end{cases}
$$

Moreover, there exists a positive constant $c=c(f)$ such that $\rho\left(p^{\alpha}\right) \leq c$ for all prime powers p^{α}.

Proof. This assertion is well known.

Lemma 3. If $g \in \mathbb{Q}[x]$ is an irreducible polynomial and $\rho(m)$ stands for the number of residue classes mod m for which $g(n) \equiv 0(\bmod m)$, then
(i) $\sum_{p \leq x} \rho(p)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)$;
(ii) $\sum_{p \leq x} \frac{\rho(p)}{p}=\log \log x+C+O\left(\frac{1}{\log x}\right)$.

Proof. This result is due to Landau [6].
Lemma 4. (Brun-Titchmarsh Inequality) There exists a positive constant c_{3} such that

$$
\pi(x ; k, \ell)<c_{3} \frac{x}{\varphi(k) \log (x / k)}
$$

Proof. For a proof, see the book of Halberstam and Richert [2].
Lemma 5. (Siegel-Walfisz Theorem) There exists a constant $c>0$ such that for every fixed number $A>0$, the estimate

$$
\pi(x ; k, \ell)-\frac{l i(x)}{\varphi(k)}=O\left(x e^{-c \sqrt{\log x}}\right)
$$

holds uniformly, as $(\ell, k)=1$, for $k \leq \log ^{A} x$.
Proof. For a proof, see the book of Prachar [7].
Lemma 6. (Bombieri-Vinogradov Theorem) Given any fixed number $A>0$, there exists a number $B=B(A)>0$ such that

$$
\sum_{k \leq \sqrt{x} /\left(\log ^{B} x\right)} \max _{(k, \ell)=1} \max _{y \leq x}\left|\pi(x ; k, \ell)-\frac{l i(x)}{\varphi(k)}\right|=O\left(\frac{x}{\log ^{A} x}\right) .
$$

Moreover, an appropriate choice for $B(A)$ is $2 A+6$.
Proof. For a proof, see the book of Iwaniec and Kowalski [5].
Lemma 7. Let F be a square-free integer coefficients polynomial of positive degree such that the degree of each of its irreducible factors is of degree no larger than 3. Let $Y(x)$ be a function which tends to $+\infty$ as $x \rightarrow+\infty$. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{x}\left\{n \leq x: p^{2} \mid F(n) \text { for some } p>Y(x)\right\}=0
$$

Proof. For a proof, see the book of Hooley [3] (pp. 62-69).

Lemma 8. Let F and Y be as in Lemma 7. Assume that each of the irreducible factors of F is of degree no larger than 2 and that $F(0) \neq 0$. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)}\left\{p \leq x: q^{2} \mid F(p) \text { for some } q>Y(x)\right\}=0
$$

Proof. For a proof, see the book of Hooley [3] (pp. 69-72).
Lemma 9. Let $f(n)$ be a real valued non negative arithmetic function. Let $a_{n}, n=$ $1, \ldots, N$, be a sequence of integers. Let r be a positive real number, and let $p_{1}<p_{2}<$ $\cdots<p_{s} \leq r$ be prime numbers. Set $Q=p_{1} \cdots p_{s}$. If $d \mid Q$, then let

$$
\begin{equation*}
\sum_{\substack{n=1 \\ a_{n} \equiv 0 \\(\bmod d)}}^{N} f(n)=\eta(d) X+R(N, d), \tag{3.1}
\end{equation*}
$$

where X and R are real numbers, $X \geq 0$, and $\eta\left(d_{1} d_{2}\right)=\eta\left(d_{1}\right) \eta\left(d_{2}\right)$ whenever d_{1} and d_{2} are co-prime divisors of Q.

Assume that for each prime $p, 0 \leq \eta(p)<1$. Setting

$$
I(N, Q):=\sum_{\substack{n=1 \\\left(a_{n}, Q\right)=1}}^{N} f(n)
$$

then the estimate

$$
I(N, Q)=\left\{1+2 \theta_{1} H\right\} X \prod_{p \mid Q}(1+\eta(p))+2 \theta_{2} \sum_{\substack{d \mid Q \\ d \leq z^{3}}} 3^{\omega(d)}|R(N, d)|
$$

holds uniformly for $r \geq 2$, $\max (\log r, S) \leq \frac{1}{8} \log z$, where $\left|\theta_{1}\right| \leq 1,\left|\theta_{2}\right| \leq 1$, and

$$
H=\exp \left(-\frac{\log z}{\log r}\left\{\log \left(\frac{\log z}{S}\right)-\log \log \left(\frac{\log z}{S}\right)-\frac{2 S}{\log z}\right\}\right)
$$

and

$$
S=\sum_{p \mid Q} \frac{\eta(p)}{1-\eta(p)} \log p
$$

When these conditions are satisfied, there exists an absolute positive constant c such that $2 H \leq c<1$.

Proof. This result is Lemma 2.1 in the book of Elliott [1].

4 The first part of the proof of Theorem 1

Since $\rho_{Q_{j}(x)}(m)=\rho_{Q_{j}(x+c)}(m)$ for any constant c, it follows that $\rho_{F_{\nu}}(m)=\rho_{F_{\mu}}(m)$. Observe also that $\operatorname{Res}\left(Q_{i}, Q_{j}\right) \neq 0$ if $i \neq j$. We shall now define four sets of primes, namely $\wp_{1}, \wp_{2}, \wp_{3}, \wp_{4}$, as follows.

First, as elements of \wp_{1}, we include

1. the prime divisors of $\prod_{1 \leq i<j \leq h} \operatorname{Res}\left(Q_{i}, Q_{j}\right)$,
2. the prime divisors of $\prod_{1 \leq i \leq h} \operatorname{Discr}\left(Q_{i}\right)$,
3. those primes p for which $t \rho_{F}(p) \geq p$,
4. and no other primes.

Then, let $\mathcal{N}\left(\wp_{1}\right)$ be the semigroup generated by the set of primes \wp_{1}.
Observe that:
(a) If $\left(m, \mathcal{N}\left(\wp_{1}\right)\right)=1$, then $\rho_{F}(m)=\rho_{Q_{1}}(m)+\ldots+\rho_{Q_{h}}(m)$.
(b) If $\left(m_{1} m_{2}, \mathcal{N}\left(\wp_{1}\right)\right)=1$ with $\left(m_{1}, m_{2}\right)=1$, then $\rho_{F}\left(m_{1} m_{2}\right)=\rho_{F}\left(m_{1}\right)+\rho_{F}\left(m_{2}\right)$.
(c) If $p \notin \wp_{1}$, then $\rho\left(p^{a}\right)=\rho(p)$ for each $a \in \mathbb{N}$.

Let $Y=Y(x)$ be a large number. Moreover, let A_{x} and $\varepsilon(x)$ be such that $\varepsilon(x) A_{x} \rightarrow 0$ as $x \rightarrow \infty$, and define $r=r_{x}=x^{\varepsilon(x)}$.

We now define the other sets of primes \wp_{2}, \wp_{3} and \wp_{4} (which depend on x) as follows:

$$
\begin{aligned}
\wp_{2} & =\left\{p: p \leq Y, p \notin \wp_{1}\right\}, \\
\wp_{3} & =\{p: Y<p \leq r\}, \\
\wp_{4} & =\{p: p>r\} .
\end{aligned}
$$

Now consider the sets $\mathcal{N}\left(\wp_{2}\right), \mathcal{N}\left(\wp_{3}\right), \mathcal{N}\left(\wp_{4}\right)$, that is the semigroups generated respectively by the sets of primes $\wp_{2}, \wp_{3}, \wp_{4}$.

For each positive integer ν, we now define $A(\nu), B(\nu), C(\nu)$ and $D(\nu)$ by

$$
\nu=A(\nu) B(\nu) C(\nu) D(\nu)
$$

where

$$
A(\nu) \in \mathcal{N}\left(\wp_{1}\right), B(\nu) \in \mathcal{N}\left(\wp_{2}\right), C(\nu) \in \mathcal{N}\left(\wp_{3}\right), D(\nu) \in \mathcal{N}\left(\wp_{4}\right)
$$

Finally, let $T(u):=\prod_{p \leq u} p$.

We now choose $\xi_{1}, \xi_{2}, \ldots, \xi_{t} \in \mathcal{N}\left(\wp_{1}\right)$ in such a way that there exists at least one solution $n=n_{0}$ of

$$
\begin{equation*}
F_{\nu}(n) \equiv 0 \quad\left(\bmod \xi_{\nu}\right), \quad\left(\frac{F_{\nu}(n)}{\xi_{\nu}}, \mathcal{N}\left(\wp_{1}\right)\right)=1 \quad(\nu=1, \ldots, t) \tag{4.1}
\end{equation*}
$$

Further define

$$
\begin{aligned}
\xi^{*} & =\operatorname{LCM}\left(\xi_{1}, \ldots, \xi_{t}\right) \\
\xi^{* *} & =\xi^{*} \prod_{p \in \wp_{1}} p
\end{aligned}
$$

Clearly, (4.1) holds for all those positive integers n for which $n \equiv n_{0}\left(\bmod \xi^{* *}\right)$.
Now let $\kappa=\kappa\left(\xi_{1}, \ldots, \xi_{t}\right)$ be the number of those residue classes $r\left(\bmod \xi^{* *}\right)$ for which

$$
\begin{equation*}
F_{\nu}(r) \equiv 0 \quad\left(\bmod \xi_{\nu}\right), \quad\left(\frac{F_{\nu}(r)}{\xi_{\nu}}, \mathcal{N}\left(\wp_{1}\right)\right)=1 \quad(\nu=1, \ldots, t) \tag{4.2}
\end{equation*}
$$

holds. Note that, in the case where (4.1) has no solutions, we simply set $\kappa\left(\xi_{1}, \ldots, \xi_{t}\right)=$ 0 .

We now choose

$$
\begin{array}{r}
m_{1}, \ldots, m_{t} \in \mathcal{N}\left(\wp_{2}\right), \quad\left(m_{i}, m_{j}\right)=1 \text { if } i \neq j, \\
d_{1}, \ldots, d_{t} \in \mathcal{N}\left(\wp_{3}\right), \quad\left(d_{i}, d_{j}\right)=1 \text { if } i \neq j .
\end{array}
$$

With these notations in mind, we introduce the set

$$
\begin{align*}
& \mathcal{M}_{x}=\mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right) \\
& \quad=\left\{n \leq x: A\left(F_{\ell}(n)\right)=\xi_{\ell}, B\left(F_{\ell}(n)\right)=m_{\ell}, C\left(F_{\ell}(n)\right)=d_{\ell} \text { for } \ell=1, \ldots, t\right\} . \tag{4.3}
\end{align*}
$$

Observe that if $\left(m_{i}, m_{j}\right)>1$ or $\left(d_{i}, d_{j}\right)>1$ for some $i \neq j$, then

$$
\mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right)=\emptyset
$$

One can easily see that \mathcal{M}_{x} is the set of those integers $n \leq x$ for which

$$
\begin{equation*}
\xi_{j} m_{j} d_{j} \mid F_{j}(n), \quad\left(\frac{F_{j}(n)}{\xi_{j} m_{j} d_{j}}, T(r)\right)=1 \quad \text { for } j=1, \ldots, t \tag{4.4}
\end{equation*}
$$

We now let $\mathcal{E}\left(\xi_{1}, \ldots, \xi_{t}\right)$ be the set of those integers n for which (4.4) holds for $j=1, \ldots, t$ for an appropriate choice of $m_{1}, \ldots, m_{t}, d_{1}, \ldots, d_{t}$.

Let ν_{1}, \ldots, ν_{t} be those residues $\bmod \xi^{* *}$ for which $\mathcal{E}\left(\xi_{1}, \ldots, \xi_{t}\right)$ is covered exactly by

$$
\bigcup_{u=1}^{t}\left\{n \leq x: n \equiv \nu_{u} \quad\left(\bmod \xi^{* *}\right)\right\}
$$

that is, if $n \in \mathcal{E}\left(\xi_{1}, \ldots, \xi_{t}\right)$, then $n \equiv \nu_{u}\left(\bmod \xi^{* *}\right)$ for some $u \in\{1, \ldots, \kappa\}$, and

$$
\left\{n \leq x: n \equiv \nu_{u} \quad\left(\bmod \xi^{* *}\right)\right\} \cap \mathcal{E}\left(\xi_{1}, \ldots, \xi_{t}\right) \neq \emptyset
$$

Now let $\xi_{1}, \ldots, \xi_{t}, \nu \in\left\{\nu_{1}, \ldots, \nu_{\kappa}\right\}$, where $\kappa=\kappa\left(\xi_{1}, \ldots, \xi_{t}\right)$ is fixed. Then the fact that $n \equiv \nu\left(\bmod \xi^{* *}\right)$ guarantees that

$$
\left(\frac{F_{\ell}(n)}{\xi_{\ell}}, \xi^{* *}\right)=1 \quad(\ell=1, \ldots, t)
$$

holds.
We further define

$$
\begin{aligned}
\underline{m} & =\left(m_{1}, \ldots, m_{t}\right), \\
\underline{d} & =\left(d_{1}, \ldots, d_{t}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \widetilde{\mathcal{M}}_{x}\left(\nu \quad\left(\bmod \xi^{* *}\right) ; \underline{m}, \underline{d}\right) \\
& \quad=\left\{n \leq x: n \equiv \nu \quad\left(\bmod \xi^{* *}\right), B\left(F_{j}(n)\right)=m_{j}, C\left(F_{j}(n)\right)=d_{j} \text { for } j=1, \ldots, t\right\}
\end{aligned}
$$

Observe that, for each $j=1, \ldots, t$, the number of solutions of $F_{j}\left(\nu+s \xi^{* *}\right) \equiv 0$ $\left(\bmod m_{j} d_{j}\right) \bmod m_{1} \ldots m_{t} d_{1} \ldots d_{t}$ is equal to $\rho\left(m_{1} \ldots m_{t}\right) \rho\left(d_{1} \ldots d_{t}\right)$.

Let μ_{0} be one of these solutions, that is let $0 \leq \mu_{0}<m_{1} \ldots m_{t} d_{1} \ldots d_{t}, F_{j}(\nu+$ $\left.\mu_{0} \xi^{* *}\right) \equiv 0\left(\bmod m_{j} d_{j}\right)(j=1, \ldots, t)$, and set

$$
\begin{equation*}
R=\xi^{* *} m_{1} \ldots m_{t} d_{1} \ldots d_{t} . \tag{4.5}
\end{equation*}
$$

We would like to estimate the size of the number of those integers $k \leq x / R$ for which

$$
\varphi_{j}(k):=\frac{F_{j}\left(\nu+\mu_{0} \xi^{* *}+k R\right)}{\xi_{j} m_{j} d_{j}}
$$

is coprime to $T(r)$ for every $j=1, \ldots, t$.
We shall only consider those $k \leq x / R$ for which m_{j}, d_{j} are both not very large, that is when $m_{j} \leq Y^{A_{x}}$ and $d_{j} \leq r^{A_{x}}$. Indeed, one can easily prove, in light of Lemma 7 , that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \max m_{j}>Y^{A_{x}} \text { or } \max d_{j}>r^{A_{x}}\right\}=0 \tag{4.6}
\end{equation*}
$$

and we will therefore skip the proof. Now, define

$$
\begin{equation*}
\Phi(k):=\varphi_{1}(k) \cdots \varphi_{t}(k) \tag{4.7}
\end{equation*}
$$

Since, if $p \in \wp_{1}$, then $\rho_{\varphi_{j}}\left(p^{a}\right)=\rho_{\varphi_{j}}(p)=0$, it follows that $\rho_{\Phi}\left(p^{a}\right)=\rho_{\Phi}(p)=0$.
Furthermore, if $p \in \wp_{2} \cup \wp_{3}$, then $\rho_{\varphi_{j}}\left(p^{a}\right)=\rho_{\varphi_{j}}(p)$ and we shall prove that
(P1) if $p \mid d_{j} m_{j}$, then $\rho_{\varphi_{j}}(p)=1$ and $\rho_{\varphi_{\ell}}(p)=0$ for all $\ell \neq j$;
(P2) if $\left(p, d_{1} m_{1} \cdots d_{t} m_{t}\right)=1$, then $\rho_{\varphi_{j}}(p)=\rho(p)$ for $j=1, \ldots, t$.
Consequently, assuming that (P1) and (P2) are true, and letting $\eta(M)$ stand for the number of those $k(\bmod M)$ for which $\Phi(k) \equiv 0(\bmod M)$, we then have

$$
\eta\left(p^{a}\right)=\left\{\begin{array}{lll}
0 & \text { if } & p \in \wp_{1}, \tag{4.8}\\
\rho_{\varphi_{j}}(p)=1 & \text { if } & p \in \wp_{2} \cup \wp_{3} \text { and } p \mid d_{j} m_{j}, \\
t \rho(p) & \text { if } & p \in \wp_{2} \cup \wp_{3} \text { and }\left(p, d_{1} m_{1} \cdots d_{t} m_{t}\right)=1
\end{array}\right.
$$

We now prove (P1). We prove it only in the case $j=1$, the general case being similar. Assume that $p \mid d_{1}$ (the same reasoning would work if one assumes that $p \mid m_{1}$). Let a be the positive integer defined by $p^{a} \| d_{1}$. Then,

$$
\varphi_{1}(k) \equiv 0 \quad(\bmod p) \Longleftrightarrow F_{1}\left(\nu+\mu_{0} \xi^{* *}+k R\right) \equiv 0 \quad\left(\bmod p^{a+1}\right)
$$

meaning that, since $\rho_{\varphi_{1}}(p)$ stands for the number of solutions k of $\varphi_{1}(k) \equiv 0(\bmod p)$, while $\rho_{F_{1}}\left(p^{a+1}\right)$ stands for the number of solutions of $F_{1}\left(\nu+\mu_{0} \xi^{* *}+k R\right) \equiv 0\left(\bmod p^{a+1}\right)$, it follows that $\rho_{\varphi_{1}}(p)=\rho_{F_{1}}(p)=1$. It remains to prove that $\rho_{\varphi_{\ell}}(p)=0$ if $\ell \neq 1$. To do so, we assume that $\rho_{\varphi_{\ell}}(p) \neq 0$. In this case, we have that $p \mid \varphi_{1}\left(k_{1}\right)$ and $p \mid \varphi_{\ell}\left(k_{2}\right)$, in which case

$$
\begin{aligned}
F_{1}\left(\nu+\mu_{0} \xi^{* *}+k_{1} R\right) & \equiv 0 \quad(\bmod p) \\
F_{\ell}\left(\nu+\mu_{0} \xi^{* *}+k_{2} R\right) & \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Now, in light of (4.5), we have that $p \mid R$, implying that

$$
\begin{aligned}
F_{1}\left(\nu+\mu_{0} \xi^{* *}\right) & \equiv 0 \quad(\bmod p) \\
F_{\ell}\left(\nu+\mu_{0} \xi^{* *}\right) & \equiv 0 \quad(\bmod p)
\end{aligned}
$$

which is an impossible situation in light of Lemma 1 , because $F_{1}(a)=0$ and $F_{2}(a)$ cannot occur simultaneously due to the fact that $p \notin \wp_{1}$. This completes the proof of (P1).

The proof of (P2) is almost obvious. Indeed,

$$
\varphi_{1}(k) \equiv 0 \quad(\bmod p) \Longleftrightarrow F_{1}\left(\nu+\mu_{0} \xi^{* *}+k R\right) \equiv 0 \quad(\bmod p)
$$

Thus, $F_{1}(u) \equiv 0(\bmod p)$ holds for $u=u_{1}, \ldots, u_{\rho(p)} \bmod p$, and therefore, $\nu+\mu_{0} \xi^{* *}+$ $k R \equiv u_{j}(\bmod p)(j=1, \ldots, \rho(p))$ can be solved in k.

We now move on to estimate $\# \mathcal{M}$ and $\# \widetilde{\mathcal{M}}$ using Lemma 9. We choose $Q=T(r)$, $f(k)=1, a_{k}=\Psi(k)$ defined in (4.7), $X=x / R($ as in (4.5)) and η as defined in (4.8). We thus obtain

$$
\sum_{\substack{k \leq X \\ a_{k} \equiv 0}} 1=\frac{\eta(d)}{d} X+R(X, d)
$$

with

$$
\begin{equation*}
|R(X, d)| \leq t \rho(d) \tag{4.9}
\end{equation*}
$$

With $I(X, Q):=\#\left\{k \leq X:\left(a_{k}, Q\right)=1\right\}$, we obtain from Lemma 9 that

$$
\begin{equation*}
I(X, Q)=(1+O(H)) \frac{x}{R} \prod_{p \mid Q}\left(1-\frac{\eta(p)}{p}\right)+O\left(\sum_{\substack{d \mid Q \\ d \leq z^{3}}} 3^{\omega(d)}|R(X, d)|\right) \tag{4.10}
\end{equation*}
$$

In light of (4.9), we have that

$$
\begin{equation*}
\sum_{\substack{d \mid Q \\ d \leq z^{3}}} 3^{\omega(d)}|R(X, d)| \leq t \sum_{\substack{d \mid Q \\ d \leq z^{3}}} 3^{\omega(d)} \eta(d) . \tag{4.11}
\end{equation*}
$$

We shall prove that for $z \geq 2$,

$$
\begin{equation*}
\sum_{\substack{d \mid Q \\ d \leq z^{3}}} 3^{\omega(d)} \eta(d) \leq c z^{3}(\log z)^{K} \tag{4.12}
\end{equation*}
$$

for a suitable large constant K.

$$
\begin{align*}
\sum_{d \leq Y} 3^{\omega(d)} \eta(d)|\mu(d)| \log d & \leq \sum_{p u \leq Y} 3^{\omega(p u)}(\log p) \eta(p) \eta(u)|\mu(u)| \\
& \leq 3 \sum_{u \leq Y} 3^{\omega(u)} \eta(u)|\mu(u)| \sum_{p \leq Y / u} \eta(p) \log p \tag{4.13}
\end{align*}
$$

Since $\sum_{p \leq Y / u} \eta(p) \log p \leq c \frac{Y}{u}$, (4.13) becomes

$$
\begin{aligned}
\sum_{d \leq Y} 3^{\omega(d)} \eta(d)|\mu(d)| \log d & \leq c Y \sum_{u \leq Y} \frac{3^{\omega(u)} \eta(u)}{u}|\mu(u)| \\
& \leq c Y \prod_{p \leq Y}\left(1+\frac{3 \eta(p)}{p}\right) \leq c Y \exp \left\{3 \sum_{p \leq Y} \frac{\eta(p)}{p}\right\} \\
& \leq c Y \exp (3 t h \log \log Y)=c Y(\log Y)^{3 t h}
\end{aligned}
$$

Let us write

$$
\begin{equation*}
\sum_{d \leq Y} 3^{\omega(d)} \eta(d)|\mu(d)|=\sum_{d \leq \sqrt{Y}}+\sum_{\sqrt{Y}<d \leq Y}=S_{1}+S_{2} \tag{4.15}
\end{equation*}
$$

say.

Clearly we have

$$
\begin{equation*}
S_{1} \ll \sqrt{Y} \cdot Y^{\varepsilon} \tag{4.16}
\end{equation*}
$$

where $\varepsilon>0$ can be taken arbitrarily small.
On the other hand, in light of (4.14), we have

$$
\begin{equation*}
S_{2} \leq \frac{2}{\log Y} \cdot c Y(\log Y)^{3 t h} \ll Y(\log Y)^{3 t h-1} \tag{4.17}
\end{equation*}
$$

Setting $Y=z^{3}$ and using (4.16) and (4.17) in (4.14) proves (4.12).
We now move to obtain the size of S and to find an upper bound for H.
First of all, since

$$
\begin{gathered}
0<\frac{c_{1}}{p}<\frac{\eta(p)}{p-\eta(p)}<\frac{c_{2}}{p} \quad \text { if } \quad p \in \wp_{2} \cup \wp_{2} \\
\text { while } \quad \eta(p)=0 \quad \text { if } p \in \wp_{1}
\end{gathered}
$$

it follows that

$$
\begin{equation*}
S \asymp \log r \asymp \varepsilon(x) \log x \tag{4.18}
\end{equation*}
$$

Let $B(x)$ be a real valued function satisfying $B(x) \rightarrow 0$ and $B(x) / \varepsilon(x) \rightarrow+\infty$ as $x \rightarrow \infty$, and set $z=x^{B(x)}$.

Note that, in our context, the condition $\max (\log r, S) \geq \frac{1}{8} \log z$ (of Lemma 9) clearly holds for every large x.

Then, we have

$$
H=\exp \left\{-\frac{\log z}{\varepsilon(x) \log x}\left[\log \left(\frac{\log z}{\varepsilon(x) \log x}\right)-\log \log \left(\frac{\log z}{\varepsilon(x) \log x}\right)-\frac{2 \varepsilon(x) \log x}{\log z}+O(1)\right]\right\}
$$

From this representation, it follows that

$$
0 \leq H \leq C \exp \left\{-\frac{1}{2} \frac{B(x)}{\varepsilon(x)} \log \left(\frac{B(x)}{\varepsilon(x)}\right)\right\}=: H_{1}
$$

for an appropriate constant C.
Hence, applying Lemma 9, we obtain

$$
\begin{equation*}
I(X, Q)=\left\{1+O\left(H_{1}\right)\right\} \frac{x}{R} \prod_{p \mid Q}\left(1-\frac{\eta(p)}{p}\right)+O\left(x^{3 B(x)}[(\log x) B(x)]^{K}\right) \tag{4.19}
\end{equation*}
$$

Now observe that

$$
\begin{align*}
\prod_{p \mid Q}\left(1-\frac{\eta(p)}{p}\right)=\prod_{\substack{p \in \mapsto_{2} \\
\left(p, m_{1} \cdot m_{t}\right)=1}}\left(1-\frac{t \rho_{F}(p)}{p}\right) \cdot \prod_{p \mid m_{1} \cdots m_{t}}\left(1-\frac{1}{p}\right) \\
\cdot \prod_{\substack{p \in \wp_{3} \\
\left(p, d_{1} \cdots d_{t}\right)=1}}\left(1-\frac{t \rho_{F}(p)}{p}\right) \cdot \prod_{p \mid d_{1} \cdots d_{t}}\left(1-\frac{1}{p}\right) . \tag{4.20}
\end{align*}
$$

Summing up over all the $\kappa=\kappa\left(\xi_{1}, \ldots, \xi_{t}\right)$ residue classes $\bmod \xi^{* *}$ ，we obtain that

$$
\begin{gather*}
\# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right) \\
=\frac{\kappa\left(\xi_{1}, \ldots, \xi_{t}\right) x \rho_{F}\left(m_{1} \cdots m_{t} d_{1} \cdot d_{t}\right)}{\xi^{* *} m_{1} \cdots m_{t} d_{1} \cdot d_{t}} \cdot \frac{\varphi\left(m_{1} \ldots m_{t}\right)}{m_{1} \cdots m_{t}} \cdot \frac{\varphi\left(d_{1} \ldots d_{t}\right)}{d_{1} \cdots d_{t}} \\
\cdot \prod_{\substack{p \in \wp_{2} \cup_{\wp_{3}} \\
\left(p, m_{1} \cdots m_{t} d_{1} \cdots d_{t}\right)=1}}\left(1-\frac{t \rho_{F}(p)}{p}\right) \cdot\left(1+\theta_{1} \kappa\left(\xi_{1}, \ldots, \xi_{t}\right) H_{1}\right) \\
+ \tag{4.21}\\
+O\left(x^{3 B(x)}[(\log x) B(x)]^{K}\right) .
\end{gather*}
$$

Using the fact that
it follows that

$$
\begin{aligned}
\prod_{p \in \wp_{2} \cup_{\wp>⿱ 乛 ⿰ ㇒ 乛 亅 ㇒ ~}^{\prime}}\left(1-\frac{t \rho_{F}(p)}{p}\right) & =\exp \left\{-t \sum_{p \in \wp_{2} U_{\wp_{3}}} \frac{\rho_{F}(p)}{p}\right\}+c_{1}+O\left(\frac{1}{\varepsilon(x) \log x}\right) \\
& =\exp \left\{-t h \log \log x^{\varepsilon(x)}+c_{1}-t c_{2}\right\}\left(1+O\left(\frac{1}{\varepsilon(x) \log x}\right)\right) \\
& =\left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{t h} e^{c_{3}}\left(1+O\left(\frac{1}{\varepsilon(x) \log x}\right)\right) .
\end{aligned}
$$

Thus，by defining the strongly multiplicative function λ on $\mathcal{N}\left(\wp_{1} \cup \wp_{2} \cup \wp_{3}\right)$ by

$$
\lambda(p)= \begin{cases}1 & \text { if } p \in \wp_{1}, \\ \left(1-\frac{t \rho_{F}(p)}{p}\right)^{-1} \cdot\left(1-\frac{1}{p}\right) & \text { if } p \mid m_{1} \cdots m_{t} d_{1} \cdots d_{t}, \\ 1 & \text { if } p \in \wp_{2} \cup \wp_{3} \text { and }\left(p, m_{1} \cdots m_{t} d_{1} \cdots d_{t}\right)=1 .\end{cases}
$$

then，in light in the above，（4．21）becomes

$$
\begin{aligned}
& \# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right) \\
&= \frac{x}{R} \\
& \frac{\kappa\left(\xi_{1}, \ldots, \xi_{t}\right)}{\xi^{* *}} \cdot \frac{\varphi\left(m_{1} \ldots m_{t}\right)}{m_{1} \cdots m_{t}} \cdot \frac{\varphi\left(d_{1} \ldots d_{t}\right)}{d_{1} \cdots d_{t}} \\
& \cdot \lambda\left(m_{1} \cdots m_{t}\right) \lambda\left(d_{1} \cdots d_{t}\right) \rho_{F}\left(m_{1} \cdots m_{t} d_{1} \cdots d_{t}\right) \\
& \cdot\left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{t h} e^{c_{3}}\left(1+O\left(\frac{1}{\varepsilon(x) \log x}\right)\right) \\
& \cdot\left(1+\theta_{1} \kappa\left(\xi_{1}, \ldots, \xi_{t}\right) H_{1}\right)+O\left(x^{3 B(x)}[(\log x) B(x)]^{K}\right) .
\end{aligned}
$$

Now，from the estimates（4．21）and（4．23），we can formulate the following straight－ forward and important assertions：

Proposition 1. Let $m_{1}^{\prime}, \ldots, m_{t}^{\prime}$ and $d_{1}^{\prime}, \ldots, d_{t}^{\prime}$ be arbitrary permutations of m_{1}, \ldots, m_{t} and d_{1}, \ldots, d_{t} respectively. Then

$$
\begin{aligned}
& \left|\# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right)-\# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}^{\prime}, \ldots, m_{t}^{\prime} ; d_{1}^{\prime}, \ldots, d_{t}^{\prime}\right)\right| \\
& \leq \frac{c x \kappa\left(\xi_{1}, \ldots, \xi_{t}\right)}{\xi^{* *}} \rho_{F}\left(m_{1} \cdots m_{t} d_{1} \cdots d_{t}\right) \cdot\left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{t h}\left(\frac{1}{\varepsilon(x) \log x}+\kappa\left(\xi_{1}, \ldots, \xi_{t}\right) H_{1}\right) \\
& \quad+O\left(x^{3 B(x)}[(\log x) B(x)]^{K}\right) .
\end{aligned}
$$

Proposition 2. Let $M \in \mathcal{N}\left(\wp_{1}\right)$ and $D \in \mathcal{N}\left(\wp_{2}\right)$ be two square-free integers satisfying $M \leq Y^{A_{x}}$ and $D \leq r^{A_{x}}$. Assume that $M=m_{1} \cdots m_{t}$ and $D=d_{1} \cdots d_{t}$. Let $m_{1}^{\prime}, \ldots, m_{t}^{\prime}$ and $d_{1}^{\prime}, \ldots, d_{t}^{\prime}$ be permutations of m_{1}, \ldots, m_{t} and d_{1}, \ldots, d_{t} respectively. Then,

$$
\begin{aligned}
& \left|\# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right)-\# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}^{\prime}, \ldots, m_{t}^{\prime} ; d_{1}^{\prime}, \ldots, d_{t}^{\prime}\right)\right| \\
& \leq \frac{\operatorname{cx\kappa }\left(\xi_{1}, \ldots, \xi_{t}\right)}{\xi^{* *}} \rho_{F}(M D) \cdot\left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{t h}\left(\frac{1}{\varepsilon(x) \log x}+\kappa\left(\xi_{1}, \ldots, \xi_{t}\right) H_{1}\right) \\
& +O\left(x^{3 B(x)}[(\log x) B(x)]^{K}\right) .
\end{aligned}
$$

5 The second part of the proof of Theorem 1

Given a positive integer n, we write it as $n=M(n) S(n)$, where $M(n)$ is the squarefree part of n and $S(n)$ the squarefull part of n. Then we clearly have $f(n)=$ $U^{\omega(S(n))} f(M(n))$, where $U=q_{1}^{\beta_{1}} \cdots q_{v}^{\beta_{v}}$, say. With this set up, we may write $f(m)=$ $f_{1}(m) f_{2}(m)$, where $f_{2}(m) \in \mathcal{N}\left(\left\{q_{1}, \ldots, q_{v}\right\}\right)$ and $f_{1}(m)=f(m) / f_{2}(m)$ satisfies $\left(f_{1}(m), U\right)=$ 1. Of course, f_{1} and f_{2} are easily seen to be multiplicative functions.

Writing $m=M(m) \cdot S(m)$, we have that

$$
f(n) \left\lvert\, f(m) \Longleftrightarrow \begin{cases}(1) & f_{1}(S(n)) \mid f_{1}(S(m)) \\ \text { and } & \\ (2) & f_{1}(S(n)) \cdot U^{\omega(M(n))} \mid f_{1}(S(m)) \cdot U^{\omega(M(m))}\end{cases}\right.
$$

Define $L(S(n))$ as the smallest (nonnegative) integer for which $f_{2}(S(n))$ divides $U^{L(S(n))}$. Then, in order for the condition $f(n) \mid f(m)$ to be satisfied, it is sufficient that the conditions (1) and

$$
\begin{equation*}
L(S(n))+\omega(M(n)) \leq \omega(M(m)) \tag{2}
\end{equation*}
$$

be satisfied, while it is necessary that conditions (1) and

$$
\begin{equation*}
\omega(M(n)) \leq \omega(M(m))+L(S(m)) \tag{2}
\end{equation*}
$$

hold.

From this, it follows that in order to have

$$
f(F(\ell(n))) \mid f(F(\ell+1(n))) \quad(\ell=1, \ldots, t-1)
$$

the conditions

$$
\begin{equation*}
f_{1}(S(F(\ell(n)))) \mid f_{1}(S(F(\ell+1(n)))) \quad(\ell=1, \ldots, t-1) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L\left(S\left(f_{\ell}(n)\right)\right)+\omega\left(M\left(F_{\ell}(n)\right)\right) \leq \omega\left(M\left(F_{\ell}(n)\right)\right) \tag{5.2}
\end{equation*}
$$

are sufficient, while the conditions (5.1) and

$$
\begin{equation*}
\omega\left(M\left(F_{\ell}(n)\right)\right) \leq \omega\left(M\left(F_{\ell+1}(n)\right)\right)+L\left(S\left(f_{\ell+1}\right)\right) \quad(\ell=1, \ldots, t-1) \tag{5.3}
\end{equation*}
$$

are necessary.
Now, let S_{1}, \ldots, S_{t} be squarefull numbers. By using a method developed by Hooley (see [3], Chapter 4) and using also the Eratosthenian sieve, one can prove that

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leq x: S\left(F_{\ell}(n)\right)=S_{\ell}, \ell=1, \ldots, t\right\}=d\left(S_{1}, \ldots, S_{t}\right)+O\left(\frac{x}{\log \log x}\right) \tag{5.4}
\end{equation*}
$$

for some nonnegative constant $d\left(S_{1}, \ldots, S_{t}\right)$ which satisfy

$$
\sum_{S_{1}, \ldots, S_{t}} d\left(S_{1}, \ldots, S_{t}\right)=1
$$

and where the constant implied in the error term is absolute.
Let \mathcal{B} be the set of all those vectors $\left(S_{1}, \ldots, S_{t}\right)$ for which S_{1}, \ldots, S_{t} are squarefull numbers and

$$
\begin{equation*}
f_{1}\left(S_{\ell}(n)\right) \mid f_{1}\left(S_{\ell+1}(n)\right) \quad(\ell=1, \ldots, t-1) \tag{5.5}
\end{equation*}
$$

We will prove that

$$
\begin{equation*}
d_{0}=\frac{1}{t!} \sum_{\left(S_{1}, \ldots, S_{t}\right) \in \mathcal{B}} d\left(S_{1}, \ldots, S_{t}\right) . \tag{5.6}
\end{equation*}
$$

Since

$$
\sum_{\max \left(S_{1}, \ldots, S_{t}\right) \geq Y} d\left(S_{1}, \ldots, S_{t}\right) \rightarrow 0 \text { as } Y \rightarrow \infty
$$

it is sufficient to prove that, for each fixed $\left(S_{1}, \ldots, S_{t}\right) \in \mathcal{B}$,

$$
\begin{gather*}
\frac{1}{x} \#\left\{n \leq x: S\left(F_{\ell}(n)\right)=S_{\ell}, f\left(F_{\ell}(n)\right) \mid f\left(F_{\ell+1}(n)\right) \text { for } \ell=1, \ldots, t\right\} \\
=\frac{1}{t!} d\left(S_{1}, \ldots, S_{t}\right)+o(1) \quad(x \rightarrow \infty) \tag{5.7}
\end{gather*}
$$

Let Y be large enough so that $\max \left(S_{1}, \ldots, S_{t}\right) \leq Y$. We now move on to count the number of those integers $n \leq x$ for which both

$$
\begin{equation*}
S\left(F_{\ell}(n)\right)=S_{\ell} \quad(\ell=1, \ldots, t) \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(F_{\ell}(n)\right) \mid f\left(F_{\ell+1}(n)\right) \quad(\ell=1, \ldots, t) \tag{5.9}
\end{equation*}
$$

hold. We must compute the number of those integers $n \leq x$ appearing in the set displayed in equation (4.3), with the additional condition $S\left(\xi_{\ell} m_{\ell}\right)=S_{\ell}$ and with also d_{ℓ} and $D\left(F_{\ell}(n)\right)$ both squarefree for $\ell=1, \ldots, t$. But it is clear that, choosing $\varepsilon(x)=1 / \log \log \log \log x$, we have

$$
\omega\left(A\left(F_{\ell}(n)\right) B\left(F_{\ell}(n)\right) D\left(F_{\ell}(n)\right)\right) \leq \frac{c}{\varepsilon(x)}+Y \leq c_{1} \log \log \log \log x
$$

In light of (4.6), we only need to consider those $n \leq x$ for which

$$
\begin{equation*}
\max _{i=1, \ldots, t} m_{j} \leq Y^{A_{x}} \text { and } \max _{i=1, \ldots, t} d_{j} \leq r^{A_{x}} \tag{5.10}
\end{equation*}
$$

For now, fix $\xi_{1}, \ldots, \xi_{t}, m_{1}, \ldots, m_{t}, d_{1}, \ldots, d_{t}$ and assume that $\omega\left(d_{i}\right) \neq \omega\left(d_{j}\right)$ when $i \neq j$. Under these conditions, there exists one and only one permutation $d_{1}^{*}, \ldots, d_{t}^{*}$ of d_{1}, \ldots, d_{t} for which $\omega\left(d_{1}^{*}\right)<\cdots<\omega\left(d_{t}^{*}\right)$.

In the event that $\left|\omega\left(d_{i}\right)-\omega\left(d_{j}\right)\right| \geq 2 c_{1} \log \log \log \log x$ whenever $i \neq j$, then (5.9) will hold for the corresponding number n.

Hence, it remains to prove that the sum of $\# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right)$ running over all those $\xi_{1}, \ldots, \xi_{t}, m_{1}, \ldots, m_{t}, d_{1}, \ldots, d_{t}$ for which $\left|\omega\left(d_{i}\right)-\omega\left(d_{j}\right)\right|<$ $2 c_{1} \log \log \log \log x$ holds for some $i \neq j$ is $o(x)$.

In order to prove this, observe that, in light of Proposition 1,

$$
\# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right) \leq \frac{c x \kappa\left(\xi_{1}, \ldots, \xi_{t}\right)}{\xi^{* *}} \rho_{F}\left(m_{1} \cdots m_{t} d_{1} \cdots d_{t}\right) \cdot\left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{t h}
$$

For short, let us write $d_{1} \Delta d_{2}$ to express the condition $\omega\left(d_{1}\right) \leq \omega\left(d_{2}\right) \leq \omega\left(d_{1}\right)+$ $c_{1} \log \log \log \log x$.

We then have

$$
\begin{align*}
& \sum_{\substack{d_{1}, d_{2} \\
d_{1} \Delta d_{2}}} \sum_{\substack{\xi_{1}, \ldots, \xi_{t} \\
m_{1}, \ldots, m_{t} \\
d_{1}, \ldots, d_{t}}} \# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right) \\
& \quad \leq c(Y)\left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{t h} x \sum_{\substack{d_{1}, d_{2} \\
d_{1} \Delta d_{2}}} \frac{\rho_{F}\left(d_{1} d_{2}\right)}{d_{1} d_{2}} \sum_{d_{3}, \ldots, d_{t}} \frac{\rho_{f}\left(d_{3} \ldots d_{t}\right)}{d_{3} \ldots d_{t}} \\
& \quad \leq c(Y)\left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{t h} x\left(\sum_{\substack{ \\
d \in \mathcal{N}\left(\wp_{3}\right)}} \frac{\rho_{F}(d)}{d}\right)^{t-2} \sum_{\substack{d_{1}, d_{2} \\
d_{1} \Delta d_{2}}} \frac{\rho_{F}\left(d_{1} d_{2}\right)}{d_{1} d_{2}} \\
& \quad \leq c(Y)\left(\frac{1}{\log x^{\varepsilon(x)}}\right)^{t h} x\left(\log x^{\varepsilon(x)}\right)^{(t-2) h} \sum_{\substack{d_{1}, d_{2} \\
d_{1} \Delta d_{2}}} \frac{\rho_{F}\left(d_{1} d_{2}\right)}{d_{1} d_{2}} . \tag{5.11}
\end{align*}
$$

Now, because

$$
\sum_{\omega(d)=r} \frac{\rho_{F}(d)}{d} \leq \frac{1}{r!}\left(\sum_{p \in \wp_{3}} \frac{\rho_{F}(p)}{p}\right)^{r} \leq \frac{(h \log \log x+O(1))^{r}}{r!}
$$

it follows, in light of Lemma 3, that, as $x \rightarrow \infty$,

$$
\begin{equation*}
\sum_{\substack{d_{1}, d_{2} \\ d_{1} \Delta d_{2}}} \frac{\rho_{F}\left(d_{1} d_{2}\right)}{d_{1} d_{2}} \leq \sum_{r=1}^{\infty} \frac{(h \log \log x+O(1))^{r}}{r!} \sum_{t=0}^{\left\lfloor c_{1} x_{4}\right\rfloor} \frac{\left(h x_{2}+O(1)\right)^{t+r}}{(t+r)!}=o\left(\log ^{2 h} x\right) \tag{5.12}
\end{equation*}
$$

Using (5.12) in (5.11), it follows that

$$
\sum_{\substack{d_{1}, d_{2} \\ d_{1} \Delta d_{2}}} \sum_{\substack{\xi_{1}, \ldots, \xi_{t} \\ d_{1}, \ldots, m_{t} \\ d_{1}, d_{t}}} \# \mathcal{M}_{x}\left(\xi_{1}, \ldots, \xi_{t} ; m_{1}, \ldots, m_{t} ; d_{1}, \ldots, d_{t}\right)=o(x),
$$

thus proving our claim and thereby completing the proof of Theorem 1.

6 The proof of Theorem 2

The proof of Theorem 2 can be obtained along the same lines as that of Theorem 1. We only provide here the main ideas. Indeed, Hooley [3] proved that

$$
\limsup _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: \text { for some } \ell, C\left(F_{\ell}(p)\right) D\left(F_{\ell}(p)\right) \neq \text { squarefree }\right\}=0
$$

Using this result, the Siegel-Walfisz form of the Prime Number Theorem (Lemma 5) as well as the Bombieri-Vinogradov Inequality (Lemma 6), one can proceed as earlier and prove the analogues of Propositions 1 and 2 , thereby easily completing the proof of Theorem 2 .

7 Further applications

It is interesting to observe that the following two results are consequences of Proposition 1.

Theorem 3. Let F_{1}, \ldots, f_{t} be as in Theorem 1. Then,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(F_{\ell}(n)\right)-h \log \log x}{\sqrt{h \log \log x}}<y_{\ell}, \ell=1, \ldots, t\right\}=\phi\left(y_{1}\right) \ldots \phi\left(y_{t}\right)
$$

Theorem 4. Let F_{1}, \ldots, f_{t} be as in Theorem 2. Then,

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: \frac{\omega\left(F_{\ell}(p)\right)-h \log \log x}{\sqrt{h \log \log x}}<y_{\ell}, \ell=1, \ldots, t\right\}=\phi\left(y_{1}\right) \ldots \phi\left(y_{t}\right) .
$$

8 Final remarks

We now state a few remarks shedding some light on the value of d_{0} and whether it is strictly positive.

The main idea is that the value of d_{0} as well as the fact that it is positive or zero depends on the values taken by f on squarefull numbers.

Remark 4. Let $u(n)$ stand for the squarefull part of n, and $v(n)$ for the part of n, which is coprime to $f(p)$, that is

$$
v(n)=\prod_{q^{a} \| a,(q, f(p))=1} q^{a} .
$$

Under the additional assumption that $f(p)>1$, then

$$
d_{0}=\frac{1}{t!} \lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n<x: v\left(f\left(u\left(F_{j}(n)\right)\right) \mid v\left(f\left(u\left(F_{j+1}(n)\right)\right), j=1, \ldots, t-1\right\} .\right.\right.
$$

Indeed, let $\omega_{k}(n)$ be defined as

$$
\omega_{k}(n):=\sum_{p^{k} \| n} 1
$$

Then, except for a set of density zero,

$$
\min _{1 \leq j<r \leq t}\left|\omega_{1}\left(F_{j}(n)\right)-\omega_{1}\left(F_{r}(n)\right)\right|>\left(\log \log \left(\max _{1 \leq j \leq t} F_{j}(n)\right)^{1 / 3} .\right.
$$

Furthermore for any function $g(n)$ tending to infinity with n, if $u(n)$ stands for the squarefull part of n,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n<x: \max _{1 \leq j \leq t} f\left(u\left(F_{j}(n)\right)\right)>g(n)\right\}=0
$$

From the above equations, it follows that except on a set of zero density,

$$
f\left(F_{j}(n)\right) \mid f(F)_{j+1}(n) \Longleftrightarrow v\left(f\left(u\left(F_{j}(n)\right)\right) \mid v\left(f\left(u\left(F_{j+1}(n)\right)\right),\right.\right.
$$

thus completing the proof of our claim.

Remark 5. The constant d_{0} will be positive regardless of the polynomials F if and only if for any values of A and n, there exists a number m such that $p \mid m \Rightarrow p>A$ and $v(f(u(n)) \mid v(f(u(m))$.

In order to prove this, first assume that the assumption does not hold. Let n_{0} and A_{0} be such that if $m>n_{0}$ and $v\left(f\left(u\left(n_{0}\right)\right) \mid v\left(f(u(m))\right.\right.$, then there is prime $p<A_{0}$ such that $p \mid m$. Set $t=\left(u\left(n_{0}\right) \prod_{p<A_{0}} p\right)^{2}$ and $F_{j}(n)=n+j$. Then for at least one j, $f\left(u\left(n_{0}\right)\right) \mid f(n+j)$ while $\left(n+j+1, \prod_{p<A} p\right)=1$. It follows that $f(n+j)$ does not divide $f(n+j+1)$. Assume now that the assumption holds. Let $F_{j}(n)$ be a suitable family of polynomials. Choose Y large enough such that for any t-uple m_{1}, \ldots, m_{t} of integers, and for any prime $p>Y$, there exists n such that $F_{j}(n) \equiv m_{j}(\bmod p)$. It follows that n can be chosen so that

$$
v\left(f\left(u\left(F_{j}(n)\right)\right)\right) \quad \text { divides } \quad v\left(f\left(u\left(F_{j+1}(n)\right)\right)\right),
$$

thus completing the proof.

Remark 6. Assume that f is such that on prime powers p^{a}, we have $f\left(p^{a}\right)=g(a)$ for a certain function g. Then, for any value of t and any family of polynomials F_{1}, \ldots, F_{t}, we have that d_{0} is strictly positive.

Indeed, this is an easy corollary of Remark 5.

The following remark provides perhaps the simplest instance for which $d_{0}=0$.
Remark 7. Let f be a multiplicative function such that $f(p)=1$ and $f\left(p^{a}\right)=p^{a}$ if $a \geq 2$. Then there exists no integer n such that

$$
f(n)|f(n+1)| f(n+2)|f(n+3)| f(n+4)
$$

Indeed, for exactly one value of $j=0,1,2,3$, we have that $n+j$ is divisible by 4. It follows that $f(n+j)$ is even while $f(n+j+1)$ is odd, a non sense.

References

[1] P.D.T.A. Elliott, Probabilistic Number Theory I, Mean Value Theorems, SpringerVerlag, Berlin, 1979
[2] H.H. Halberstam and H.E. Richert, Sieve Methods, Academic Press, London, 1974.
[3] C. Hooley, Applications of Sieve Methods to the Theory of Numbers, Cambridge University Press, 1976.
[4] A. Ivić, The Riemann Zeta-Function, Dover, New York, 1985.
[5] H. Iwaniec and E. Kowalski, Analytic Number heory, AMS Colloquium Publications, Vol. 53, 2004.
[6] E. Landau, Neuer Bewis der Primzahlsatzes und Bewis der primidealsatzes, Math. Ann. 56 (1903), 645-670.
[7] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.
[8] M. Tanaka, On the number of prime factors of integers I, Japan J. Math. 25 (1955), 1-20.

Jean-Marie De Koninck	Nicolas Doyon	Imre Kátai
Dép. de mathématiques	Dép. de mathématiques	Computer Algebra Department
Université Laval	Université Laval	Eötvös Loránd University
Québec	Québec	1117 Budapest
Québec G1V 0A6	Québec G1V 0A6	Pázmány Péter Sétány I/C
Canada	Canada	Hungary
jmdk@mat.ulaval.ca	nicolas.doyon@mat.ulaval.ca	katai@compalg.inf.elte.hu

JMDK, le 14 novembre 2009; fichier: tau-polynom-oct2009.tex

