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1 Introduction

Let f : N→ Z\{0} be a multiplicative function which is constant at prime arguments
and let F1, F2, . . . , Ft be polynomials with integer coefficients. We establish minimal
conditions on the polynomials Fi’s which guaranty that

lim
x→∞

1

x
#{n ≤ x : f(Fj(n))|f(Fj+1(n)) for i = 1, 2, . . . , t− 1} exists.

Given g ∈ Z[x], we let ρg(m) = #{u mod m : g(u) ≡ 0 (mod m)} and we write
Discr(g) to denote the discriminant of g. Given Q1, Q2 ∈ Z[x], we let Res(Q1, Q2)
stand for their resultant.

Given a positive integer n, we let τ(n) stand for the number of divisors of n and,
for any fixed integer k ≥ 1, we let τk(n) stand for the number of ways one can write
n as the product of k positive integers taking into account the order in which they
are written. For each n ≥ 2, let β(n) stand for the product of the exponents in the
prime factorization of n, with β(1) = 1. Let ω(n) stand for the number of distinct
prime factors of n ≥ 2, with ω(1) = 0.

Let π(x; k, `) stand for the number of primes p ≤ x such that p ≡ ` (mod k).
We denote by LCM(a1, . . . , ak) the least common multiple of the positive integers

a1, . . . , ak. In what follows, c, c1, c2, . . . stand for absolute positive constants, while p
and q, with or without subscripts, always stand for prime numbers.

At times, we shall also write x1 for log x, x2 for log log x, and so on.

2 Main results

Theorem 1. Let f : N → Z \ {0} be a multiplicative function which is constant at
prime arguments. Given distinct irreducible primitive monic polynomials Q1, Q2, . . . , Qh

each of degree no larger than 3, define F (x) := Q1(x)Q2(x) · · ·Qh(x). For each

ν = 1, 2, . . . , t, let c
(ν)
1 , c

(ν)
2 , . . . , c

(ν)
h be distinct integers, Fν(x) =

∏h
j=1 Qj(x + c

(ν)
j )

(ν = 1, 2, . . . , t). Let us assume that (Fν(x), Fµ(x)) = 1 if ν 6= µ. Then, there exists
a non negative constant d0 such that

lim
x→∞

1

x
#{n ≤ x : f(F`(n)) divides f(F`+1(n)) for ` = 1, 2, . . . , t− 1} = d0.
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Remark 1. The condition (Fν(x), Fµ(x)) = 1 for ν 6= µ holds if the numbers

c
(ν)
1 , . . . , c

(ν)
h (ν = 1, . . . , t) are chosen in such a manner that Qj(x+c

(ν)
j ) 6= Qi(x+c

(µ)
i )

holds whenever i 6= j for arbitrary values of ν and µ.

Remark 2. Interesting arithmetic functions to which one can apply Theorem 1 are
τ(n), τk(n), β(n) and also a(n), the number of finite non isomorphic abelian groups
with n elements (studied in particular by Ivić [4]).

Remark 3. From the proof of Theorem 1, the following assertion follows:

If there exists at least one positive integer n0 such that

f(F`(n0)) divides f(F`+1(n0)) (` = 1, . . . , t− 1),

then d0 > 0.

Theorem 2. Let f be as in Theorem 1 and let Q1, Q2, . . . , Qh be distinct irreducible
primitive monic polynomials of degree no larger than 2. Then define F (x) and Fν(x)
(ν = 1, 2, . . . , t) as in Theorem 1. Then, there exists a non negative constant e0 such
that

lim
x→∞

1

π(x)
#{p ≤ x : f(F`(p)) divides f(F`+1(p)) for ` = 1, 2, . . . , t− 1} = e0.

3 Preliminary lemmas

Lemma 1. Given F1, F2 ∈ Z[x], which are relatively prime, then the congruences

F1(m) ≡ 0 (mod a) and F2(m) ≡ 0 (mod a)

have common roots for at most finitely many a’s.

Proof. A proof of this result was established by Tanaka [8].

Lemma 2. Let F (m) be an arbitrary primitive polynomial with integer coefficients
and of degree ν. Let D be the discriminant of F and assume that D 6= 0. Let ρ(m) be
the number of solutions n of F (n) ≡ 0 (mod m). Then ρ is a multiplicative function
whose values on the prime powers satisfy

ρ(pα)

{
= ρ(p) if p 6 |D,
≤ 2D2 if p|D.

Moreover, there exists a positive constant c = c(f) such that ρ(pα) ≤ c for all prime
powers pα.

Proof. This assertion is well known.
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Lemma 3. If g ∈ Q[x] is an irreducible polynomial and ρ(m) stands for the number
of residue classes mod m for which g(n) ≡ 0 (mod m), then

(i)
∑
p≤x

ρ(p) =
x

log x
+O

(
x

log2 x

)
;

(ii)
∑
p≤x

ρ(p)

p
= log log x+ C +O

(
1

log x

)
.

Proof. This result is due to Landau [6].

Lemma 4. (Brun-Titchmarsh Inequality) There exists a positive constant c3

such that
π(x; k, `) < c3

x

ϕ(k) log(x/k)
.

Proof. For a proof, see the book of Halberstam and Richert [2].

Lemma 5. (Siegel-Walfisz Theorem) There exists a constant c > 0 such that
for every fixed number A > 0, the estimate

π(x; k, `)− li(x)

ϕ(k)
= O

(
xe−c

√
log x
)

holds uniformly, as (`, k) = 1, for k ≤ logA x.

Proof. For a proof, see the book of Prachar [7].

Lemma 6. (Bombieri-Vinogradov Theorem) Given any fixed number A > 0,
there exists a number B = B(A) > 0 such that∑

k≤
√
x/(logB x)

max
(k,`)=1

max
y≤x

∣∣∣∣π(x; k, `)− li(x)

ϕ(k)

∣∣∣∣ = O

(
x

logA x

)
.

Moreover, an appropriate choice for B(A) is 2A+ 6.

Proof. For a proof, see the book of Iwaniec and Kowalski [5].

Lemma 7. Let F be a square-free integer coefficients polynomial of positive degree
such that the degree of each of its irreducible factors is of degree no larger than 3. Let
Y (x) be a function which tends to +∞ as x→ +∞. Then

lim
x→∞

1

x
{n ≤ x : p2|F (n) for some p > Y (x)} = 0.

Proof. For a proof, see the book of Hooley [3] (pp. 62-69).
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Lemma 8. Let F and Y be as in Lemma 7. Assume that each of the irreducible
factors of F is of degree no larger than 2 and that F (0) 6= 0. Then

lim
x→∞

1

π(x)
{p ≤ x : q2|F (p) for some q > Y (x)} = 0.

Proof. For a proof, see the book of Hooley [3] (pp. 69-72).

Lemma 9. Let f(n) be a real valued non negative arithmetic function. Let an, n =
1, . . . , N , be a sequence of integers. Let r be a positive real number, and let p1 < p2 <
· · · < ps ≤ r be prime numbers. Set Q = p1 · · · ps. If d|Q, then let

(3.1)
N∑
n=1

an≡0 (mod d)

f(n) = η(d)X +R(N, d),

where X and R are real numbers, X ≥ 0, and η(d1d2) = η(d1)η(d2) whenever d1 and
d2 are co-prime divisors of Q.

Assume that for each prime p, 0 ≤ η(p) < 1. Setting

I(N,Q) :=
N∑
n=1

(an,Q)=1

f(n),

then the estimate

I(N,Q) = {1 + 2θ1H}X
∏
p|Q

(1 + η(p)) + 2θ2

∑
d|Q
d≤z3

3ω(d)|R(N, d)|

holds uniformly for r ≥ 2, max(log r, S) ≤ 1
8

log z, where |θ1| ≤ 1, |θ2| ≤ 1, and

H = exp

(
− log z

log r

{
log

(
log z

S

)
− log log

(
log z

S

)
− 2S

log z

})
and

S =
∑
p|Q

η(p)

1− η(p)
log p.

When these conditions are satisfied, there exists an absolute positive constant c such
that 2H ≤ c < 1.

Proof. This result is Lemma 2.1 in the book of Elliott [1].
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4 The first part of the proof of Theorem 1

Since ρQj(x)(m) = ρQj(x+c)(m) for any constant c, it follows that ρFν (m) = ρFµ(m).
Observe also that Res(Qi, Qj) 6= 0 if i 6= j. We shall now define four sets of primes,
namely ℘1, ℘2, ℘3, ℘4, as follows.

First, as elements of ℘1, we include

1. the prime divisors of
∏

1≤i<j≤h

Res(Qi, Qj),

2. the prime divisors of
∏

1≤i≤h

Discr(Qi),

3. those primes p for which tρF (p) ≥ p,

4. and no other primes.

Then, let N (℘1) be the semigroup generated by the set of primes ℘1.
Observe that:

(a) If (m,N (℘1)) = 1, then ρF (m) = ρQ1(m) + . . .+ ρQh(m).

(b) If (m1m2,N (℘1)) = 1 with (m1,m2) = 1, then ρF (m1m2) = ρF (m1) + ρF (m2).

(c) If p 6∈ ℘1, then ρ(pa) = ρ(p) for each a ∈ N.

Let Y = Y (x) be a large number. Moreover, let Ax and ε(x) be such that
ε(x)Ax → 0 as x→∞, and define r = rx = xε(x).

We now define the other sets of primes ℘2, ℘3 and ℘4 (which depend on x) as
follows:

℘2 = {p : p ≤ Y, p 6∈ ℘1},
℘3 = {p : Y < p ≤ r},
℘4 = {p : p > r}.

Now consider the sets N (℘2), N (℘3), N (℘4), that is the semigroups generated
respectively by the sets of primes ℘2, ℘3, ℘4.

For each positive integer ν, we now define A(ν), B(ν), C(ν) and D(ν) by

ν = A(ν)B(ν)C(ν)D(ν),

where
A(ν) ∈ N (℘1), B(ν) ∈ N (℘2), C(ν) ∈ N (℘3), D(ν) ∈ N (℘4).

Finally, let T (u) :=
∏

p≤u p.
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We now choose ξ1, ξ2, . . . , ξt ∈ N (℘1) in such a way that there exists at least one
solution n = n0 of

(4.1) Fν(n) ≡ 0 (mod ξν),

(
Fν(n)

ξν
,N (℘1)

)
= 1 (ν = 1, . . . , t).

Further define

ξ∗ = LCM(ξ1, . . . , ξt),

ξ∗∗ = ξ∗
∏
p∈℘1

p.

Clearly, (4.1) holds for all those positive integers n for which n ≡ n0 (mod ξ∗∗).
Now let κ = κ(ξ1, . . . , ξt) be the number of those residue classes r (mod ξ∗∗) for

which

(4.2) Fν(r) ≡ 0 (mod ξν),

(
Fν(r)

ξν
,N (℘1)

)
= 1 (ν = 1, . . . , t)

holds. Note that, in the case where (4.1) has no solutions, we simply set κ(ξ1, . . . , ξt) =
0.

We now choose

m1, . . . ,mt ∈ N (℘2), (mi,mj) = 1 if i 6= j,

d1, . . . , dt ∈ N (℘3), (di, dj) = 1 if i 6= j.

With these notations in mind, we introduce the set

Mx =Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt)

= {n ≤ x : A(F`(n)) = ξ`, B(F`(n)) = m`, C(F`(n)) = d` for ` = 1, . . . , t}.(4.3)

Observe that if (mi,mj) > 1 or (di, dj) > 1 for some i 6= j, then

Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt) = ∅.

One can easily see that Mx is the set of those integers n ≤ x for which

(4.4) ξjmjdj|Fj(n),

(
Fj(n)

ξjmjdj
, T (r)

)
= 1 for j = 1, . . . , t.

We now let E(ξ1, . . . , ξt) be the set of those integers n for which (4.4) holds for
j = 1, . . . , t for an appropriate choice of m1, . . . ,mt, d1, . . . , dt.

Let ν1, . . . , νt be those residues mod ξ∗∗ for which E(ξ1, . . . , ξt) is covered exactly
by

t⋃
u=1

{n ≤ x : n ≡ νu (mod ξ∗∗)},
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that is, if n ∈ E(ξ1, . . . , ξt), then n ≡ νu (mod ξ∗∗) for some u ∈ {1, . . . , κ}, and

{n ≤ x : n ≡ νu (mod ξ∗∗)} ∩ E(ξ1, . . . , ξt) 6= ∅.

Now let ξ1, . . . , ξt, ν ∈ {ν1, . . . , νκ}, where κ = κ(ξ1, . . . , ξt) is fixed. Then the fact
that n ≡ ν (mod ξ∗∗) guarantees that(

F`(n)

ξ`
, ξ∗∗

)
= 1 (` = 1, . . . , t)

holds.
We further define

m = (m1, . . . ,mt),

d = (d1, . . . , dt),

and

M̃x(ν (mod ξ∗∗);m, d)

= {n ≤ x : n ≡ ν (mod ξ∗∗), B(Fj(n)) = mj, C(Fj(n)) = dj for j = 1, . . . , t}

Observe that, for each j = 1, . . . , t, the number of solutions of Fj(ν + sξ∗∗) ≡ 0
(mod mjdj) modm1 . . .mtd1 . . . dt is equal to ρ(m1 . . .mt)ρ(d1 . . . dt).

Let µ0 be one of these solutions, that is let 0 ≤ µ0 < m1 . . .mtd1 . . . dt, Fj(ν +
µ0ξ

∗∗) ≡ 0 (mod mjdj) (j = 1, . . . , t), and set

(4.5) R = ξ∗∗m1 . . .mtd1 . . . dt.

We would like to estimate the size of the number of those integers k ≤ x/R for which

ϕj(k) :=
Fj(ν + µ0ξ

∗∗ + kR)

ξjmjdj

is coprime to T (r) for every j = 1, . . . , t.
We shall only consider those k ≤ x/R for which mj, dj are both not very large,

that is when mj ≤ Y Ax and dj ≤ rAx . Indeed, one can easily prove, in light of Lemma
7, that

(4.6) lim
x→∞

1

x
#{n ≤ x : maxmj > Y Ax or max dj > rAx} = 0,

and we will therefore skip the proof. Now, define

(4.7) Φ(k) := ϕ1(k) · · ·ϕt(k).

Since, if p ∈ ℘1, then ρϕj(p
a) = ρϕj(p) = 0, it follows that ρΦ(pa) = ρΦ(p) = 0.

Furthermore, if p ∈ ℘2 ∪ ℘3, then ρϕj(p
a) = ρϕj(p) and we shall prove that
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(P1) if p|djmj, then ρϕj(p) = 1 and ρϕ`(p) = 0 for all ` 6= j;

(P2) if (p, d1m1 · · · dtmt) = 1, then ρϕj(p) = ρ(p) for j = 1, . . . , t.

Consequently, assuming that (P1) and (P2) are true, and letting η(M) stand for the
number of those k (mod M) for which Φ(k) ≡ 0 (mod M), we then have

(4.8) η(pa) =


0 if p ∈ ℘1,
ρϕj(p) = 1 if p ∈ ℘2 ∪ ℘3 and p|djmj,
tρ(p) if p ∈ ℘2 ∪ ℘3 and (p, d1m1 · · · dtmt) = 1.

We now prove (P1). We prove it only in the case j = 1, the general case being
similar. Assume that p|d1 (the same reasoning would work if one assumes that p|m1).
Let a be the positive integer defined by pa‖d1. Then,

ϕ1(k) ≡ 0 (mod p)⇐⇒ F1(ν + µ0ξ
∗∗ + kR) ≡ 0 (mod pa+1),

meaning that, since ρϕ1(p) stands for the number of solutions k of ϕ1(k) ≡ 0 (mod p),
while ρF1(pa+1) stands for the number of solutions of F1(ν+µ0ξ

∗∗+kR) ≡ 0 (mod pa+1),
it follows that ρϕ1(p) = ρF1(p) = 1. It remains to prove that ρϕ`(p) = 0 if ` 6= 1. To
do so, we assume that ρϕ`(p) 6= 0. In this case, we have that p|ϕ1(k1) and p|ϕ`(k2),
in which case

F1(ν + µ0ξ
∗∗ + k1R) ≡ 0 (mod p),

F`(ν + µ0ξ
∗∗ + k2R) ≡ 0 (mod p).

Now, in light of (4.5), we have that p|R, implying that

F1(ν + µ0ξ
∗∗) ≡ 0 (mod p),

F`(ν + µ0ξ
∗∗) ≡ 0 (mod p),

which is an impossible situation in light of Lemma 1, because F1(a) = 0 and F2(a)
cannot occur simultaneously due to the fact that p 6∈ ℘1. This completes the proof of
(P1).

The proof of (P2) is almost obvious. Indeed,

ϕ1(k) ≡ 0 (mod p)⇐⇒ F1(ν + µ0ξ
∗∗ + kR) ≡ 0 (mod p).

Thus, F1(u) ≡ 0 (mod p) holds for u = u1, . . . , uρ(p) mod p, and therefore, ν+µ0ξ
∗∗+

kR ≡ uj (mod p) (j = 1, . . . , ρ(p)) can be solved in k.

We now move on to estimate #M and #M̃ using Lemma 9. We choose Q = T (r),
f(k) = 1, ak = Ψ(k) defined in (4.7), X = x/R (as in (4.5)) and η as defined in (4.8).
We thus obtain ∑

k≤X
ak≡0 (mod d)

1 =
η(d)

d
X +R(X, d)
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with

(4.9) |R(X, d)| ≤ tρ(d).

With I(X,Q) := #{k ≤ X : (ak, Q) = 1}, we obtain from Lemma 9 that

(4.10) I(X,Q) = (1 +O(H))
x

R

∏
p|Q

(
1− η(p)

p

)
+O

∑
d|Q
d≤z3

3ω(d)|R(X, d)|

 .

In light of (4.9), we have that

(4.11)
∑
d|Q
d≤z3

3ω(d)|R(X, d)| ≤ t
∑
d|Q
d≤z3

3ω(d)η(d).

We shall prove that for z ≥ 2,

(4.12)
∑
d|Q
d≤z3

3ω(d)η(d) ≤ cz3(log z)K ,

for a suitable large constant K.

∑
d≤Y

3ω(d)η(d)|µ(d)| log d ≤
∑
pu≤Y

3ω(pu)(log p)η(p)η(u)|µ(u)|

≤ 3
∑
u≤Y

3ω(u)η(u)|µ(u)|
∑
p≤Y/u

η(p) log p.(4.13)

Since
∑
p≤Y/u

η(p) log p ≤ c
Y

u
, (4.13) becomes

∑
d≤Y

3ω(d)η(d)|µ(d)| log d ≤ cY
∑
u≤Y

3ω(u)η(u)

u
|µ(u)|

≤ cY
∏
p≤Y

(
1 +

3η(p)

p

)
≤ cY exp

{
3
∑
p≤Y

η(p)

p

}
≤ cY exp(3th log log Y ) = cY (log Y )3th.(4.14)

Let us write

(4.15)
∑
d≤Y

3ω(d)η(d)|µ(d)| =
∑
d≤
√
Y

+
∑

√
Y <d≤Y

= S1 + S2,

say.
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Clearly we have

(4.16) S1 �
√
Y · Y ε,

where ε > 0 can be taken arbitrarily small.
On the other hand, in light of (4.14), we have

(4.17) S2 ≤
2

log Y
· cY (log Y )3th � Y (log Y )3th−1.

Setting Y = z3 and using (4.16) and (4.17) in (4.14) proves (4.12).

We now move to obtain the size of S and to find an upper bound for H.
First of all, since

0 <
c1

p
<

η(p)

p− η(p)
<
c2

p
if p ∈ ℘2 ∪ ℘2,

while η(p) = 0 if p ∈ ℘1,

it follows that

(4.18) S � log r � ε(x) log x.

Let B(x) be a real valued function satisfying B(x)→ 0 and B(x)/ε(x)→ +∞ as
x→∞, and set z = xB(x).

Note that, in our context, the condition max(log r, S) ≥ 1
8

log z (of Lemma 9)
clearly holds for every large x.

Then, we have

H = exp

{
− log z

ε(x) log x

[
log

(
log z

ε(x) log x

)
− log log

(
log z

ε(x) log x

)
− 2ε(x) log x

log z
+O(1)

]}
.

From this representation, it follows that

0 ≤ H ≤ C exp

{
−1

2

B(x)

ε(x)
log

(
B(x)

ε(x)

)}
=: H1,

for an appropriate constant C.
Hence, applying Lemma 9, we obtain

(4.19) I(X,Q) = {1 +O(H1)} x
R

∏
p|Q

(
1− η(p)

p

)
+O

(
x3B(x) [(log x)B(x)]K

)
.

Now observe that∏
p|Q

(
1− η(p)

p

)
=

∏
p∈℘2

(p,m1·mt)=1

(
1− tρF (p)

p

)
·
∏

p|m1···mt

(
1− 1

p

)

·
∏
p∈℘3

(p,d1···dt)=1

(
1− tρF (p)

p

)
·
∏

p|d1···dt

(
1− 1

p

)
.(4.20)
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Summing up over all the κ = κ(ξ1, . . . , ξt) residue classes mod ξ∗∗, we obtain that

#Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt)

=
κ(ξ1, . . . , ξt)xρF (m1 · · ·mtd1 · dt)

ξ∗∗m1 · · ·mtd1 · dt
· ϕ(m1 . . .mt)

m1 · · ·mt

· ϕ(d1 . . . dt)

d1 · · · dt

·
∏

p∈℘2∪℘3
(p,m1···mtd1···dt)=1

(
1− tρF (p)

p

)
· (1 + θ1κ(ξ1, . . . , ξt)H1)

+ O
(
x3B(x) [(log x)B(x)]K

)
.(4.21)

Using the fact that

∑
p∈℘2∪℘3

ρF (p)

p
=

h∑
j=1

∑
p∈℘2∪℘3

ρQj(p)

p
= h log log xε(x) + c2 +O

(
1

ε(x) log x

)
,

it follows that∏
p∈℘2∪℘3

(
1− tρF (p)

p

)
= exp

{
−t

∑
p∈℘2∪℘3

ρF (p)

p

}
+ c1 +O

(
1

ε(x) log x

)
= exp{−th log log xε(x) + c1 − tc2}

(
1 +O

(
1

ε(x) log x

))
=

(
1

log xε(x)

)th
ec3
(

1 +O

(
1

ε(x) log x

))
.(4.22)

Thus, by defining the strongly multiplicative function λ on N (℘1 ∪ ℘2 ∪ ℘3) by

λ(p) =


1 if p ∈ ℘1,(

1− tρF (p)
p

)−1

·
(

1− 1
p

)
if p|m1 · · ·mtd1 · · · dt,

1 if p ∈ ℘2 ∪ ℘3 and (p,m1 · · ·mtd1 · · · dt) = 1.

,

then, in light in the above, (4.21) becomes

#Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt)

=
x

R

κ(ξ1, . . . , ξt)

ξ∗∗
· ϕ(m1 . . .mt)

m1 · · ·mt

· ϕ(d1 . . . dt)

d1 · · · dt
·λ(m1 · · ·mt)λ(d1 · · · dt)ρF (m1 · · ·mtd1 · · · dt)

·
(

1

log xε(x)

)th
ec3
(

1 +O

(
1

ε(x) log x

))
·(1 + θ1κ(ξ1, . . . , ξt)H1) +O

(
x3B(x) [(log x)B(x)]K

)
.

Now, from the estimates (4.21) and (4.23), we can formulate the following straight-
forward and important assertions:
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Proposition 1. Let m′1, . . . ,m
′
t and d′1, . . . , d

′
t be arbitrary permutations of m1, . . . ,mt

and d1, . . . , dt respectively. Then

|#Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt)−#Mx(ξ1, . . . , ξt;m
′
1, . . . ,m

′
t; d
′
1, . . . , d

′
t)|

≤ cxκ(ξ1, . . . , ξt)

ξ∗∗
ρF (m1 · · ·mtd1 · · · dt) ·

(
1

log xε(x)

)th(
1

ε(x) log x
+ κ(ξ1, . . . , ξt)H1

)
+O

(
x3B(x) [(log x)B(x)]K

)
.

Proposition 2. Let M ∈ N (℘1) and D ∈ N (℘2) be two square-free integers satisfying
M ≤ Y Ax and D ≤ rAx. Assume that M = m1 · · ·mt and D = d1 · · · dt. Let
m′1, . . . ,m

′
t and d′1, . . . , d

′
t be permutations of m1, . . . ,mt and d1, . . . , dt respectively.

Then,

|#Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt)−#Mx(ξ1, . . . , ξt;m
′
1, . . . ,m

′
t; d
′
1, . . . , d

′
t)|

≤ cxκ(ξ1, . . . , ξt)

ξ∗∗
ρF (MD) ·

(
1

log xε(x)

)th(
1

ε(x) log x
+ κ(ξ1, . . . , ξt)H1

)
+O

(
x3B(x) [(log x)B(x)]K

)
.

5 The second part of the proof of Theorem 1

Given a positive integer n, we write it as n = M(n)S(n), where M(n) is the square-
free part of n and S(n) the squarefull part of n. Then we clearly have f(n) =
Uω(S(n))f(M(n)), where U = qβ1

1 · · · qβvv , say. With this set up, we may write f(m) =
f1(m)f2(m), where f2(m) ∈ N ({q1, . . . , qv}) and f1(m) = f(m)/f2(m) satisfies (f1(m), U) =
1. Of course, f1 and f2 are easily seen to be multiplicative functions.

Writing m = M(m) · S(m), we have that

f(n)|f(m)⇐⇒


(1) f1(S(n))|f1(S(m))
and

(2) f1(S(n)) · Uω(M(n))
∣∣∣f1(S(m)) · Uω(M(m))

Define L(S(n)) as the smallest (nonnegative) integer for which f2(S(n)) divides
UL(S(n)). Then, in order for the condition f(n)|f(m) to be satisfied, it is sufficient
that the conditions (1) and

(2)′ L(S(n)) + ω(M(n)) ≤ ω(M(m))

be satisfied, while it is necessary that conditions (1) and

(2)′′ ω(M(n)) ≤ ω(M(m)) + L(S(m))

hold.

12



From this, it follows that in order to have

f(F (`(n)))|f(F (`+1(n))) (` = 1, . . . , t− 1),

the conditions

(5.1) f1(S(F (`(n))))|f1(S(F (`+1(n)))) (` = 1, . . . , t− 1)

and

(5.2) L(S(f`(n))) + ω(M(F`(n))) ≤ ω(M(F`(n)))

are sufficient, while the conditions (5.1) and

(5.3) ω(M(F`(n))) ≤ ω(M(F`+1(n))) + L(S(f`+1)) (` = 1, . . . , t− 1)

are necessary.
Now, let S1, . . . , St be squarefull numbers. By using a method developed by Hooley

(see [3], Chapter 4) and using also the Eratosthenian sieve, one can prove that

(5.4)
1

x
#{n ≤ x : S(F`(n)) = S`, ` = 1, . . . , t} = d(S1, . . . , St) +O

(
x

log log x

)
,

for some nonnegative constant d(S1, . . . , St) which satisfy∑
S1,...,St

d(S1, . . . , St) = 1,

and where the constant implied in the error term is absolute.
Let B be the set of all those vectors (S1, . . . , St) for which S1, . . . , St are squarefull

numbers and

(5.5) f1(S`(n))|f1(S`+1(n)) (` = 1, . . . , t− 1).

We will prove that

(5.6) d0 =
1

t!

∑
(S1,...,St)∈B

d(S1, . . . , St).

Since ∑
max(S1,...,St)≥Y

d(S1, . . . , St)→ 0 as Y →∞,

it is sufficient to prove that, for each fixed (S1, . . . , St) ∈ B,

1

x
#{n ≤ x : S(F`(n)) = S`, f(F`(n))|f(F`+1(n)) for ` = 1, . . . , t}

=
1

t!
d(S1, . . . , St) + o(1) (x→∞).(5.7)
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Let Y be large enough so that max(S1, . . . , St) ≤ Y . We now move on to count
the number of those integers n ≤ x for which both

(5.8) S(F`(n)) = S` (` = 1, . . . , t)

and

(5.9) f(F`(n))|f(F`+1(n)) (` = 1, . . . , t)

hold. We must compute the number of those integers n ≤ x appearing in the set
displayed in equation (4.3), with the additional condition S(ξ`m`) = S` and with
also d` and D(F`(n)) both squarefree for ` = 1, . . . , t. But it is clear that, choosing
ε(x) = 1/ log log log log x, we have

ω(A(F`(n))B(F`(n))D(F`(n))) ≤ c

ε(x)
+ Y ≤ c1 log log log log x.

In light of (4.6), we only need to consider those n ≤ x for which

(5.10) max
i=1,...,t

mj ≤ Y Ax and max
i=1,...,t

dj ≤ rAx .

For now, fix ξ1, . . . , ξt,m1, . . . ,mt, d1, . . . , dt and assume that ω(di) 6= ω(dj) when
i 6= j. Under these conditions, there exists one and only one permutation d∗1, . . . , d

∗
t

of d1, . . . , dt for which ω(d∗1) < · · · < ω(d∗t ).
In the event that |ω(di)− ω(dj)| ≥ 2c1 log log log log x whenever i 6= j, then (5.9)

will hold for the corresponding number n.
Hence, it remains to prove that the sum of #Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt)

running over all those ξ1, . . . , ξt,m1, . . . ,mt, d1, . . . , dt for which |ω(di) − ω(dj)| <
2c1 log log log log x holds for some i 6= j is o(x).

In order to prove this, observe that, in light of Proposition 1,

#Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt) ≤
cxκ(ξ1, . . . , ξt)

ξ∗∗
ρF (m1 · · ·mtd1 · · · dt)·

(
1

log xε(x)

)th
.

For short, let us write d1∆d2 to express the condition ω(d1) ≤ ω(d2) ≤ ω(d1) +
c1 log log log log x.
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We then have∑
d1,d2
d1∆d2

∑
ξ1,...,ξt
m1,...,mt
d1,...,dt

#Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt)

≤ c(Y )

(
1

log xε(x)

)th
x
∑
d1,d2
d1∆d2

ρF (d1d2)

d1d2

∑
d3,...,dt

ρf (d3 . . . dt)

d3 . . . dt

≤ c(Y )

(
1

log xε(x)

)th
x

 ∑
d∈N (℘3)

ρF (d)

d

t−2 ∑
d1,d2
d1∆d2

ρF (d1d2)

d1d2

≤ c(Y )

(
1

log xε(x)

)th
x
(
log xε(x)

)(t−2)h ∑
d1,d2
d1∆d2

ρF (d1d2)

d1d2

.(5.11)

Now, because∑
ω(d)=r

ρF (d)

d
≤ 1

r!

(∑
p∈℘3

ρF (p)

p

)r

≤ (h log log x+O(1))r

r!
,

it follows, in light of Lemma 3, that, as x→∞,

(5.12)
∑
d1,d2
d1∆d2

ρF (d1d2)

d1d2

≤
∞∑
r=1

(h log log x+O(1))r

r!

bc1x4c∑
t=0

(hx2 +O(1))t+r

(t+ r)!
= o(log2h x).

Using (5.12) in (5.11), it follows that∑
d1,d2
d1∆d2

∑
ξ1,...,ξt
m1,...,mt
d1,...,dt

#Mx(ξ1, . . . , ξt;m1, . . . ,mt; d1, . . . , dt) = o(x),

thus proving our claim and thereby completing the proof of Theorem 1.

6 The proof of Theorem 2

The proof of Theorem 2 can be obtained along the same lines as that of Theorem 1.
We only provide here the main ideas. Indeed, Hooley [3] proved that

lim sup
x→∞

1

π(x)
#{p ≤ x : for some `, C(F`(p))D(F`(p)) 6= squarefree} = 0.

Using this result, the Siegel-Walfisz form of the Prime Number Theorem (Lemma 5)
as well as the Bombieri-Vinogradov Inequality (Lemma 6), one can proceed as earlier
and prove the analogues of Propositions 1 and 2, thereby easily completing the proof
of Theorem 2.
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7 Further applications

It is interesting to observe that the following two results are consequences of Propo-
sition 1.

Theorem 3. Let F1, . . . , ft be as in Theorem 1. Then,

lim
x→∞

1

x
#{n ≤ x :

ω(F`(n))− h log log x√
h log log x

< y`, ` = 1, . . . , t} = φ(y1) . . . φ(yt).

Theorem 4. Let F1, . . . , ft be as in Theorem 2. Then,

lim
x→∞

1

π(x)
#{p ≤ x :

ω(F`(p))− h log log x√
h log log x

< y`, ` = 1, . . . , t} = φ(y1) . . . φ(yt).

8 Final remarks

We now state a few remarks shedding some light on the value of d0 and whether it is
strictly positive.

The main idea is that the value of d0 as well as the fact that it is positive or zero
depends on the values taken by f on squarefull numbers.

Remark 4. Let u(n) stand for the squarefull part of n, and v(n) for the part of n,
which is coprime to f(p), that is

v(n) =
∏

qa‖a,(q,f(p))=1

qa.

Under the additional assumption that f(p) > 1, then

d0 =
1

t!
lim
x→∞

1

x
# {n < x : v(f(u(Fj(n)))|v(f(u(Fj+1(n))), j = 1, . . . , t− 1} .

Indeed, let ωk(n) be defined as

ωk(n) :=
∑
pk‖n

1.

Then, except for a set of density zero,

min
1≤j<r≤t

|ω1(Fj(n))− ω1(Fr(n))| >
(

log log(max
1≤j≤t

Fj(n)

)1/3

.

Furthermore for any function g(n) tending to infinity with n, if u(n) stands for the
squarefull part of n,

lim
x→∞

1

x
#

{
n < x : max

1≤j≤t
f(u(Fj(n))) > g(n)

}
= 0.
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From the above equations, it follows that except on a set of zero density,

f(Fj(n))|f(F )j+1(n)⇐⇒ v(f(u(Fj(n)))|v(f(u(Fj+1(n))),

thus completing the proof of our claim.

Remark 5. The constant d0 will be positive regardless of the polynomials F if and
only if for any values of A and n, there exists a number m such that p|m ⇒ p > A
and v(f(u(n))|v(f(u(m)).

In order to prove this, first assume that the assumption does not hold. Let n0 and
A0 be such that if m > n0 and v(f(u(n0))|v(f(u(m)), then there is prime p < A0

such that p|m. Set t = (u(n0)
∏

p<A0
p)2 and Fj(n) = n + j. Then for at least one

j, f(u(n0))|f(n+ j) while (n+ j + 1,
∏

p<A p) = 1. It follows that f(n+ j) does not
divide f(n + j + 1). Assume now that the assumption holds. Let Fj(n) be a suitable
family of polynomials. Choose Y large enough such that for any t-uple m1, . . . ,mt of
integers, and for any prime p > Y , there exists n such that Fj(n) ≡ mj (mod p). It
follows that n can be chosen so that

v(f(u(Fj(n)))) divides v(f(u(Fj+1(n)))),

thus completing the proof.

Remark 6. Assume that f is such that on prime powers pa, we have f(pa) = g(a)
for a certain function g. Then, for any value of t and any family of polynomials
F1, . . . , Ft, we have that d0 is strictly positive.

Indeed, this is an easy corollary of Remark 5.

The following remark provides perhaps the simplest instance for which d0 = 0.

Remark 7. Let f be a multiplicative function such that f(p) = 1 and f(pa) = pa if
a ≥ 2. Then there exists no integer n such that

f(n)|f(n+ 1)|f(n+ 2)|f(n+ 3)|f(n+ 4).

Indeed, for exactly one value of j = 0, 1, 2, 3, we have that n + j is divisible by 4. It
follows that f(n+ j) is even while f(n+ j + 1) is odd, a non sense.
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