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Abstract

Consider the functions P(n) = > }_, ged(k,n) (studied by Pillai in 1933) and
P(n) := n[],,(2 = 1/p) (studied by Toth in 2009). From their results, one can

obtain asymptotic expansions for » _ P(n)/n and > . P(n)/n. We consider two
wide classes of functions R and U of arithmetical functions which include P(n)/n and
P(n)/n respectively. For any given R € R and U € U, we obtain asymptotic expansions

for anx R(”)? anm U(n)7 Zpgm R(p - 1) and ngx U(p - 1)

1 Introduction

In 1933, Pillai [6] introduced the function

P(n) := chd(k:,n)
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and showed that

=Y dp(n/d) and Y P(d) =nr(n) =Y o(d)p(n/d),

dn dn dn

where ¢ stands for the Euler function and where 7(n) and o(n) stand for the number of
divisors of n and the sum of the divisors of n respectively.
It is easily shown that

P(n) =nr(n) [] (1 - M) :

p
p||n

In 1985, Chidambaraswamy and Sitaramachandrarao [2] showed that, given an arbitrary
e >0,

Z P(n) = 12’ logx + es2” 4+ O (2'7F9) (1)
n<zx
1 1 1 (’(2)) . .
where ey = —— and eg = —— [ 27 — = — , and where 6 is the constant appearing
AT XN ( 2 ((2)

below in Lemma 5, ( stands for the Riemann Zeta Function and 7 stands for Euler’s constant.
Using partial summation, one easily deduces from (1) that
P
Z ﬂ =ejxlogr + (265 —e1)z + O (x”s) . (2)
n

n<x

In [10], Toth introduced the function

o)1)

pln pln

where w(n) stands for the number of distinct prime factors of n. Toth obtained an esti-
mate for )

expansion for ) __ P(n)/n.

In this paper, we consider two wide classes of arithmetical functions R and U, the first
of which includes the function P(n)/n, and the second of which includes P(n)/n. Given
R € R, we obtain an asymptotic expansion for > _ R(n); similarly for U € U. We then
examine the behavior of > _ R(p—1) and }_ _, Ulp—1).

More precisely, the class R is made of the following functions R. First, let (n) stand for
the kernel of n > 2, that is y(n) =[], p (with 7(1) = 1). Then, given an arbitrary positive
constant ¢, an arbitrary real number o > 0 and a multiplicative function x(n) satisfying

|k(n)] < ’y(TCL)O‘ for all n > 2, let R € R be defined by

<z P(n), analogous to (1) and from which one can easily derive an asymptotic

R(n) = Ryea(n) :=7(n) Y r(d) =7(n) [J(1+ r@"). (3)

d|n peln



Here d||n means that the sum runs over the unitary divisors of n, that is over all divisors d
of n for which (d,n/d) = 1.

1
It is easily seen that if we let x(p®) = —M, then the corresponding function R(n)
p
is precisely P(n)/n.

As for the class of functions U, it is made of the functions

U(n) = Upea(n) =2 " h(d), (4)

dn

where h is a multiplicative function satisfying |h(d)| <

c
for each integer d > 2, where

Y(d)*

a > 0 is a given number. It is easily seen that by taking h(p) = —2ip and h(p®) = 0 for a > 2,

we obtain the particular case U(n) = P(n)/n.
Throughout this paper, ¢y, co, ... denote absolute positive constants.

2 Main results

Theorem 1. Let R be as in (3). For any arbitrary ¢ > 0, as x — o0,
T(x):= Z R(n) = Apzlogz + Bz + O (27)
n<x
with
3= 0+ e, ifa>1—46,
Cl 1l—a+e ifa<l-—0;
where 0 is the number mentioned in Lemma 5 below and where

AO_Z¥ and BO—Z¥(27—1—logd), (5)

d>1 d>1

the function X being defined below in (20) and (21).

Theorem 2. Let U be as in (4). Asx — oo,

S(z) =Y U(n) :tlxlogm+t2x+0< * ) ,

log =

n<x

where

= 1(0)2°0)B (0)m5 = 1
o= 2 5 Z n’

5=1 =
¥(m)]5

© w(d)
o= S MO o — 2810 — Bu(Omslo(at).

beGy

where By(9) and Bs(9) are defined below in Lemma 7, while ns and us are defined respectively
in (35) and (36).



Theorem 3. Let R be as in (3). As x — oo,

M(:c)::ZR(p—l):le+O( - ) (6)

e log log x
1 = k(d)7(d
where K = 3 Z W, where cq is itself defined in Lemma 15.
d=1

Theorem 4. Let U be as in (4). As x — o0,

N(x) ::ZU(p_l):K2x+O<logi)ga:>’ (7)

p<z

where Ky 1s a positive constant which may depend on the function k.

3 Preliminary results

Lemma 5. As x — oo,

D(x) := Zr(n) =zlogz + (27 — )z + O(2%) (x — 00), (8)

for some positive constant 0 < 1/3.

Proof. A proof can be found in the book of Ivié [4], where one can also find a history of the
improvements concerning the size of 6. m

Lemma 6. Given 1 < { < k with gcd((, k) =1,

> 7(n) = Ay(k)zloga + As(k)x + O (K2 P log x) |

n<z
n={¢ (mod k)

e ") () _ 2 = pld) logd
¥ % pu(d) log
Ak) =57 Axk) = (27_1)?_EZT'
dlk
Proof. This result is due to Tolev [9]. O

Lemma 7. Given a positive integer k,

> 7(n) = Bi(k)zlogz + By(k)z + O (k' 2P logx)

n<z
(n,k)=1

where By (k) = (@) and  Bs(k) = p(k)As (k).
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Proof. Observing that

Yo orm= > >, ),

n<x = n<x
ged(n,k)=1 ged(£,k)=1 n=¢ (mod k)

and using the trivial fact that ¢(k) < k, the result follows immediately from Lemma 6. [

Lemma 8. Given an arbitrary positive real number o < 1,

1 1
Z < —.
ny(n)> oz

n>x

Proof. Writing each number n as n = rm, where r and m are the square-full and square-free
parts of n respectively with (r,m) = 1, we may write

D R M= D
n>x n/}/(n)a rm>x rry(r)aml"l‘a r>1 T’/Y(T)Oé m>z/r m1+0‘

ged(r,m)=1 r square-full ged(m,r)=1
7 square-full

1 p(r) / “odt 1 or) [ r \°
<L S Lymetw 2w e
T sq:;gre—full T sq:;;re—full

1 p—1 1
= —J7(1+-——) < —.
e ( TR - 1)) S

P
O
Lemma 9. Given any fixed number z > 0,
Z M < g log" 1t x. (9)
n<x
Remark 10. This result is a weak form of the well known Selberg-Sathe formula

Z 20 = C(t)zlog' ' z 4 O(zlog' 2 z),

n<x

an estimate which holds uniformly for z > 2 and |¢| < 1, where C'(¢) is a constant depending
only on t (see Selberg [7]). Here we give a simple direct proof of (9).

Proof. For each positive integer k, let

m(x) = #{n <z :w(n) =k}



From a classical result of Hardy and Ramanujan [3], we know that

c1r

™) S T Dlog

loglogz + ¢o)* ! (x > 3),

for all £ > 1, where ¢; and ¢y are some absolute constants. Using this estimate, it follows
that

1 1 k—1
Zzw(n) — Zﬂk<x>2k <z z Z (z(loglog x + ¢2))
k

n<x k>1 (k - 1)'

e loglog x+zc2 < e* log log x

1z = zlog” 'z,
log x log x

as required. 0

Lemma 11. (BRUN-TITCHMARSH THEOREM) Let m(y; k, () := #{p <y:p =/ (mod k)}.
Given a fized positive number 3 < 1, then, uniformly for k € [1,2P], there exists a positive
constant & such that

W(.l’,k,g) < flm

Proof. For a proof, see Titchmarsh [8]. O

Lemma 12. (BOMBIERI-VINOGRADOV THEOREM). Given an arbitrary positive constant
A, and let B = %A + 17. Then

i)

m(y; k, () o(F)

<

E max I1max
ged(k,0)=1 y<z
T
kS logB x

logz’

Proof. For a proof, see Cheng-Dong [1]. O

Lemma 13. Given a fived positive number 3 < 1, then, uniformly for d € [1,2'7P], there
exists a positive constant &3 such that

7(d)
; T(p—1) < §3$¢(d)-

p=1 mod d




Proof. Since 7(n) < 2 Z 1 and 7(mn) < 7(m)7(n) for all positive integers m, n, it follows
i
that

A
pui
=
pul
3
SH
—
S~—

p<z

=1 (mod d)

2r(d) Y w(x;du,l). (10)

u<l+/x/d

IN

On the other hand, since du = Vd-ud < Vd- Vo < o R xl_g, we have, in light
of Lemma 11, that

i €T

(du) log(x/du) = £2g0(alu) log z’ (11)

m(z;du, —1) <&
@

with & = 2&; /4. Using (11) in (10) and keeping in mind that ¢(d)p(u) < ¢(du) for positive
integers d, u, we obtain that

E < 2%——r(d) Y (P(ilu)

log x
u<l+/z/d

< 9, & T y L

log x ¢(d) p(u)
u<+/z/d
7(d)
< Gr—r,
(d)
1
for some positive constant &3, where we used the fact that Z T < log y, thus completing
o(n
n<y

the proof of the lemma. O

Lemma 14. Given fized numbers A > 0 and k < «, then

7(d) 1
2 (d

. log™*
d>log™ x




Proof. Clearly we have

7(d) 7(d) d \"
<
dy(d)>®  — 2. dry(d)~ <logAx>

d>10g x d>log T

1 2 2
< 1+ + +...
logAIi T H < pl—/ipoc pQ(l—n)pa >

<

since the above infinite product converges in light of the fact that k < a. [

Lemma 15. Given a fixed positive integer D, then

1
—— =c¢plogz + O(1),
; ¢(n)
ged(n,D)=1
where )
CD=H(1+;) -H(1+ P )
_ —1)2 ‘
. plp=1)/) -5 (p—1)

Remark 16.  Note that the result of Lemma 15 is known in a more precise form (see the

book of Montgomery and Vaughan [5, pp. 42-43]).
Proof. We first compute the generating series of n/¢(n). We have
- 1—1/p)~t  (1—1/p)!
Z n/‘%?s(n) _ H(1+( S/p) +( /p) +>
n

2s
n=1 PI/D p p

ged(n,D)=1

p? p

I, <1+ (-1/p)~" 4 (- 1/p) +>

ps

(-1/p~t | (a-1/p)~*

= ] (Li) L (” P
s (-1/p~t | (- 1/)

p Hp|D <1 + psp + P

[T, (1+ 02 ot )

)
)

p

n
n
- C(S)H(lju]ﬁ)H(Mr( D _1>

P p|D

which by Wintner’s Theorem yields

n
E —— = cpr + O(x?log x), (12)
~  eln)

ged(n,D)=1



where

oI 5s) 0 5m)

p|D

Then, using partial summation, we get that

2

n<x
ged(n,D)=1

log x Toodt
<,0—71)ZCD+O<W)+/1 cp +0(1) = eplogz + O(1),

as required. 0

Lemma 17. For each integer 6 > 2, let Gs be the semigroup generated by the prime factors
of 6, i.e. ford=qi"...q%, let G5 = {qlﬁ1 o.q%  B; > 0}. Then

I 1
Zﬁ: ; E<<loglog(5.

neGs ~(n)]5

Proof. Using the well known result of Landau
n
li — =¢
linfogp @(n)loglogn €
we certainly have that there exists some constant C' > 0 such that
"< Clogl (n > 3)
— oglogn n > 3),
p(n)

from which is follows easily that

£ n(eebe ) me-))

¥(n)|s plo
0 < C'loglog o
= 0g10g 0,
©(0)
which proves our result. O

Lemma 18. Let G5 be as in Lemma 17. Then

= |h(8)[2¢@) 1
S MOEES
6=1

beGs



Proof. Inlight of Lemma 17, the fact that |h(9)| < and since given any € > 0, log § < 0°

v(0)~

provided § > d¢(¢), we have

|h(8 |2 = [h(6)|2¢) log log &
SUOEL S SO

beGy

i 2¢) Joglog &
—~  oy(0)”

[e.e]

<

2w(d)
1—¢ «
S 0(9)

2 2
< H (1 + pl—epa + p2—25pa T )

p

= 11 (1 - pa(pli - 1)) =

p

<

provided € < a. O

Lemma 19. Let G5 be as in Lemma 17 and let p(x) be a real function which tends to +o00
as r — 00. Given any fized positive constant k < «, we have

h(8)2«0) 1
Z(x) = Z ( 351) < PO

Proof. We have

h(é 2°J<5>
Zwi< 3 POLED sty vz (13
5b>p(x) 5b>p(x) 5b>p(x)
beGy §<p(x) §>p(x)

say. We first estimate Zs. Recalling that |h(5)\ < c/v(0)%,

Z, < Z|h H(1+1+i+ )

>p(x plo PP

;m 5. Hl—ll/p (p(i))n

\ d

¢ o= 2 1
2 T =, "

IN

IA

Define
9w(d)

1
e Ll =1

f(0) =

10



Clearly f is a multiplicative function with the following values on prime powers:
2
qe - qa(l—n)(l _ 1/(]) ’

Moreover, f is such that Y 5, f(d) is bounded provided x < «. Hence, taking this into
account in (14), we obtain that

f(q") =

1
Ly K ———. (15)
p(x)"
We now move on to estimate Z;. We have
[h(6)[29®) 2w<fS |h(6)[2°@) 2w<5 b6 \"
4s Yy DS ST
0<p(z) b>bp(z)/5 d<p(x) beGss
h(§ 2‘“

o X MR s (19

(5<p(:0 beGs

Since

1 1 1\
Zb”‘1§H<1+p1—m+p2(1—n)+"‘>:H<1_p1—n> ,

beGy plo pld

it follows from (16) and the fact that |h(5)| < ¢/~(0)%, that

c 2¢(9) 1\ c
2 sy X el 0-5=) T e o

11—k K
5<p() plo p ) 0

say, where ¢ is clearly a multiplicative function whose values at the prime powers are given
by

o 2 L] 1
9@") = ——— =5 o \ LT peE +... ).

q
= c
Since we assumed that x < aand since Z 9(q") < — +31 —, with a suitable constant c3 > 0,
e
a=1

it follows that

> 90) =T +9m) +9p*) +...) < +oc.

o=1 p

Using this information, (17) yields

7 < (18)

1
p(z)r

Substituting (15) and (18) in (13), the lemma is proved.

11



4 Proof of Theorem 1

One can easily see that

can be written as

where

A(s)ZH(lJr&f)JrMJF...),

D pQS

with
Ap) =2x(p),  Ap?) = 36(p*) — 4K(p),
and more generally, for each 5 > 3, by

AP’) = (B+1)w(p%) = 266(p"1) + (8 — Dr(p™).

Hence,
45c
M Bz
Consequently,
T(d)“
Ad)| < ,
) < T

where ¢4 is a suitable constant (¢; = 4¢ will do).
Now observe that, in light of (19) and of Lemma 5,

T(z) = ZA D(z/d)

= ZA <log )+ (2y-1) )+O<QZ|)\

It follows from (22) and Lemma 8 that

Z ’)\ < Z (fl <L x

d>x d>x

Indeed, we have

_ T . |
Sp= Y dv(d)<U > m_UKU,

de|U,2U] de(U,2U]

)

(19)

(22)

(24)

say, provided U is sufficiently large. Now, from Lemma 8, it follows that Ky < #+. Hence,

if we set U; = 2z for j =0,1,..., then, if z is large enough,

M - Y e L c—a
j{: ——ZZ—— S;C zfa =CX j{: 5}65:25 <Lz .
i=0 J 7=0

d>x J

12



Similarly, observing that 7(d)*(c + logd) < d° and arguing in a similar way, one can easily
proves that
3 [A(d)] - e+ log d|
d>x d
Substituting (24) and (25) in (23), one obtains

< 77, (25)

T(x) = Agxlogx + Box + O (1:1"”5) +0 <x9 Z |/\<d)|) ; (26)

where Ap = Z @ and By = Z %(27 —1—logd).

d=1 d=1

Z IA(d)] - et (d)* x°, if 0+a>1;
a4 = £ g0+ S 4 a < 1

Since

d<zx
it follows that

0 IA(d)] 20 if 0+ a > 1;
3 P S 2t if f+a<l

d<z

Using this last estimate in (26) completes the proof of Theorem 1.

5 Proof of Theorem 2

Since

we have that
2900 = N pu(d)T(e). (27)
d2e=n
Let Gy be as in the statement of Lemma 17. If §|n, then let m be the largest divisor of n/é
which is co-prime with §, and let b = b(d) € G5 be defined implicitly by n = § - b- m. Note
that with this setup, the numbers m and b are uniquely determined, and we therefore have
ow(n) = 9w(9) . 9w(m)  Hence,

S(z) = Y h(8)2*® Y Y ¢

5§x b<z/é mgﬁ
bEG5  ged(m,d)=1

= ST hE20 S B (). (28)

<x b<z/é
- beGy

say. We therefore need to estimate

Ey(X):= > 2¢t,

n<X
ged(n,k)=1

13



Observe that it follows from (27) that

E(X)

where

while we trivially have

Yooud Y ()

d<VX

ged(d, k)=

d2e<X

Vi(y) ==

1 ged(e,k)=

1

n<y
ged(n,k)=1

> wai (%),

d<vVX

ged(d,k)=1

> ),

Ex(X) < Xlog X.

We shall now make use of a function p(z) satisfying

exp {Viogz} < pla) < Va

and which we will later determine more precisely.

We first write (29) as

B (X)

say.

Z p(d)Vi

d<p(X)
ged(d,k)=1

It follows from Lemma 7 that

WHy(X) <

<

p(X)

)+ mon3)

p(X)<d<VX

Wi (X) + Wa(X),

gce

d(d,k)=1

X 1
> E1og()(/d?)g)(1ogx > yo
p(X)<d<v'X

X
log X < ——.

log X

On the other hand, again using Lemma 7, we have

Wi(X) =

2.

d<p(X)
ged(d,k)=1

X
—|—Bz(k)d2 +0 (klo/s (d2

{50

Xlog XBi(k) >

+

X Bsf

d<p(X)
ged(d, k)=

) 2

d<p(X)
ged(d,k)=1

d>p(X)

X X
2 o8\
X\ 3 X
log =
u 3 p(d) log d
d2
d<p(X)
1 ged(d,k)=1
M logX)

14
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(33)



Since

- $ old)-AD0-) o)
d<p(X) p(X) w2 p? ,()(X)
ged(d,k)=1 god(d k) 1

= n+0 (ﬁ) (35)

say, and since

Y HEE - Y Mo () mro (). o

d<p(X)
ged(d,k)=1 gcd(d k) 1

say, it follows that (34) can be written as

X
Wi (X) = X log X By (k)n, — 2X By (k) + X Ba(k)n + O ( ) + O (KX log X) .

log X
(37)
Let us then write (28) as
- w@O) g (L wO) g (L
S(x) 52 h(8)2+C) B (&)) + 3 wO)2OE (&))
b<p(x) p(x)<éb<z
beGy beGs
= Zi(x) + Za(), (38)
say.
First of all, we have using (30) and Lemma 19,
h(8)2+0) 1 T
Zh(x) < Z Tazlog(az/éb) < xlogxp( ) gz’ (39)
p(x)<db<wz

beGy

On the other hand, substituting (33) and (37) in (32), we get that Z;(x) from (38) can

15



be written as

Ziw) = Y ()220 {10g (55 ) Buldms + (Bald)ns — 2B1(0)pss) 5

0 (Gatp) (7 ) 5)))

2w(6)
+x Z By (8)ns — 2B1(0) s — B1(6)ns log(8b))
e
h(8)2+0)
+0
%SZW) dblog(z/(0b))
beG
+0 Z h 2w 510/3 ( )1/3 log <£>
N ob 0b
beGy

= (zlogz)Ti(z) + x To(x) + O(T3(x)) + O(Ty(x)),

say.
First, it follows from Lemma 18 that

X

T
3(1') < IOgJI

and that

Ty(z) < z3logx Z Z 541)2/3

0b<p(z) beGs
- h(8)2+®)
1/31 4
< @Ploga(p(x)' Y Y =
6=1 beGy

< z'Plogx(p(r))* <

logx’

On the other hand, using Lemma 19, we have

Ti(z) = ih(5)2w(6)31(5)%_ Z h(5>2w(6)31(5)7ié

ob ob
5=1 p(z)<db<z
bEGL; b€G5
1
= tl + O ( ) )
p(x)”

(40)

(41)

(42)



say. Similarly, one can prove that

To(z) =ty + O (p(i)ﬁ) : (44)

say.
Substituting (41), (42), (43) and (44) in (40), we get

xlogx

Zi(r) < . 45
Gathering (39) and (45) in (38), we obtain
xlogx
Z(r) < .
) p(x)”
Choosing p(z), already introduced in (31), in such a way that
log x 1
p(x)s ~ logx
completes the proof of Theorem 2.
6 Proofs of Theorems 3 and 4
Defining
Sd<x) = Z T(p - 1)7
pElpSrzod d
ged(EZE d)=1
it is clear that
M(z)= > £(d)Sa(x) (46)
d<z—1
Moreover, let
—1
Eq(x) := Z 2«(p=1) and Hys(x) = Z T (p(;z ) .
p=1 p(Sr:od d) p=1 p(gr:od d)
p=1 (mod §2)
Since
U(n) =22 " h(d),
dn
it follows that
Ni)= 3 hd)Bula) (47)

On the other hand, since



we have

It follows from Lemma 13 that

Eq(z), Sqa(z) < 057(?m say, for d < vz,

while it is clear that

S rp-D<r@ Y )< BB gy cgcy

p<x n<a:/d
p=1 (mod d) -

and therefore,
d
Eq(x), Sa(x) < @%xlog x.
Let A be a large constant. We shall now estimate

Tii= Y |6&(d)|Sa(z) and  Tpi= > |h(d)|Ea().
logArSdSm—l logA r<d<z—1
From (48) and (49), we have
d
T1<<:clongL§a+a: Z

d>+\/z d’y(d d>log?

=uxlogx-U; +x - Us,

7(d)
dry(d)~

say. Given a positive constant k < «, we have that
= ord) (dY 1 & r(d)
U, < I

1 T
SxWHG+Z@%ﬁﬂv

p a=1

where this last product, which we denote by @, is convergent provided s < «.
In a similar way, we obtain

= 7(d) d \" 1
<3 e (oms) < s

log?

Substituting (51) and (52) in (50), we get that

x
T << ——— 0< Kk <a).
! log“A_la: ( )

In a similar manner, we obtain

T
T« ———— 0< Kk <a).
2 log“Aflx ( )

18
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(50)

(51)

(52)

(53)

(54)



We further define

My(z) = Y r(d)Sa(x), (55)

d<log® =

NM(z) = > h(d)Es(x). (56)

d<log® =

Let us first fix d < log” 2 and move on to estimate Sy(x) and E4(x), by using the
Bombieri-Vinogradov Theorem.
It turns out that it is more convenient to estimate

Sa(x) — Sa(z/2) and Eq4(x) — Eq(x/2)

and similarly for x/2, /2%, ...in place of x. This is why, for any fixed integer r > 1, we
write .
, x x
Mi(z) = k(d Ag(x/2’ +O<—>—|—O( ), 57
)= 3 @)D Ade/2) 40 (3) +0 657)
d<log® x j=0
where

Ag(x)27) = Sg(x/27) — Sy(x/271).
Similarly, for any fixed integer » > 1, we may write

Ni@) = 3 hd) Z By(x/27) + O (;) +0 (L) , (58)

Ak
dglogAx log t
where A A _
By(z/27) = Ey(x/27) — Ey(x/27 1),
For now, fix x and set

LAK; log log x
ri= | ——

o 2 J so that 2" ~ log™ z. (59)

We now proceed to estimate A4(z) and By(z).
Clearly we have

A= Y p-n=r) Y () (60)

F<p<w F<p<w
ged(EZL d)=1 ged (B a)=1
p=1 (mod d) p=1 (mod d)

Observe that
7(n) = 2#{(u,v) : v < v and uv = n} + 6,

where
0 1, if n = square;
" 1 0, otherwise.
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Thus, in light of (60),

Ay(z) = 7(d) Z #{(u,v) 1 u <wv, ged(uv,d) =1, uwv = p%l} +0 (Vz), (61)

F<p<z
p=1 (mod d)

where the error term is there to account for those p for which ’%1 = u?.

It is clear that in the sum appearing in (61), we have u < y/z. On the other hand, the
contribution of those u’s for which u > /z/(log” x) can be bounded above, using Lemma
11, by

7(d) Z m(z;du,1) < CST(d)h(I) Z —

Va/(logB z)<u< z #(d) Vz/(logB z)<u< z ()
ged(u,d)=1 ged(u,d)=1
< cor(d) ) B1og1 (62)
S CGT a)—— b loglogx,
o(d)

where we also used Lemma 15.

Concerning the equation 7%1 = wv, the condition ged(uv,d) = 1 is satisfied if and only
if ged(u,d) =1 and v = ¢ (mod d) for some positive integer ¢ co-prime to d, meaning that
v="_+dt and p — 1 = du({ + dt) = dul + d*ut for some integer .

In light of these observations and of (62), relation (61) can be replaced by
_ 2
Ay = 7@ Y Y ( (s d?u, 1+ duf) —W(Q d2u, 1+du£))

u<y/z/(logB z) ng(f d)
ged(u,d)=1

T(d) ..
+0 ( li(x)) loglog x) . 63
Cita) (63)
We shall assume that B is sufficiently large to insure that d?u < v/z/(log™ z), for some
large number A.
Using Lemma 12, (63) becomes

Ag(x) = 7(d) (li(z) = li(z/2) Y Z

u</z/(logB z) ng(fd
ged(u,d)=1

7(d) ..
+0 <g0(d) (li(z)) loglog :1:') :

But observe that in the above sum, we have

11 e 1 1
gcd(;d):l o(du)  o(u) do(d)  ou) d

so that

Ay(x) = # (li(z) — li(z/2)) Z oy T @) (T(d) (li(z)) log log x)

u<Va/(loghB ) #(d)

ged(u,d)=1
1 7(d)cq xloglog z
= 174 & ) (—logx (64)
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(cq being the constant appearing in the statement of Lemma 15) where we used Lemma 15
and the fact that

| . 1 1 x loglog x
(li(x) — li(x/2)) - (élogx - Bloglogx) a7t +0 ( log x )
and that

7(d).. B
() li(z) loglogx = O (

Substituting (64) in (57) and taking into account the choice of r made in (59), we get

Mile) = dg%:(d)jﬁ_;/xd(x/zf)w(log%)
1 k()T (d)Cg o= x(log log x)?
g Hdrd) Lo (w)

4 j
4 ot d s 2 log

1 k(d)T(d)cq <x(log log ZL‘)2>
—_— "t ol ———=7
log x

x loglog x
log '

(65)

provided A is chosen so that Ax > 1. Finally, using Lemma 14, recalling the initial formu-
lation of M (z) given in (46) and using (65), we get

M(z) = x% Z k(d)T(d)cq Lo (x(lolg(;);oxgx) ) 7

thus completing the proof of Theorem 3.

We now move to complete the proof of Theorem 4. For this, we shall use essentially the
same kind of technique to obtain an estimate for Fy(z) for d < log® .

Since |
Qus(z) = Y 7(n) < CoZ 0BT

2
n<wz/§2 0
it follows that

Eaw)= 3 u<5>@dﬁ<x>+o(f’f ! )

dlog? x
6<log? z &

provided B is sufficiently large.

We shall now estimate (Q45(z) assuming that d < log? 2 and § < log? z.
We proceed to estimate

B(z) = Bas(v) := Qas(r) — Qas(7/2).
We have

—1
B(x) =2 Z #{(u,v) 1 u < v, uwv = ]97’ d|§*uv} + O(Vz).
F<p<z
p=1 (mod §2)
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As in the proof of Theorem 3, we can drop in the above solution count those pairs u, v
for which u > /z/(log® ) for any fixed A > 0, arbitrarily large.

Now let K, L € G4. Given u,v such that uv = p(sgl, write v = Ku and v = Lv, where
ged(w, d) = ged(v,d) = 1. We then have

—1 e
b - = KL, (66)

And in order to guarantee that ged(v,d) = 1, we seek v from the arithmetical progression
v = { + td with ged (¢, d) = 1. It follows from (66) that

p—1=0KLu(l +td) = $*K Lul + §*K Ldut.

With this set up, we have

Bx) =2 Y % 3 <7r(x;52KLdﬁ,52KLH€+1)

K,LeG g ged(4,d)=1 a<(vz/K)/logh =
ged(u,d)=1

— n(w)2; 8*K Ld, 0*K Ll + 1)) + O(). (67)
First we drop all pairs K, L for which KL > log” x, where D is a fixed large number. Indeed

observe that
> > > w(w;8°KLdi, 6°K Ll + 1)

logD s<kL<z1/10 u<\/x £ (mod d)

K,LeGy
DD 52KLdu

/10K L<a U</z

K,LEG,
r logx
Z Z (52KLdu) + Z KL o(6?)
KL>logD = g<\/x OcKL<z
K,LeGy K<L6Gd
li(x) 1 xlogx 1
< -log x - + —
0(0°) KL;;DZ p(KL) — (6?) Kg;/w KL
K,LEG, K, LeGy
li(z) log 2 - Hs )+xlog:ﬁ T5(2) (68)
= “logx - M ~Js(x),
©(0?) p(0?)
say.
1 log 1
First of all, using the fact that < o8 ogn’ we have, for a fixed k > 0,
p(n) n
1 1 KL \"
< log log1 —— < ¢11 loglogl —
Hs(z) < cnloglogloga R Scnloglogloga ZD 787 <logD:v)
KL>log"” z KL>logt =
K,LeGy K,LeGy
2
log log log = 1
< CllTH 1 : (69)
log T bl 1— F
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log d

. Therefore
loglogd

Choosing k£ = 1/2 and observing that for d < log” 2, we have that w(d) <
for such a number d,

2
1
H (1 — L) < 49D < (log x)*,

pld VP

for any € > 0 arbitrarily small. Using this observation, we may conclude from (69) that

Hs(z) < (logcﬁ’ (70)

say. Proceeding in a somewhat similar manner, we get that

1 1 ( KL\

B@ = 2 pps 2 ﬁ(x_/>
KL>21/10 KL>z1/10
K,LeGy K,LeGgy

1 H 1 _ (logx)e' (1)

S x1/20 y <1_L>2 xl/QO
pl Nz

Estimates (68), (70) and (71) therefore establish that we can drop from the sum in (67)
those K, L € Gy for which KL > log” x for a large D, the error thus created being no larger

?
than O & . In light of these observations and using the fact that p(6*K Ldu) =
(log z)P/®

K Lp(6*du) and that

S o ey Loy LTl oY

A= KL KL KL p (logz)P/3 )
,LeEG, K, LeGy K,LeGq p|Ga

KL<(logz)D KL>(logx)D

we may write (67) as

B(x) = 2(li(x) ~li(z/2)) ) ) W%%W(@Z(%)

KL<(logz)P t<yz/(logz)A
K,LeGy ged(w,d)=1

= 2(li(x) - li(z/2)) |] (1 — %) > @éﬁ% +0 (%) (72)

p€Gyq <z /(logz)A
ged(u,d)=1

Set ]
Yo(x) == ) Stk

a<y/x/(log z) 2
ged(u,d)=1

In order to evaluate Yy(z), we let 0 = 6109, where §; € Gy, ged(d2,d) = 1, and © = uy - ug,
where u; € G, ged(uz, dde) = ged(ug, dd) = 1. Then,

p(02dt) = (6105101 ) (1) = @(07d)p (05101 ().
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It follows from Lemma 15 that

1
— = cgs logy + O(1). (73)
gcd(;a)_l SO(UQ)
up <y

Now, the contribution of those #; in Yy(x) for which u; € Gy, and u; > (logx)?° is, using
(73),

1 1 1
< 2 w(é%d)sﬁ(%)ﬁlz

sicon, p(uz)
’Ei>(logz)A0
1 1 1
< (log z) —_—— —
Zw@%d) (03) ﬂ;é o
2
’Ei>(logz)AO
log

| 1
(03d)p(03) (log )20/ 2 Vi

u1€Gs,

RNV R
< (log) 5%¢(d)90(5§)H(1 \/ﬁ)

pld2

<

1 2w(%)
< (logz)t=80/2 — .
log o)) 0793

On the other hand, the contribution of those u; < (logz)2° in Yy(z), as 1 runs up to
yo .= v/x/((log x)“uy), and also using Lemma 15 so that

1 1
Z = 5 log z + O(log log x),

ged(ug,dd)=1 QO({IQ)

w3 <vo
we get
Yi(z) = =cas(logx + loglogx) 12 ! Z é
PO ) 2
+0<2w(62) (lo )100/2) (74)
o(d) o |

Observing that p(6?d) = 6?¢(d) and that

LI(-0) o

ﬁGG(SQ p|G§2

(74) becomes

- 1 Cds 1 (52
Yi(z) = 290(d)5%5§¢(52)(10gx+10g10gx)

w(d2)
+0 (;Tw)(log x)1_00/2> . (75)
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Using (75) in (72), we obtain

B(zx) = (li(z)— 11@/2))%(1%9; + loglog z)
w(d2)
+0 (52280(61) (log x)100/2> )

Finally, summing over d < (logz)? and § < (logz)?, the theorem follows.

7 Final remarks

It is interesting to inquire about the solutions to the equation

P(n)=P(n+1), (76)
or equivalently
I -n =2 [T e (77)
1) 1 ) L

The first 13 solutions are 45, 225, 1125, 2025, 3645, 140625, 164025, 257174, 703125,
820125, 1265625, 2657205 and 3515 625.

One can easily check that if for some positive integers a and b, the number p = is
a prime number, then n = 3% - 5% is a solution of (76), with P(n) = 3°+1. 5%, If one could
prove that there exist infinitely many primes of this form, it would follow that equation (76)
has infinitely many solutions. Interestingly, a computer search establishes that (76) has 37
solutions n < 10'® and that 21 of them are of the form n = 3% 5.

Moreover, all 37 solutions ng are such that 3 - 5|P(ng). To see that 3|ng, proceed as
follows. Suppose that 3 /P(np), then, in light of (77), 3 (2p — 1) for cach prime divisor p
of nand 3 f(2¢ — 1) for each prime divisor g of n+ 1. This would imply that p =1 (mod 3)
for all p|n (implying that n =1 (mod 3)) and ¢ =1 (mod 3) for all ¢g|n + 1 (implying that
n+1=1 (mod 3)), a contradiction.

The fact that 3|P(ng) clearly implies that 5P (ny).

3%:5°+1
2
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