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Abstract

Consider the functions P (n) :=
∑n

k=1 gcd(k, n) (studied by Pillai in 1933) and

P̃ (n) := n
∏

p|n(2 − 1/p) (studied by Toth in 2009). From their results, one can

obtain asymptotic expansions for
∑

n≤x P (n)/n and
∑

n≤x P̃ (n)/n. We consider two
wide classes of functions R and U of arithmetical functions which include P (n)/n and
P̃ (n)/n respectively. For any given R ∈ R and U ∈ U , we obtain asymptotic expansions
for
∑

n≤x R(n),
∑

n≤x U(n),
∑

p≤x R(p − 1) and
∑

p≤x U(p − 1).

1 Introduction

In 1933, Pillai [6] introduced the function

P (n) :=
n∑

k=1

gcd(k, n)
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and showed that

P (n) =
∑

d|n
dϕ(n/d) and

∑

d|n
P (d) = nτ(n) =

∑

d|n
σ(d)ϕ(n/d),

where ϕ stands for the Euler function and where τ(n) and σ(n) stand for the number of
divisors of n and the sum of the divisors of n respectively.

It is easily shown that

P (n) = nτ(n)
∏

pa‖n

(
1 − a/(a + 1)

p

)
.

In 1985, Chidambaraswamy and Sitaramachandrarao [2] showed that, given an arbitrary
ε > 0, ∑

n≤x

P (n) = e1x
2 log x + e2x

2 + O
(
x1+θ+ε

)
, (1)

where e1 =
1

2ζ(2)
and e2 =

1

2ζ(2)

(
2γ − 1

2
− ζ ′(2)

ζ(2)

)
, and where θ is the constant appearing

below in Lemma 5, ζ stands for the Riemann Zeta Function and γ stands for Euler’s constant.
Using partial summation, one easily deduces from (1) that

∑

n≤x

P (n)

n
= e1x log x + (2e2 − e1)x + O

(
xθ+ε

)
. (2)

In [10], Toth introduced the function

P̃ (n) = n
∏

p|n

(
2 − 1

p

)
= n · 2ω(n)

∏

p|n

(
1 − 1

2p

)
,

where ω(n) stands for the number of distinct prime factors of n. Toth obtained an esti-

mate for
∑

n≤x P̃ (n), analogous to (1) and from which one can easily derive an asymptotic

expansion for
∑

n≤x P̃ (n)/n.
In this paper, we consider two wide classes of arithmetical functions R and U , the first

of which includes the function P (n)/n, and the second of which includes P̃ (n)/n. Given
R ∈ R, we obtain an asymptotic expansion for

∑
n≤x R(n); similarly for U ∈ U . We then

examine the behavior of
∑

p≤x R(p − 1) and
∑

p≤x U(p − 1).
More precisely, the class R is made of the following functions R. First, let γ(n) stand for

the kernel of n ≥ 2, that is γ(n) =
∏

p|n p (with γ(1) = 1). Then, given an arbitrary positive

constant c, an arbitrary real number α > 0 and a multiplicative function κ(n) satisfying

|κ(n)| ≤ c

γ(n)α
for all n ≥ 2, let R ∈ R be defined by

R(n) = Rκ,c,α(n) := τ(n)
∑

d‖n
κ(d) = τ(n)

∏

pa‖n
(1 + κ(pa)). (3)
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Here d‖n means that the sum runs over the unitary divisors of n, that is over all divisors d
of n for which (d, n/d) = 1.

It is easily seen that if we let κ(pa) = −a/(a + 1)

p
, then the corresponding function R(n)

is precisely P (n)/n.
As for the class of functions U , it is made of the functions

U(n) = Uh,c,α(n) := 2ω(n)
∑

d|n
h(d), (4)

where h is a multiplicative function satisfying |h(d)| ≤ c

γ(d)α
for each integer d ≥ 2, where

α > 0 is a given number. It is easily seen that by taking h(p) = − 1
2p

and h(pa) = 0 for a ≥ 2,

we obtain the particular case U(n) = P̃ (n)/n.
Throughout this paper, c1, c2, . . . denote absolute positive constants.

2 Main results

Theorem 1. Let R be as in (3). For any arbitrary ε > 0, as x → ∞,

T (x) :=
∑

n≤x

R(n) = A0x log x + B0x + O
(
xβ
)
,

with

β =

{
θ + ε, if α ≥ 1 − θ;

1 − α + ε, if α < 1 − θ;

where θ is the number mentioned in Lemma 5 below and where

A0 =
∑

d≥1

λ(d)

d
and B0 =

∑

d≥1

λ(d)

d
(2γ − 1 − log d), (5)

the function λ being defined below in (20) and (21).

Theorem 2. Let U be as in (4). As x → ∞,

S(x) :=
∑

n≤x

U(n) = t1x log x + t2x + O

(
x

log x

)
,

where

t1 =
∞∑

δ=1

h(δ)2ω(δ)B1(δ)ηδ

δ

∞∑

n=1
γ(n)|δ

1

n
,

t2 =
∞∑

δ=1
b∈Gδ

h(δ)2ω(δ)

δb

(
B2(δ)ηδ − 2B1(δ)µδ − B1(δ)ηδ log(δb)

)
,

where B1(δ) and B2(δ) are defined below in Lemma 7, while ηδ and µδ are defined respectively
in (35) and (36).
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Theorem 3. Let R be as in (3). As x → ∞,

M(x) :=
∑

p≤x

R(p − 1) = K1x + O

(
x

log log x

)
, (6)

where K1 =
1

2

∞∑

d=1

κ(d)τ(d)cd

d
, where cd is itself defined in Lemma 15.

Theorem 4. Let U be as in (4). As x → ∞,

N(x) :=
∑

p≤x

U(p − 1) = K2x + O

(
x

log log x

)
, (7)

where K2 is a positive constant which may depend on the function κ.

3 Preliminary results

Lemma 5. As x → ∞,

D(x) :=
∑

n≤x

τ(n) = x log x + (2γ − 1)x + O(xθ) (x → ∞), (8)

for some positive constant θ < 1/3.

Proof. A proof can be found in the book of Ivić [4], where one can also find a history of the
improvements concerning the size of θ.

Lemma 6. Given 1 ≤ ℓ < k with gcd(ℓ, k) = 1,
∑

n≤x
n≡ℓ (mod k)

τ(n) = A1(k)x log x + A2(k)x + O
(
k7/3x1/3 log x

)
,

where

A1(k) =
ϕ(k)

k2
, A2(k) = (2γ − 1)

ϕ(k)

k2
− 2

k

∑

d|k

µ(d) log d

d
.

Proof. This result is due to Tolev [9].

Lemma 7. Given a positive integer k,
∑

n≤x
(n,k)=1

τ(n) = B1(k)x log x + B2(k)x + O
(
k10/3x1/3 log x

)
,

where B1(k) =

(
ϕ(k)

k

)2

and B2(k) = ϕ(k)A2(k).
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Proof. Observing that

∑

n≤x
gcd(n,k)=1

τ(n) =
k∑

ℓ=1
gcd(ℓ,k)=1

∑

n≤x
n≡ℓ (mod k)

τ(n),

and using the trivial fact that ϕ(k) ≤ k, the result follows immediately from Lemma 6.

Lemma 8. Given an arbitrary positive real number α < 1,

∑

n>x

1

nγ(n)α
≪ 1

xα
.

Proof. Writing each number n as n = rm, where r and m are the square-full and square-free
parts of n respectively with (r,m) = 1, we may write

∑

n>x

1

nγ(n)α
=

∑

rm>x
gcd(r,m)=1
r square-full

µ2(m)

rγ(r)αm1+α
=

∑

r≥1
r square-full

1

rγ(r)α

∑

m>x/r
gcd(m,r)=1

µ2(m)

m1+α

≪
∑

r≥1
r square-full

1

rγ(r)α

ϕ(r)

r

∫ ∞

x/r

dt

t1+α
=

1

xα

∑

r≥1
r square-full

ϕ(r)

r2

(
r

γ(r)

)α

=
1

xα

∏

p

(
1 +

p − 1

p2(p1−α − 1)

)
≪ 1

xα
.

Lemma 9. Given any fixed number z > 0,

∑

n≤x

zω(n) ≪ x logz−1 x. (9)

Remark 10. This result is a weak form of the well known Selberg-Sathe formula

∑

n≤x

zω(n) = C(t)x logt−1 x + O(x logt−2 x),

an estimate which holds uniformly for x ≥ 2 and |t| ≤ 1, where C(t) is a constant depending
only on t (see Selberg [7]). Here we give a simple direct proof of (9).

Proof. For each positive integer k, let

πk(x) := #{n ≤ x : ω(n) = k}.
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From a classical result of Hardy and Ramanujan [3], we know that

πk(x) ≤ c1x

(k − 1)! log x
(log log x + c2)

k−1 (x ≥ 3),

for all k ≥ 1, where c1 and c2 are some absolute constants. Using this estimate, it follows
that

∑

n≤x

zω(n) =
∑

k≥1

πk(x)zk < c1z
x

log x

∑

k≥1

(z(log log x + c2))
k−1

(k − 1)!

= c1z
x

log x
ez log log x+zc2 ≪ x

log x
ez log log x = x logz−1 x,

as required.

Lemma 11. (Brun-Titchmarsh Theorem) Let π(y; k, ℓ) := #{p ≤ y : p ≡ ℓ (mod k)}.
Given a fixed positive number β < 1, then, uniformly for k ∈ [1, xβ], there exists a positive
constant ξ1 such that

π(x; k, ℓ) < ξ1
x

ϕ(k) log(x/k)
.

Proof. For a proof, see Titchmarsh [8].

Lemma 12. (Bombieri-Vinogradov Theorem). Given an arbitrary positive constant
A, and let B = 3

2
A + 17. Then

∑

k≤
√

x

logB x

max
gcd(k,ℓ)=1

max
y≤x

∣∣∣∣π(y; k, ℓ) − li(x)

ϕ(k)

∣∣∣∣≪
x

logA x
.

Proof. For a proof, see Cheng-Dong [1].

Lemma 13. Given a fixed positive number β < 1, then, uniformly for d ∈ [1, x1−β], there
exists a positive constant ξ3 such that

∑

p≤x
p≡1 mod d

τ(p − 1) ≤ ξ3x
τ(d)

ϕ(d)
.
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Proof. Since τ(n) ≤ 2
∑

d|n
d≤√

n

1 and τ(mn) ≤ τ(m)τ(n) for all positive integers m,n, it follows

that

E : =
∑

p≤x
p≡1 (mod d)

τ(p − 1)

≤ τ(d)
∑

p≤x
p≡1 (mod d)

τ(
p − 1

d
)

≤ 2τ(d)
∑

u≤
√

x/d

π(x; du, 1). (10)

On the other hand, since du =
√

d · u
√

d ≤
√

d ·
√

x ≤ x
1
2
−β

2 · x 1
2 = x1−β

2 , we have, in light
of Lemma 11, that

π(x; du,−1) ≤ ξ1
x

ϕ(du) log(x/du)
≤ ξ2

x

ϕ(du) log x
, (11)

with ξ2 = 2ξ1/β. Using (11) in (10) and keeping in mind that ϕ(d)ϕ(u) ≤ ϕ(du) for positive
integers d, u, we obtain that

E ≤ 2ξ2
x

log x
τ(d)

∑

u≤
√

x/d

1

ϕ(du)

≤ 2ξ2
x

log x

τ(d)

ϕ(d)

∑

u≤
√

x/d

1

ϕ(u)

≤ ξ3x
τ(d)

ϕ(d)
,

for some positive constant ξ3, where we used the fact that
∑

n≤y

1

ϕ(n)
≪ log y, thus completing

the proof of the lemma.

Lemma 14. Given fixed numbers A > 0 and κ < α, then

∑

d≥logA x

τ(d)

dγ(d)α
≪ 1

logAκ x
.

7



Proof. Clearly we have

∑

d≥logA x

τ(d)

dγ(d)α
≤

∑

d≥logA x

τ(d)

dγ(d)α

(
d

logA x

)κ

=
1

logAκ x

∑

d≥logA x

τ(d)

d1−κγ(d)α

<
1

logAκ x

∏

p

(
1 +

2

p1−κpα
+

2

p2(1−κ)pα
+ . . .

)

≪ 1

logAκ x
,

since the above infinite product converges in light of the fact that κ < α.

Lemma 15. Given a fixed positive integer D, then

∑

n≤x
gcd(n,D)=1

1

ϕ(n)
= cD log x + O(1),

where

cD =
∏

p

(
1 +

1

p(p − 1)

)
·
∏

p|D

(
1 +

p

(p − 1)2

)−1

.

Remark 16. Note that the result of Lemma 15 is known in a more precise form (see the
book of Montgomery and Vaughan [5, pp. 42–43]).

Proof. We first compute the generating series of n/ϕ(n). We have

∞∑

n=1
gcd(n,D)=1

n/ϕ(n)

ns
=

∏

p 6|D

(
1 +

(1 − 1/p)−1

ps
+

(1 − 1/p)−1

p2s
+ . . .

)

=

∏
p

(
1 + (1−1/p)−1

ps + (1−1/p)−1

p2s + . . .
)

∏
p|D

(
1 + (1−1/p)−1

ps + (1−1/p)−1

p2s + . . .
)

= ζ(s)
∏

p

(
1 − 1

ps

) ∏
p

(
1 + (1−1/p)−1

ps + (1−1/p)−1

p2s + . . .
)

∏
p|D

(
1 + (1−1/p)−1

ps + (1−1/p)−1

p2s + . . .
)

= ζ(s)
∏

p

(
1 +

1

ps(p − 1)

)∏

p|D

(
1 +

p

(p − 1)(ps − 1)

)−1

,

which by Wintner’s Theorem yields
∑

n≤x
gcd(n,D)=1

n

ϕ(n)
= cDx + O(x1/2 log x), (12)

8



where

cD =
∏

p

(
1 +

1

p(p − 1)

)
·
∏

p|D

(
1 +

p

(p − 1)2

)−1

.

Then, using partial summation, we get that

∑

n≤x
gcd(n,D)=1

1

ϕ(n)
= cD + O

(
log x

x1/2

)
+

∫ x

1

cD
dt

t
+ O(1) = cD log x + O(1),

as required.

Lemma 17. For each integer δ ≥ 2, let Gδ be the semigroup generated by the prime factors
of δ, i.e. for δ = qα1

1 . . . qαr
r , let Gδ = {qβ1

1 . . . qβr
r : βi ≥ 0}. Then

∑

n∈Gδ

1

n
=

∞∑

n=1
γ(n)|δ

1

n
≪ log log δ.

Proof. Using the well known result of Landau

lim sup
n→∞

n

ϕ(n) log log n
= eγ,

we certainly have that there exists some constant C > 0 such that

n

ϕ(n)
< C log log n (n ≥ 3),

from which is follows easily that

∞∑

n=1
γ(n)|δ

1

n
=

∏

p|δ

(
1 +

1

p
+

1

p2
+ . . .

)
=
∏

p|δ

(
1 − 1

p

)−1

=
δ

ϕ(δ)
< C log log δ,

which proves our result.

Lemma 18. Let Gδ be as in Lemma 17. Then

∞∑

δ=1

|h(δ)|2ω(δ)

δ

∑

b∈Gδ

1

b
< +∞.
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Proof. In light of Lemma 17, the fact that |h(δ)| ≤ c

γ(δ)α
and since given any ε > 0, log δ < δε

provided δ ≥ δ0(ε), we have

∞∑

δ=1

|h(δ)|2ω(δ)

δ

∑

b∈Gδ

1

b
≪

∞∑

δ=1

|h(δ)|2ω(δ) log log δ

δ

≪
∞∑

δ=1

2ω(δ) log log δ

δγ(δ)α

≪
∞∑

δ=δ0

2ω(δ)

δ1−εγ(δ)α

<
∏

p

(
1 +

2

p1−εpα
+

2

p2−2εpα
+ . . .

)

=
∏

p

(
1 +

2

pα(p1−ε − 1)

)
< +∞,

provided ε < α.

Lemma 19. Let Gδ be as in Lemma 17 and let ρ(x) be a real function which tends to +∞
as x → ∞. Given any fixed positive constant κ < α, we have

Z(x) :=
∑

ρ(x)<δb≤x
b∈Gδ

h(δ)2ω(δ)

δb
≪ 1

ρ(x)κ
.

Proof. We have

|Z(x)| ≤
∑

δb>ρ(x)
b∈Gδ

|h(δ)| · 2ω(δ)

δb
=
∑

δb>ρ(x)
δ<ρ(x)

+
∑

δb>ρ(x)
δ≥ρ(x)

= Z1 + Z2, (13)

say. We first estimate Z2. Recalling that |h(δ)| ≤ c/γ(δ)α,

Z2 ≤
∑

δ≥ρ(x)

|h(δ)| · 2ω(δ)

δ

∏

p|δ

(
1 +

1

p
+

1

p2
+ . . .

)

≤
∞∑

δ=1

|h(δ)| · 2ω(δ)

δ

∏

p|δ

1

1 − 1/p
·
(

δ

ρ(x)

)κ

≤ c

ρ(x)κ

∞∑

δ=1

2ω(δ)

δ1−κγ(δ)α

∏

p|δ

1

1 − 1/p
. (14)

Define

f(δ) :=
2ω(δ)

δ1−κγ(δ)α

∏

p|δ

1

1 − 1/p
.
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Clearly f is a multiplicative function with the following values on prime powers:

f(qa) =
2

qα · qa(1−κ)(1 − 1/q)
.

Moreover, f is such that
∑∞

δ=1 f(δ) is bounded provided κ < α. Hence, taking this into
account in (14), we obtain that

Z2 ≪
1

ρ(x)κ
. (15)

We now move on to estimate Z1. We have

Z1 ≤
∑

δ<ρ(x)

|h(δ)|2ω(δ)

δ

∑

b>ρ(x)/δ
b∈Gδ

1

b
≤
∑

δ<ρ(x)

|h(δ)|2ω(δ)

δ

∑

b∈Gδ

1

b

(
bδ

ρ(x)

)κ

=
1

ρ(x)κ

∑

δ<ρ(x)

|h(δ)|2ω(δ)

δ1−κ

∑

b∈Gδ

bκ−1. (16)

Since
∑

b∈Gδ

bκ−1 ≤
∏

p|δ

(
1 +

1

p1−κ
+

1

p2(1−κ)
+ . . .

)
=
∏

p|δ

(
1 − 1

p1−κ

)−1

,

it follows from (16) and the fact that |h(δ)| ≤ c/γ(δ)α, that

Z1 ≤
c

ρ(x)κ

∑

δ<ρ(x)

2ω(δ)

γ(δ)αδ1−κ

∏

p|δ

(
1 − 1

p1−κ

)−1

=
c

ρ(x)κ

∑

δ<ρ(x)

g(δ), (17)

say, where g is clearly a multiplicative function whose values at the prime powers are given
by

g(qa) =
2

qα · qa(1−κ)

(
1 +

1

q1−κ
+

1

q2(1−κ)
+ . . .

)
.

Since we assumed that κ < αand since
∞∑

a=1

g(qa) <
c3

qα+1−κ
, with a suitable constant c3 > 0,

it follows that ∞∑

δ=1

g(δ) =
∏

p

(1 + g(p) + g(p2) + . . .) < +∞.

Using this information, (17) yields

Z1 ≪
1

ρ(x)κ
. (18)

Substituting (15) and (18) in (13), the lemma is proved.
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4 Proof of Theorem 1

One can easily see that

F (s) :=
∞∑

n=1

R(n)

ns

can be written as
F (s) = A(s)ζ2(s), (19)

where

A(s) =
∏

p

(
1 +

λ(p)

ps
+

λ(p2)

p2s
+ . . .

)
,

with
λ(p) = 2κ(p), λ(p2) = 3κ(p2) − 4κ(p), (20)

and more generally, for each β ≥ 3, by

λ(pβ) = (β + 1)κ(pβ) − 2βκ(pβ−1) + (β − 1)κ(pβ−2). (21)

Hence,

|λ(pβ)| ≤ 4βc

pα
(β ≥ 1).

Consequently,

|λ(d)| ≤ τ(d)c4

γ(d)α
, (22)

where c4 is a suitable constant (c4 = 4c will do).
Now observe that, in light of (19) and of Lemma 5,

T (x) =
∑

d≤x

λ(d)D(x/d)

=
∑

d≤x

λ(d)
(x

d
log(

x

d
) + (2γ − 1)

x

d

)
+ O

(
xθ
∑

d≤x

|λ(d)|
dθ

)
. (23)

It follows from (22) and Lemma 8 that

∑

d>x

|λ(d)|
d

≤
∑

d>x

cτ(d)c4

dγ(d)α
≪ xε−α. (24)

Indeed, we have

SU :=
∑

d∈[U,2U ]

τ(d)c4

dγ(d)
< U ε

∑

d∈[U,2U ]

1

dγ(d)
= U εKU ,

say, provided U is sufficiently large. Now, from Lemma 8, it follows that KU ≤ c
Uα . Hence,

if we set Uj = 2jx for j = 0, 1, . . ., then, if x is large enough,

∑

d>x

|λ(d)|
d

≤ c

∞∑

j=0

U ε
j

Uα
j

= c xε−α

∞∑

j=0

1

2j(α−ε)
≪ xε−α.
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Similarly, observing that τ(d)c4(c + log d) ≤ dε and arguing in a similar way, one can easily
proves that

∑

d>x

|λ(d)| · |c + log d|
d

≪ xε−α. (25)

Substituting (24) and (25) in (23), one obtains

T (x) = A0x log x + B0x + O
(
x1−α+ε

)
+ O

(
xθ
∑

d≤x

|λ(d)|
dθ

)
, (26)

where A0 =
∞∑

d=1

λ(d)

d
and B0 =

∞∑

d=1

λ(d)

d
(2γ − 1 − log d).

Since ∑

d≤x

|λ(d)|
dθ

≤
∑

d≤x

cτ(d)c4

dθγ(d)α
≤
{

xε, if θ + α ≥ 1;
x1−(θ+α), if θ + α < 1;

it follows that

xθ
∑

d≤x

|λ(d)|
dθ

≤
{

xθ+ε, if θ + α ≥ 1;
x1−α, if θ + α < 1.

Using this last estimate in (26) completes the proof of Theorem 1.

5 Proof of Theorem 2

Since ∞∑

n=1

2ω(n)

ns
=

ζ2(s)

ζ(2s)
(ℜ(s) > 1),

we have that
2ω(n) =

∑

d2e=n

µ(d)τ(e). (27)

Let Gδ be as in the statement of Lemma 17. If δ|n, then let m be the largest divisor of n/δ
which is co-prime with δ, and let b = b(δ) ∈ Gδ be defined implicitly by n = δ · b · m. Note
that with this setup, the numbers m and b are uniquely determined, and we therefore have
2ω(n) = 2ω(δ) · 2ω(m). Hence,

S(x) =
∑

δ≤x

h(δ)2ω(δ)
∑

b≤x/δ
b∈Gδ

∑

m≤ x
δb

gcd(m,δ)=1

2ω(m)

=
∑

δ≤x

h(δ)2ω(δ)
∑

b≤x/δ
b∈Gδ

Eδ

( x

δb

)
, (28)

say. We therefore need to estimate

Ek(X) :=
∑

n≤X
gcd(n,k)=1

2ω(n).

13



Observe that it follows from (27) that

Ek(X) =
∑

d≤
√

X
gcd(d,k)=1

µ(d)
∑

d2e≤X
gcd(e,k)=1

τ(e) =
∑

d≤
√

X
gcd(d,k)=1

µ(d)Vk

(
X

d2

)
, (29)

where
Vk(y) :=

∑

n≤y
gcd(n,k)=1

τ(n),

while we trivially have
Ek(X) ≪ X log X. (30)

We shall now make use of a function ρ(x) satisfying

exp
{√

log x
}
≤ ρ(x) ≤

√
x (31)

and which we will later determine more precisely.

We first write (29) as

Ek(X) =
∑

d≤ρ(X)
gcd(d,k)=1

µ(d)Vk

(
X

d2

)
+

∑

ρ(X)<d≤
√

X
gcd(d,k)=1

µ(d)Vk

(
X

d2

)

= W1(X) + W2(X), (32)

say.
It follows from Lemma 7 that

W2(X) ≪
∑

ρ(X)<d≤
√

X

X

d2
log(X/d2) ≤ X log X

∑

d>ρ(X)

1

d2

≪ X

ρ(X)
log X ≪ X

log X
. (33)

On the other hand, again using Lemma 7, we have

W1(X) =
∑

d≤ρ(X)
gcd(d,k)=1

µ(d)

{
B1(k)

X

d2
log

(
X

d2

)

+B2(k)
X

d2
+ O

(
k10/3

(
X

d2

)1/3

log

(
X

d2

))}

= X log XB1(k)
∑

d≤ρ(X)
gcd(d,k)=1

µ(d)

d2
− 2XB1(k)

∑

d≤ρ(X)
gcd(d,k)=1

µ(d) log d

d2

+ XB2(k)
∑

d≤ρ(X)
gcd(d,k)=1

µ(d)

d2
+ O

(
k10/3X1/3 log X

)
. (34)

14



Since

∑

d≤ρ(X)
gcd(d,k)=1

µ(d)

d2
=

∞∑

d=1
gcd(d,k)=1

µ(d)

d2
+ O

(
1

ρ(X)

)
=

6

π2

∏

p|k

(
1 − 1

p2

)−1

+ O

(
1

ρ(X)

)

= ηk + O

(
1

ρ(X)

)
(35)

say, and since

∑

d≤ρ(X)
gcd(d,k)=1

µ(d) log d

d2
=

∞∑

d=1
gcd(d,k)=1

µ(d) log d

d2
+ O

(
1

ρ(X)

)
= µk + O

(
log X

ρ(X)

)
, (36)

say, it follows that (34) can be written as

W1(X) = X log XB1(k)ηk − 2XB1(k)µk + XB2(k)ηk + O

(
X

log X

)
+ O

(
k10/3X1/3 log X

)
.

(37)
Let us then write (28) as

S(x) =
∑

δb≤ρ(x)
b∈Gδ

h(δ)2ω(δ)Eδ

( x

δb

)
+

∑

ρ(x)<δb≤x
b∈Gδ

h(δ)2ω(δ)Eδ

( x

δb

)

= Z1(x) + Z2(x), (38)

say.
First of all, we have using (30) and Lemma 19,

Z2(x) ≪
∑

ρ(x)<δb≤x
b∈Gδ

h(δ)2ω(δ)

δb
x log(x/δb) ≪ x log x

1

ρ(x)κ
≪ x

log x
. (39)

On the other hand, substituting (33) and (37) in (32), we get that Z1(x) from (38) can

15



be written as

Z1(x) =
∑

δb≤ρ(x)
b∈Gδ

h(δ)2ω(δ)
{ x

δb
log
( x

δb

)
B1(δ)ηδ + (B2(δ)ηδ − 2B1(δ)µδ)

x

δb

+O

( x
δb

log( x
δb

)

)
+

(
δ10/3

( x

δb

)1/3

log
( x

δb

))}

= x log x
∑

δb≤ρ(x)
b∈Gδ

h(δ)2ω(δ)

δb
B1(δ)ηδ

+x
∑

δb≤ρ(x)
b∈Gδ

h(δ)2ω(δ)

δb

(
B2(δ)ηδ − 2B1(δ)µδ − B1(δ)ηδ log(δb)

)

+O


x

∑

δb≤ρ(x)
b∈Gδ

h(δ)2ω(δ)

δb log(x/(δb))




+O



∑

δb≤ρ(x)
b∈Gδ

h(δ)2ω(δ)δ10/3
( x

δb

)1/3

log
( x

δb

)



= (x log x)T1(x) + xT2(x) + O(T3(x)) + O(T4(x)), (40)

say.
First, it follows from Lemma 18 that

T3(x) ≪ x

log x
(41)

and that

T4(x) ≪ x1/3 log x
∑

δb≤ρ(x)

∑

b∈Gδ

h(δ)2ω(δ)

δb
δ4b2/3

≪ x1/3 log x(ρ(x))4

∞∑

δ=1

∑

b∈Gδ

h(δ)2ω(δ)

δb

≪ x1/3 log x(ρ(x))4 ≪ x

log x
. (42)

On the other hand, using Lemma 19, we have

T1(x) =
∞∑

δ=1
b∈Gδ

h(δ)2ω(δ)B1(δ)ηδ

δb
−

∑

ρ(x)<δb≤x
b∈Gδ

h(δ)2ω(δ)B1(δ)ηδ

δb

= t1 + O

(
1

ρ(x)κ

)
, (43)
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say. Similarly, one can prove that

T2(x) = t2 + O

(
1

ρ(x)κ

)
, (44)

say.
Substituting (41), (42), (43) and (44) in (40), we get

Z1(x) ≪ x log x

ρ(x)κ
. (45)

Gathering (39) and (45) in (38), we obtain

Z(x) ≪ x log x

ρ(x)κ
.

Choosing ρ(x), already introduced in (31), in such a way that

log x

ρ(x)κ
≪ 1

log x

completes the proof of Theorem 2.

6 Proofs of Theorems 3 and 4

Defining

Sd(x) :=
∑

p≤x
p≡1 mod d

gcd(
p−1

d
,d)=1

τ(p − 1),

it is clear that
M(x) =

∑

d≤x−1

κ(d)Sd(x). (46)

Moreover, let

Ed(x) :=
∑

p≤x
p≡1 (mod d)

2ω(p−1) and Hd,δ(x) :=
∑

p≤x
p≡1 (mod d)

p≡1 (mod δ2)

τ

(
p − 1

δ2

)
.

Since
U(n) = 2ω(n)

∑

d|n
h(d),

it follows that
N(x) =

∑

d≤x−1

h(d)Ed(x). (47)

On the other hand, since

2ω(n) =
∑

δ2e=n

µ(δ)τ(e),
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we have
Ed(x) =

∑

δ≤
√

x−1

µ(δ)Hd,δ(x).

It follows from Lemma 13 that

Ed(x), Sd(x) ≤ c5
τ(d)

ϕ(d)
x say, for d ≤

√
x, (48)

while it is clear that

∑

p≤x
p≡1 (mod d)

τ(p − 1) ≤ τ(d)
∑

n≤x/d

τ(n) ≤ c6x log x · τ(d)

d
for 1 ≤ d ≤ x,

and therefore,

Ed(x), Sd(x) ≤ c7
τ(d)

d
x log x. (49)

Let A be a large constant. We shall now estimate

T1 :=
∑

logA x≤d≤x−1

|κ(d)|Sd(x) and T2 :=
∑

logA x≤d≤x−1

|h(d)|Ed(x).

From (48) and (49), we have

T1 ≪ x log x
∑

d≥√
x

τ(d)

dγ(d)α
+ x

∑

d≥logA x

τ(d)

dγ(d)α
= x log x · U1 + x · U2, (50)

say. Given a positive constant κ < α, we have that

U1 ≤
∞∑

d=1

τ(d)

dγ(d)α

(
d√
x

)κ

=
1

xκ/2

∞∑

d=1

τ(d)

γ(d)αd1−κ

≤ 1

xκ/2

∏

p

(
1 +

∞∑

a=1

τ(pa)

pα · pa(1−κ)

)
, (51)

where this last product, which we denote by Q, is convergent provided κ < α.
In a similar way, we obtain

U2 ≤
∞∑

d=1

τ(d)

dγ(d)α

(
d

logA x

)κ

≤ 1

logAκ x
Q. (52)

Substituting (51) and (52) in (50), we get that

T1 ≪
x

logκA−1 x
(0 < κ < α). (53)

In a similar manner, we obtain

T2 ≪
x

logκA−1 x
(0 < κ < α). (54)
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We further define

M1(x) =
∑

d≤logA x

κ(d)Sd(x), (55)

N1(x) =
∑

d≤logA x

h(d)Ed(x). (56)

Let us first fix d ≤ logA x and move on to estimate Sd(x) and Ed(x), by using the
Bombieri-Vinogradov Theorem.

It turns out that it is more convenient to estimate

Sd(x) − Sd(x/2) and Ed(x) − Ed(x/2)

and similarly for x/2, x/22, . . . in place of x. This is why, for any fixed integer r ≥ 1, we
write

M1(x) =
∑

d≤logA x

κ(d)
r∑

j=0

Ad(x/2j) + O
( x

2r

)
+ O

(
x

logAκ x

)
, (57)

where
Ad(x/2j) = Sd(x/2j) − Sd(x/2j+1).

Similarly, for any fixed integer r ≥ 1, we may write

N1(x) =
∑

d≤logA x

h(d)
r∑

j=0

Bd(x/2j) + O
( x

2r

)
+ O

(
x

logAκ x

)
, (58)

where
Bd(x/2j) = Ed(x/2j) − Ed(x/2j+1).

For now, fix x and set

r :=

⌊
Aκ log log x

log 2

⌋
so that 2r ≈ logAκ x. (59)

We now proceed to estimate Ad(x) and Bd(x).
Clearly we have

Ad(x) =
∑

x
2 <p≤x

gcd(
p−1

d
,d)=1

p≡1 (mod d)

τ(p − 1) = τ(d)
∑

x
2 <p≤x

gcd(
p−1

d
,d)=1

p≡1 (mod d)

τ(
p − 1

d
). (60)

Observe that
τ(n) = 2#{(u, v) : u < v and uv = n} + θn,

where

θn =

{
1, if n = square;
0, otherwise.

19



Thus, in light of (60),

Ad(x) = τ(d)
∑

x
2 <p≤x

p≡1 (mod d)

#{(u, v) : u < v, gcd(uv, d) = 1, uv =
p − 1

d
} + O

(√
x
)
, (61)

where the error term is there to account for those p for which p−1
d

= u2.
It is clear that in the sum appearing in (61), we have u ≤ √

x. On the other hand, the
contribution of those u’s for which u >

√
x/(logB x) can be bounded above, using Lemma

11, by

τ(d)
∑

√
x/(logB x)<u≤√

x
gcd(u,d)=1

π(x; du, 1) ≤ c8τ(d)
li(x)

ϕ(d)

∑
√

x/(logB x)<u≤√
x

gcd(u,d)=1

1

ϕ(u)

≤ c9τ(d)
li(x)

ϕ(d)
B log log x, (62)

where we also used Lemma 15.
Concerning the equation p−1

d
= uv, the condition gcd(uv, d) = 1 is satisfied if and only

if gcd(u, d) = 1 and v ≡ ℓ (mod d) for some positive integer ℓ co-prime to d, meaning that
v = ℓ + dt and p − 1 = du(ℓ + dt) = duℓ + d2ut for some integer t.

In light of these observations and of (62), relation (61) can be replaced by

Ad(x) = τ(d)
∑

u≤√
x/(logB x)

gcd(u,d)=1

∑

gcd(ℓ,d)=1

(
π(x; d2u, 1 + duℓ) − π(

x

2
; d2u, 1 + duℓ)

)

+O

(
τ(d)

ϕ(d)
(li(x)) log log x

)
. (63)

We shall assume that B is sufficiently large to insure that d2u ≤ √
x/(log∆ x), for some

large number ∆.
Using Lemma 12, (63) becomes

Ad(x) = τ(d) (li(x) − li(x/2))
∑

u≤√
x/(logB x)

gcd(u,d)=1

∑

gcd(ℓ,d)=1

1

ϕ(d2u)

+O

(
τ(d)

ϕ(d)
(li(x)) log log x

)
.

But observe that in the above sum, we have

∑

gcd(ℓ,d)=1

1

ϕ(d2u)
=

1

ϕ(u)
· ϕ(d)

dϕ(d)
=

1

ϕ(u)
· 1

d
,

so that

Ad(x) =
τ(d)

d
(li(x) − li(x/2))

∑

u≤√
x/(logB x)

gcd(u,d)=1

1

ϕ(u)
+ O

(
τ(d)

ϕ(d)
(li(x)) log log x

)

=
1

4

τ(d)cd

d
x + O

(
x log log x

log x

)
, (64)
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(cd being the constant appearing in the statement of Lemma 15) where we used Lemma 15
and the fact that

(li(x) − li(x/2)) ·
(

1

2
log x − B log log x

)
=

1

4
x + O

(
x log log x

log x

)

and that
τ(d)

ϕ(d)
li(x) log log x = O

(
x log log x

log x

)
.

Substituting (64) in (57) and taking into account the choice of r made in (59), we get

M1(x) =
∑

d≤logA x

κ(d)
r∑

j=0

Ad(x/2j) + O

(
x

logAκ x

)

=
1

4

∑

d≤logA x

κ(d)τ(d)cd

d

r∑

j=0

x

2j
+ O

(
x(log log x)2

log x

)

=
1

2
x
∑

d≤logA x

κ(d)τ(d)cd

d
+ O

(
x(log log x)2

log x

)
(65)

provided A is chosen so that Aκ > 1. Finally, using Lemma 14, recalling the initial formu-
lation of M(x) given in (46) and using (65), we get

M(x) = x
1

2

∞∑

d=1

κ(d)τ(d)cd

d
+ O

(
x(log log x)2

log x

)
,

thus completing the proof of Theorem 3.
We now move to complete the proof of Theorem 4. For this, we shall use essentially the

same kind of technique to obtain an estimate for Ed(x) for d ≤ logA x.
Since

Qd,δ(x) :=
∑

n≤x/δ2

τ(n) ≤ c10x log x

δ2
,

it follows that

Ed(x) =
∑

δ≤logB x

µ(δ)Qd,δ(x) + O

(
x

d

1

log2 x

)
,

provided B is sufficiently large.
We shall now estimate Qd,δ(x) assuming that d ≤ logA x and δ ≤ logB x.
We proceed to estimate

B(x) = Bd,δ(x) := Qd,δ(x) − Qd,δ(x/2).

We have

B(x) = 2
∑

x
2 <p≤x

p≡1 (mod δ2)

#{(u, v) : u < v, uv =
p − 1

δ2
, d|δ2uv} + O(

√
x).
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As in the proof of Theorem 3, we can drop in the above solution count those pairs u, v
for which u >

√
x/(log∆ x) for any fixed ∆ > 0, arbitrarily large.

Now let K,L ∈ Gd. Given u, v such that uv = p−1
δ2 , write u = Kũ and v = Lṽ, where

gcd(ũ, d) = gcd(ṽ, d) = 1. We then have

p − 1

δ2
= KLũṽ. (66)

And in order to guarantee that gcd(ṽ, d) = 1, we seek ṽ from the arithmetical progression
ṽ = ℓ + td with gcd(ℓ, d) = 1. It follows from (66) that

p − 1 = δ2KLũ(ℓ + td) = δ2KLũℓ + δ2KLdũt.

With this set up, we have

B(x) = 2
∑

K,L∈Gd

∑

gcd(ℓ,d)=1

∑

eu≤(
√

x/K)/ log∆ x
gcd(eu,d)=1

(
π(x; δ2KLdũ, δ2KLũℓ + 1)

− π(x/2; δ2KLdũ, δ2KLũℓ + 1)
)

+ O(
√

x). (67)

First we drop all pairs K,L for which KL > logD x, where D is a fixed large number. Indeed
observe that

∑

logD x<KL≤x1/10

K,L∈Gd

∑

eu≤√
x

∑

ℓ (mod d)

π(x; δ2KLdũ, δ2KLũℓ + 1)

+
∑

x1/10<KL≤x
K,L∈Gd

∑

eu≤√
x

xϕ(d)

δ2KLdũ

≤ li(x)
∑

KL>logD x
K,L∈Gd

∑

eu≤√
x

ϕ(d)

ϕ(δ2KLdũ)
+

∑

x1/10<KL≤x
K<L∈Gd

x

KL

log x

ϕ(δ2)

≤ li(x)

ϕ(δ2)
· log x ·

∑

KL>logD x
K,L∈Gd

1

ϕ(KL)
+

x log x

ϕ(δ2)

∑

KL>x1/10

K,L∈Gd

1

KL

=
li(x)

ϕ(δ2)
· log x · Hδ(x) +

x log x

ϕ(δ2)
· Jδ(x), (68)

say.

First of all, using the fact that
1

ϕ(n)
≪ log log n

n
, we have, for a fixed κ > 0,

Hδ(x) ≤ c11 log log log x
∑

KL>logD x
K,L∈Gd

1

KL
≤ c11 log log log x

∑

KL>logD x
K,L∈Gd

1

KL

(
KL

logD x

)κ

≤ c11
log log log x

logDκ x

∏

p|d

(
1

1 − 1
p1−κ

)2

. (69)

22



Choosing κ = 1/2 and observing that for d < logA x, we have that ω(d) ≪ log d
log log d

. Therefore
for such a number d,

∏

p|d

(
1

1 − 1√
p

)2

< c124
ω(d) < (log x)ε,

for any ε > 0 arbitrarily small. Using this observation, we may conclude from (69) that

Hδ(x) ≤ c13

(log x)D/3
, (70)

say. Proceeding in a somewhat similar manner, we get that

Jδ(x) =
∑

KL>x1/10

K,L∈Gd

1

KL
≤

∑

KL>x1/10

K,L∈Gd

1

KL

(
KL

x1/10

)1/2

≤ 1

x1/20

∏

p|d

1
(
1 − 1√

p

)2 <
(log x)ε

x1/20
. (71)

Estimates (68), (70) and (71) therefore establish that we can drop from the sum in (67)
those K,L ∈ Gd for which KL > logD x for a large D, the error thus created being no larger

than O

(
li(x)

(log x)D/3

)
. In light of these observations and using the fact that ϕ(δ2KLdũ) =

KLϕ(δ2dũ) and that

∑

K,L∈Gd
KL<(log x)D

1

KL
=

∑

K,L∈Gd

1

KL
−

∑

K,L∈Gd
KL≥(log x)D

1

KL
=
∏

p|Gd

(
1 − 1

p

)−2

+ O

(
li(x)

(log x)D/3

)
,

we may write (67) as

B(x) = 2(li(x) − li(x/2))
∑

KL<(log x)D

K,L∈Gd

∑

eu<
√

x/(log x)∆

gcd(eu,d)=1

ϕ(d)

ϕ(δ2KLdũ)
+ O

(
li(x)

(log x)D/3

)

= 2(li(x) − li(x/2))
∏

p∈Gd

(
1 − 1

p

)−2 ∑

eu<
√

x/(log x)∆

gcd(eu,d)=1

ϕ(d)

ϕ(δ2dũ)
+ O

(
li(x)

(log x)D/3

)
. (72)

Set

Yd(x) :=
∑

eu<
√

x/(log x)∆

gcd(eu,d)=1

1

ϕ(δ2dũ)
.

In order to evaluate Yd(x), we let δ = δ1δ2, where δ1 ∈ Gd, gcd(δ2, d) = 1, and ũ = ũ1 · ũ2,
where ũ1 ∈ Gδ2 , gcd(ũ2, dδ2) = gcd(ũ2, dδ) = 1. Then,

ϕ(δ2dũ) = ϕ(δ2
1δ

2
2ũ1)ϕ(ũ2) = ϕ(δ2

1d)ϕ(δ2
2ũ1)ϕ(ũ2).
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It follows from Lemma 15 that
∑

gcd(fu2,dδ)=1
fu2≤y

1

ϕ(ũ2)
= cdδ log y + O(1). (73)

Now, the contribution of those ũ1 in Yd(x) for which ũ1 ∈ Gδ2 and ũ1 > (log x)∆0 is, using
(73),

≪
∑

fu1∈Gδ2

fu1>(log x)∆0

1

ϕ(δ2
1d)

1

ϕ(δ2
2)ũ1

∑ 1

ϕ(ũ2)

≪ (log x)
∑ 1

ϕ(δ2
1d)

1

ϕ(δ2
2)

∑

fu1∈Gδ2

fu1>(log x)∆0

1

ũ1

≪ log x

ϕ(δ2
1d)ϕ(δ2

2)

1

(log x)∆0/2

∑

fu1∈Gδ2

1√
ũ1

≪ (log x)1−∆0/2 1

δ2
1ϕ(d)ϕ(δ2

2)

∏

p|δ2

(
1 − 1√

p

)−1

≪ (log x)1−∆0/2 1

ϕ(d)

2ω(δ2)

δ2
1δ

2
2

.

On the other hand, the contribution of those ũ1 ≤ (log x)∆0 in Yd(x), as ũ2 runs up to
y0 :=

√
x/((log x)C ũ1), and also using Lemma 15 so that

∑

gcd(fu2,dδ)=1
fu2≤y0

1

ϕ(ũ2)
=

1

2
cdδ log x + O(log log x),

we get

Yd(x) =
1

2
cdδ(log x + log log x)

1

ϕ(δ2
1d)

1

ϕ(δ2
2)

∑

fu1∈Gδ2

1

ũ1

+ O

(
2ω(δ2)

δ2ϕ(d)
(log x)1−C0/2

)
. (74)

Observing that ϕ(δ2
1d) = δ2

1ϕ(d) and that

∑

eu∈Gδ2

1

ũ
=
∏

p|Gδ2

(
1 − 1

p

)−1

=
δ2

ϕ(δ2)
,

(74) becomes

Yd(x) =
1

2

cdδ

ϕ(d)

1

δ2
1δ

2
2

δ2

ϕ(δ2)
(log x + log log x)

+O

(
2ω(δ2)

δ2ϕ(d)
(log x)1−C0/2

)
. (75)
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Using (75) in (72), we obtain

B(x) = (li(x) − li(x/2))
cdδ

δ2
1δ2ϕ(δ2)

(log x + log log x)

+O

(
2ω(δ2)

δ2ϕ(d)
(log x)1−C0/2

)
.

Finally, summing over d ≤ (log x)A and δ ≤ (log x)B, the theorem follows.

7 Final remarks

It is interesting to inquire about the solutions to the equation

P̃ (n) = P̃ (n + 1), (76)

or equivalently
n

γ(n)

∏

p|n
(2p − 1) =

n + 1

γ(n + 1)

∏

q|n+1

(2q − 1). (77)

The first 13 solutions are 45, 225, 1125, 2025, 3645, 140 625, 164 025, 257 174, 703 125,
820 125, 1 265 625, 2 657 205 and 3 515 625.

One can easily check that if for some positive integers a and b, the number p = 3a·5b+1
2

is

a prime number, then n = 3a · 5b is a solution of (76), with P̃ (n) = 3a+1 · 5b. If one could
prove that there exist infinitely many primes of this form, it would follow that equation (76)
has infinitely many solutions. Interestingly, a computer search establishes that (76) has 37
solutions n < 1010 and that 21 of them are of the form n = 3a · 5b.

Moreover, all 37 solutions n0 are such that 33 · 5|P̃ (n0). To see that 3|n0, proceed as

follows. Suppose that 3 6 | P̃ (n0), then, in light of (77), 3 6 | (2p − 1) for each prime divisor p
of n and 3 6 | (2q− 1) for each prime divisor q of n+1. This would imply that p ≡ 1 (mod 3)
for all p|n (implying that n ≡ 1 (mod 3)) and q ≡ 1 (mod 3) for all q|n + 1 (implying that
n + 1 ≡ 1 (mod 3)), a contradiction.

The fact that 3|P̃ (n0) clearly implies that 5|P̃ (n0).
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