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ON SUMS OF POWERS
OF PRIME FACTORS OF AN INTEGER

J.-M. DeKoninck (Québec, Canada)
F. Luca (Morelia, Mexico)

Abstract. In this paper, we look at the positive integers n such that the

equality

∑

pαp ||n
pαp =


∑

p|n
p




2

holds.

1. Introduction

For every positive integer

n =
∏

pαp ||n
pαp

let
B(n) =

∑

pαp ||n
pαp and β(n) =

∑

p|n
p.

Plainly, B(n) = β(n) if and only if n is squarefree. In this paper, we look at
the positive integers n such that B(n) = β(n)2. Let A be the set of such n.
For a positive real number x we write A(x) = A ∩ [1, x]. Since A contains all
squares of primes, we get that #A(x) ≥ π(x1/2) À x1/2/ log x. In this note,
we show that A contains a lot more numbers, and in fact our main result is
the following.
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Theorem 1. The estimates

x

exp
(
(2

√
34/3 + o(1))

√
log x log log x

) ≤

≤ #A(x) ≤ x

exp
((

1√
2

+ o(1)
)√

log x log log x
)

hold as x →∞.

Throughout, we use the Vinogradov symbols À and ¿ and the Landau
symbols O and o with their regular meanings. We use log for the natural
logarithm and p, q and r with or without subscripts for prime numbers.
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2. The upper bound

For a positive integer n we write P (n) for the largest prime factor of n.
Let us consider that following sets:

A1(x) = {n ≤ x | n = p2},

A2(x) = {n ≤ x | P (n) < y}
and

A3(x) =
{
n ≤ x | n 6∈ A2(x), P (n)2 | n}

,

where y is a parameter which depends on x to be chosen later and which satisfies
exp((log log x)2) ≤ y ≤ x, and P (n) denotes the largest prime factor of n.

Plainly,

(1) #A1(x) = π(x1/2) ¿ x1/2

log x
.
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From standard estimates on smooth numbers [1], we know that if we set
u = log x/ log y, then

(2) #A2(x) ¿ x

exp((1 + o(1))u log u)
(x →∞)

in our range for y versus x, while

(3) #A3(x) ≤
∑

p prime
p≥y

⌊
x

p2

⌋
≤ x

∑

n≥y

1
n2

¿ x

y
.

Let A4(x) = A(x) \ (A1(x) ∪ A2(x) ∪ A3(x)). If n ∈ A4(x), then we can
write n = P (n)m, where m > 1 (note that ω(n) > 1 since n belongs to A(x)
but not to A1(x)). Furthermore, since n 6∈ A3(x), we have P (n)|/m. Since
n ∈ A(x), we can write

P (n) + B(m) = B(n) = β(n)2 = (β(m) + P (n))2,

so that
P (n)2 + (2β(m)− 1)P (n) + (β(m)2 −B(m)) = 0.

Hence, P (n) is determined in at most two ways by m. Furthermore, note
that for the positive integers n under consideration, we have that P (n) ≥ y,
implying that m ≤ x/y, so that

(4) #A4(x) ≤ 2
∑

m≤x/y

¿ x

y
.

From estimates (1), (2), (3) and (4), we immediately deduce that

#A(x) ≤ #A1(x) + #A2(x) + #A3(x) + #A4(x) ¿

¿ x1/2

log x
+

x

y
+

x

exp((1 + o(1))u log u)
.

To minimize the right hand side above we choose y = exp(u log u), which
amounts to

log2 y = log x log
(

log x

log y

)
.
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Thus, we get that log y = (1 + o(1))
√

log x log log x as x → ∞, and with this
choice of y versus x we obtain

#A(x) ¿ x

exp
((

1√
2

+ o(1)
)√

log x log log x
)

as x →∞, thus establishing the upper bound in Theorem 1.

3. The lower bound

Let N be a large odd integer which is not a multiple of 3. In particular,
N2 ≡ 1 (mod 24). Let M and k be some positive functions of N to be
specified more precisely later on, where for now M = N1+o(1) and k = o(log N)
as N → ∞. We assume that k is an integer congruent to 17 modulo 24. Let
c1 = (1− 1/1.1)1/3, c2 = (1− 1/6.9)1/3, and let p ∈ I = [c1N

2/3, c2N
2/3] and

q1 < · · · < qk ∈ J = [M/2,M ] be all primes congruent to 1 modulo 24. Let

(5) N1 = N − p−
k∑

i=1

qi and N2 = N2 − p3 −
k∑

i=1

qi.

Note that N1 is odd and N2 ≡ 7 (mod 24). Furthermore, assuming that

(6) kM = o(N),

then
N1 = N(1− p/N + O(kM/N)) = N(1 + o(1))

and
N2 = N2(1− p3/N2 + O(kM/N2)),

so that
N2

1

N2
=

N2(1 + o(1))
N2(1− p3/N2 + o(1))

∈ [1.1 + o(1), 6.9 + o(1)]

as N →∞, because p ∈ I. Thus, from the application of Theorem 16 on page
139 in Hua’s book [2] mentioned on page 156 of the same book, we have that
the number of solutions (p1, . . . , p7) of the system of equations

(7) p1 + · · ·+ p7 = N1 and p2
1 + · · ·+ p2

7 = N2
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is

(8) ≥ c3
N4

(log N)7
,

where c3 is some positive absolute constant. We now show that for large N ,
most of such solutions have pi 6= pj for i 6= j in {1, . . . , 7} and also that
pi 6∈ {p, q1, . . . , qk} for any i ∈ {1, . . . , 7}.

Let us count the solutions to the system of equations (7) having pi = pj

for some i 6= j. We assume that p6 = p7. Since pi ≤ N for all i = 1, . . . , 7,
it follows that the triplet (p4, p5, p6) can be chosen in at most O(N3/(log N)3)
ways. Assume now that p4, p5 and p6 have been chosen and that p6 = p7.
Then

(9) p1 + p2 + p3 = A and p2
1 + p2

2 + p2
3 = B,

where A = N1 − (p4 + p5 + 2p6) and B = N2 − (p2
4 + p2

5 + 2p2
6). Expressing

p3 versus p1 and p2 from the left equation above and inserting the answer into
the right equation above we get

p2
1 + p2

2 + (A− p1 − p2)2 = B,

or
p2
1 + p2

2 + p1p2 −Ap1 −Ap2 + A2/2 = B/2.

This last equation above can be rewritten as

(
p1 +

p2

2
− A

2

)2

+
3
4

(
p2 − A

3

)2

=
3B −A2

6
,

or

3U2 + V 2 = 2(3B −A2), where U = 2p1 + p2 −A and V = 3p2 −A.

Note that p1 and p2 determine U and V uniquely and vice-versa. It is well
known that if m is any fixed positive integer then the number of integer
solutions (x, y) of the equation 3x2 + y2 = m is O(2ω1(m)), where ω1(m) is
the number of prime divisors of m which are congruent to 1 modulo 3. It is
well known that ω1(m) ≤ ω(m) ≤ c4 log m/ log log m, where ω(m) is the total
number of distinct prime factors of m and c4 is some absolute constant. Since
2(B−A2) < 2N2, it follows that the number of possibilities for (p1, p2, p3) once
p4, p5 and p6 are fixed is ≤ exp(3c4 log N/ log log N) provided N is sufficiently
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large. Hence, the total number of solutions of the system of equations (7) with
pi = pj for some i 6= j is

¿ N3

(log N)3
exp

(
3c4

log N

log log N

)
= N3+o(1).

Comparing this with estimate (8), it follows that for large N , at least

(10)
c3

2
N4

(log N)7

solutions (p1, . . . , p7) exist with all the components distinct.

We now find an upper bound for the number of solutions for which pi ∈
∈ {p, q1, . . . , qk}. Since p ¿ N2/3, qi ≤ M and M = N1+o(1) > N2/3 for large
N , it follows that pi ≤ M for some i = 1, . . . , 7. Assume that p7 ≤ M . Then
the quadruplet (p4, p5, p6, p7) can be chosen in at most O(N3M/(log N)4) ways.
Now for each one of these choices we are led again to a system of equations (9)
with suitable A and B depending on p4, p5, p6 and p7, which, by the previous
argument, admits at most exp(3c4 log N/ log log N) solutions provided N is
sufficiently large. Thus, the number of such possibilities does not exceed

c5
N3M

(log N)4
exp

(
3c4

log N

log log N

)

for some positive constant c5. We require that the above upper bound is smaller
than a half of the expression shown at (10). This will be the case if

M ≤ c3

4c5

N

(log N)3
exp

(
−3c4

log N

log log N

)
,

and at least
c3

4
N4

(log N)7

solutions (p1, . . . , p7) exist where all the primes pi are distinct and do not belong
to {p, q1, . . . , qk}. Hence, we see that it suffices to choose M smaller than

N exp
(
−4c4

log N

log log N

)
,

and then in light of the fact that we have assumed that k = o(log N), it follows
that inequality (6) also holds.
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With such choices (p1, . . . , p7, p, q1, . . . , qk), we note that the number

n = p3
k∏

i=1

qi

7∏

j=1

p2
j

satisfies, recalling relations (5) and (7),

B(n) = p3 +
k∑

i=1

qi +
7∑

j=1

p2
j = N2 =


p +

k∑

i=1

qi +
7∑

j=1

pj




2

= β(n)2.

Further, note that

(11) n ≤ (c2N
2/3)3MkN14 := x.

The number of such n is, by the above argument and unique factorization,

≥ c3

4
N4

(log N)7
π′(I)

(
π′(J )

k

)
,

where π′(I) and π′(J ) denote the number of primes congruent to 1 modulo 24
in the intervals I and J , respectively. Since certainly

π′(I) ≥ (c2 − c1 + o(1))
φ(24)

N2/3

log(N2/3)

as N → ∞, where φ stands for Euler’s function, we get that π′(I) ≥
≥ c5N

2/3/ log N for large N , where c5 is some appropriate positive constant.
Furthermore, by a similar argument, we get

π′(J ) ≥ c6
M

log N
,

where c6 is also some appropriate constant. Hence, the number of such n is at
least

≥ c7
N4+2/3

(log N)8

(bc6M/ log Nc
k

)
≥ c7

N14/3

(log N)8
(c8M)k

(log N)kk!
,
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where c8 = c6/2, provided that N is large, because M = N1+o(1) and k =
= o(log N). We thus get, using estimate (11), that

(12)
#A(x) ≥ c7c

k
8N14/3Mk

(log N)k+8kk
=

=
x

exp (34/3 log N + (k + 8) log log N + k log k + O(k))
.

In light of (11) we get

log x = k log M + 16 log N + O(1),

and since log M = (1 + o(1)) log N , we arrive at log x = (1 + o(1))k log N . In
order to optimize the lower bound of #A(x) shown at (12), we choose k and N
such that log N, k log log N and k log k all have the same order of magnitude.
This suggests choosing

k =

⌊
c9

√
log x

log log x
+ O(1)

⌋
,

where c9 is a constant to be optimally chosen later on, and O(1) accounts for
the fact that k ≡ 17 (mod 24). Thus, since

k = c9(1 + o(1))
(

log x

log log x

)1/2

,

and k log N = (1 + o(1)) log x, we get

log N = c−1
9 (1 + o(1))(log x log log x)1/2,

k log k =
c9

2
(1 + o(1))(log x log log x)1/2,

and
k log log N =

c9

2
(1 + o(1))(log x log log x)1/2,

showing that

34
3

log N + (k + 8) log log N + k log k + O(k) =

=
(

34
3c9

+ c9 + o(1)
)

(log x log log x)1/2.
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Thus, the optimal constant c9 is the one which minimizes the function
h(t) = 34/(3t) + t. Since h′(t) = −34/(3t2) + 1, we get that the minimum of
this function is achieved at t0 =

√
34/3, for which h(t0) = 2

√
34/3. Thus,

choosing c9 = t0, we get that

#A(x) ≥ x

exp
(
(2

√
34/3 + o(1))

√
log x log log x

) ,

thus completing the proof of the theorem.
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