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Abstract

Let W stand for the union of finitely many convex bounded domains in
C. Given z > 0, we denote by zW the set {xz : z € W}. Let G = Z[i] be
the set of Gaussian integers and set G* := G \ {0}. Given a complex number
z = u+ v, where u,v € R, let {z} = {u} + i{v}, where {z} stands for the
fractional part of x. Let E := {w : 0 < R(w) < 1, 0 < S(w) < 1}. We say
that the sequence of complex numbers z1, 23, ... is uniformly distributed mod
E if A}gnoo %#{n <N :R({zn}) <wu, S({zn}) < v} = uv for every pair of real
numbers u, v €]0,1]. Let 7 be the set of those functions ¢ : G* — C for which
t(a) + F(«) is uniformly distributed mod E in limit on W (as x — oo) for
every additive arithmetical function F', and such that the discrepancy does not
depend on F. We prove that if P(z) € C|z] is a polynomial of positive degree,
whose leading coefficient is a and such that the numbers 1, R(a) and 3(a) are
rationally independent, then P € T.

1 Introduction

Let W stand for the union of finitely many convex bounded domains in C. Given
x > 0, we denote by xW the set {xz : z € W}, and observe that with the Lebesgue
measure | - |, we have |[xW| = z?|W|. Let G = Z[i| be the set of Gaussian integers
and set G* := G \ {0}. Finally, let M be the set of multiplicative functions defined
on G* and let M* be the subset of M made of those g € M satistying |g(«)| < 1 for
all & € G*. Let x be an arbitrary additive character, that is a function x : G — {z:
|z| = 1} for which x(0) = 1 and x(a1 + ag) = x(a1)x(as) for all oy, s € G. Using
the standard notation e(u) = >, we set x(1) = e(A) and x(i) = e(B), and then
denote by A the set of those x’s for which at least one of A and B is irrational. We
proved in [1] that, given y € A and g € M*,

> 9(B)x(8) =0,
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where the convergence is uniform in g, thereby generalizing a previous result of
Daboussi and Delange [2].
This paper is essentially a continuation of the results obtained in [1].



2 The main result

Given a complex number z = u +iv, where u,v € R, let {z} = {u} +i{v}, where {z}
stands for the fractional part of . Let £ :={w: 0 < R(w) <1, 0 < F(w) < 1}. We
say that the sequence of complex numbers zq, 25, ... is uniformly distributed mod E
if
1
lim —#{n < N:R({z.}) <u, S{z.}) <v}=ww
N—oo N

for every pair of real numbers u, v €]0, 1.
A result of H. Weyl states that (see [3]) that the sequence z, is uniformly dis-
tributed mod E if

N
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dim Z e(kR(zn) + (3(2,)) = 0

for each pair (k,¢) € Z x Z \ {(0,0)}.
For each real positive number z, let N(x) := #{a € W N G*} and further let
h:G* — C. For u,v €]0, 1], let
1

F.(u,v) = N (@)

#{zexzW NG :R{I(2)}) <u, SH{h(2)}) <v}.

We say that h is uniformly distributed mod FE in limit on W for z — oo if

(2.1) lim F,(u,v) =wuv  holdsfor0 <u <1, 0<wv<1.
T—00

Let T be the set of those functions t : G* — C for which ¢(«) + F'(«) is uniformly
distributed mod £ in limit on W (as x — o0) for every additive arithmetical function
F', and such that the discrepancy does not depend on F'.

Theorem 1. Let P(z) € C[z] a polynomial of positive degree k. Let a be the coefficient
of 2% in P(z). Assume that the numbers 1, R(a) and 3(a) are rationally independent.

Then P € T.

3 Preliminary lemmas

Lemma 1. Let ¢ = {p1,p2,...,p-} be a finite set of Gaussian primes, with |p;| <

lp2| < ... < |py| such that no two of them are associates. Let x be an additive
character. Set T'(x) := Z g(B)x(P(B)) and let
BexW
Ti(x) == > gleNx(P(py),  Talx):= > glp)gx(P(py)).
oo Then
Then,
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where A, Z ]p ’2
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Lemma 2. (WEYL) Let f(z) = apz® + ... + aux + ap be a polynomial with real
coefficients g, aq, . .., ap and such that
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ap — — S o h7q =
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Then,
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Proof. This result is due to H. Weyl and is stated (and proved) as Lemma 3.6 in the
book of Hua [3]. O
Lemma 3. (ERDOs-TURAN-KOKSMA) Let (z,), where n = 1,2,... N, be a se-

quence of points in R® and let G be an arbitrary positive integer. Then, the discrep-
ancy Dy (x,) is less than

9235+1 + Z _h

0<|[nlI<G

N
Z (< h,z, >

where < -,- > denotes the usual inner product on R?, ||h|| = max;—,

lattice points h = (hy, ..., hs), and R(h) = [[;_; max(|h;|, 1).

s |hi| for integral

-----

Proof. For a proof of this result, see the book of Kuipers and Niederreiter [4]. n

4 The proof of the main result

The case k = 1 follows essentially from our Theorem 1 proved in [1]. Hence, we may
assume that & > 2.

The first part of the proof follows exactly the same reasoning as that of the proof
of Theorem 1 in [1].

Indeed, applying Lemma 1 with a(y) = ¢g(v) and b(y) = Z g(p)x(P(pv)), we
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By the Cauchy-Schwarz Inequality, we obtain that

1/2 1/2
(4.2) Ta(z)| < (Z\a(v)!2> ‘ (Zlb(ﬂz) = 5% 5y,

say.
On the one hand, it is clear that

(43) 21 < x2.

On the other hand, Y5 can be written as

(4.4) Z DI+ ) (P(pu))X(P(p7)),

Ty v#j vESy,j
w w
where S, ; = ? x_ Now, since y is an additive character, it follows that
Puv Pj
(4.5) X(P(po))x(P(piv)) = x(P(pvy) — Plpjy))-

Assume that
X(2) == e(kR(z) + (3(2)), (k,0) € Z x Z\ {(0,0)}.

Then, set

(4.6) B,;= Y x(P(p.y) = Plp;7)).
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In light of the estimates (4.1) through (4.6), it is clear that it is sufficient to prove
that

(@) Jim oy 1Bl =

To do so, we argue as in the proof of Theorem 1 of [1].
Let p,,p; € o be fixed, p, # p;. Further let a« = A + Bi, pf — pf = P+ Qr,
U=K(AP — @QB) + L(AQ + BP). We must have that U # 0. Indeed, since

U=(KP+LQ)A+ (LP - KQ)B

P K P
and KP4+ LQ =0, LP—KQ:0W0uldimplythatQ =T @ 7
K=Lor K=-L.
If K =1L, then K # 0, and KP + LQ =0, LP — KQ = 0, which would apply
that P+ @Q =0, P — @ = 0, implying that P = @ = 0.

that is either
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If K =—L, then K #0, and so P —Q =0, P+ @ = 0 would follow, which is
also impossible.

Since A, B, 1 are rationally independent, it follows that U is irrational and there-
fore that k!U is an irrational number.

Let 0 < A < 1 be the unique (irrational) number such that e(k!U) = e(\) and let
q1 < g2 < ... be a sequence of positive integers such that

@&l A ]| <1 holds for v =1,2,3,...

holds.
Let
Y(z) = 5
() Jmax g
and
1 Y(z)-1
B = X (P(pu(y + 0) = P(p; (v +0))) .
Y (x)
v€S,,; €=0

First, letting N(z) = #{vy € S,,;}, we observe that |B, ; —B | =o(N(x)) as x — 0.
Thus in order to prove (4.7), we only need to prove that

(4.8) lim —— ‘B ~0.

Z—00 N

Now let N be the number of those v for which y+¢ € S, ;, (( =0,1,...,Y (z)—
1). Ifye S,; and y+¢ ¢ S, ; for at least one £ € {0,1,...,Y (x)—1}, then either vp,
or yp; is close to the boundary of 2W. Since W is a finite union of convex domains,
the length of the boundary of xW is O(x), which implies that

0 < N(z) — NO(2) < Y (z) = o(N(x)) (x — 00).
We shall now prove that

Y (z)-1
(4.9) max % > XQW)| =0 (z—o0),
=0

'yESV,j Y xr

where
Q) = Q;(0) = Ppy(y + £)) = P(pi(v + 1))

To prove (4.9), we shall use Lemma 2. But in order to do so, we first observe that
Q0) = alp, — pi)LF + ...

Let R({) = KRQ(() + L3Q(¢). Then R(¢) is a polynomial of degree k, of which
the coefficient of the main term is KRa(p — p¥) + LSa(pl — p¥).

Thus,

Y (z)-1 Y(z)-1
X(Q(0)) = e(R(¢
=0 =0



Applying Lemma 3 with P =Y (z), f = R, ay, = A\, we may conclude that

7] <€ Y () (ﬁ) ,

where € > 0 is an arbitrary small constant. Thus, T/Y (z) — 0 as x — oo uniformly
in v, which completes the proof of (4.9) and therefore of (4.8). The estimates being
uniform in ¢, Theorem 1 follows from Lemma 3.

References

[1] N.Bassily, J.M. De Koninck and I. Kétai, On a theorem of Daboussi related to
the set of Gaussian integers, Mathematica Pannonica 14 (2003), 267-272.

[2] H.Daboussi and H. Delange, Quelques propriétés des fonctions multiplicatives de
module au plus égal a 1, C.R. Acad. Sci. Paris Série A 278 (1974), 657-660.

[3] L.K. Hua, Additive Theory of Prime Numbers, Vol. 13, Translations of Mathe-
matical Monographs, American Mathematical Society, Rhode island, 1965.

[4] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley
and Sons, New York, 1974.

Jean-Marie De Koninck Imre Katai

Dép. de mathématiques et de statistique Computer Algebra Department
Université Laval Eotvos Lorand University
Québec 1117 Budapest

Québec G1V 0A6 Pazméany Péter Sétany 1/C
Canada Hungary

jmdk@mat.ulaval.ca katai@compalg.inf.elte.hu

JMDK, le 5 avril 2010; fichier: gaussian-avril2010.tex



