On a theorem of Daboussi related to the set of Gaussian integers II

Jean-Marie De Koninck and Imre Kátai

Édition du 5 avril 2010

Abstract

Let W stand for the union of finitely many convex bounded domains in \mathbb{C}. Given $x>0$, we denote by $x W$ the set $\{x z: z \in W\}$. Let $G=\mathbb{Z}[i]$ be the set of Gaussian integers and set $G^{*}:=G \backslash\{0\}$. Given a complex number $z=u+i v$, where $u, v \in \mathbb{R}$, let $\{z\}=\{u\}+i\{v\}$, where $\{x\}$ stands for the fractional part of x. Let $E:=\{w: 0 \leq \Re(w)<1,0 \leq \Im(w)<1\}$. We say that the sequence of complex numbers z_{1}, z_{2}, \ldots is uniformly distributed mod E if $\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n \leq N: \Re\left(\left\{z_{n}\right\}\right)<u, \Im\left(\left\{z_{n}\right\}\right)<v\right\}=u v$ for every pair of real numbers $u, v \in] 0,1]$. Let \mathcal{T} be the set of those functions $t: G^{*} \rightarrow \mathbb{C}$ for which $t(\alpha)+F(\alpha)$ is uniformly distributed $\bmod E$ in limit on $x W$ (as $x \rightarrow \infty)$ for every additive arithmetical function F, and such that the discrepancy does not depend on F. We prove that if $P(z) \in \mathbb{C}[z]$ is a polynomial of positive degree, whose leading coefficient is a and such that the numbers $1, \Re(a)$ and $\Im(a)$ are rationally independent, then $P \in \mathcal{T}$.

1 Introduction

Let W stand for the union of finitely many convex bounded domains in \mathbb{C}. Given $x>0$, we denote by $x W$ the set $\{x z: z \in W\}$, and observe that with the Lebesgue measure $|\cdot|$, we have $|x W|=x^{2}|W|$. Let $G=\mathbb{Z}[i]$ be the set of Gaussian integers and set $G^{*}:=G \backslash\{0\}$. Finally, let \mathcal{M} be the set of multiplicative functions defined on G^{*} and let \mathcal{M}^{*} be the subset of \mathcal{M} made of those $g \in \mathcal{M}$ satisfying $|g(\alpha)| \leq 1$ for all $\alpha \in G^{*}$. Let χ be an arbitrary additive character, that is a function $\chi: G \rightarrow\{z$: $|z|=1\}$ for which $\chi(0)=1$ and $\chi\left(\alpha_{1}+\alpha_{2}\right)=\chi\left(\alpha_{1}\right) \chi\left(\alpha_{2}\right)$ for all $\alpha_{1}, \alpha_{2} \in G$. Using the standard notation $e(u)=e^{2 \pi i u}$, we set $\chi(1)=e(A)$ and $\chi(i)=e(B)$, and then denote by \mathcal{A} the set of those χ 's for which at least one of A and B is irrational. We proved in [1] that, given $\chi \in \mathcal{A}$ and $g \in \mathcal{M}^{*}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{|x W|} \sum_{\beta \in x W} g(\beta) \chi(\beta)=0
$$

where the convergence is uniform in g, thereby generalizing a previous result of Daboussi and Delange [2].

This paper is essentially a continuation of the results obtained in [1].

2 The main result

Given a complex number $z=u+i v$, where $u, v \in \mathbb{R}$, let $\{z\}=\{u\}+i\{v\}$, where $\{x\}$ stands for the fractional part of x. Let $E:=\{w: 0 \leq \Re(w)<1,0 \leq \Im(w)<1\}$. We say that the sequence of complex numbers z_{1}, z_{2}, \ldots is uniformly distributed $\bmod E$ if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n \leq N: \Re\left(\left\{z_{n}\right\}\right)<u, \Im\left(\left\{z_{n}\right\}\right)<v\right\}=u v
$$

for every pair of real numbers $u, v \in] 0,1]$.
A result of H . Weyl states that (see [3]) that the sequence z_{n} is uniformly distributed $\bmod E$ if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(k \Re\left(z_{n}\right)+\ell \Im\left(z_{n}\right)\right)=0
$$

for each pair $(k, \ell) \in \mathbb{Z} \times \mathbb{Z} \backslash\{(0,0)\}$.
For each real positive number x, let $N(x):=\#\left\{\alpha \in x W \cap G^{*}\right\}$ and further let $h: G^{*} \rightarrow \mathbb{C}$. For $\left.\left.u, v \in\right] 0,1\right]$, let

$$
F_{x}(u, v):=\frac{1}{N(x)} \#\left\{z \in x W \cap G^{*}: \Re(\{h(z)\})<u, \Im(\{h(z)\})<v\right\} .
$$

We say that h is uniformly distributed $\bmod E$ in limit on $x W$ for $x \rightarrow \infty$ if

$$
\begin{equation*}
\lim _{x \rightarrow \infty} F_{x}(u, v)=u v \quad \text { holds for } 0<u \leq 1,0<v \leq 1 \tag{2.1}
\end{equation*}
$$

Let \mathcal{T} be the set of those functions $t: G^{*} \rightarrow \mathbb{C}$ for which $t(\alpha)+F(\alpha)$ is uniformly distributed $\bmod E$ in limit on $x W$ (as $x \rightarrow \infty)$ for every additive arithmetical function F, and such that the discrepancy does not depend on F.

Theorem 1. Let $P(z) \in \mathbb{C}[z]$ a polynomial of positive degree k. Let a be the coefficient of z^{k} in $P(z)$. Assume that the numbers $1, \Re(a)$ and $\Im(a)$ are rationally independent. Then $P \in \mathcal{T}$.

3 Preliminary lemmas

Lemma 1. Let $\wp=\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{r}\right\}$ be a finite set of Gaussian primes, with $\left|\rho_{1}\right| \leq$ $\left|\rho_{2}\right| \leq \ldots \leq\left|\rho_{r}\right|$ such that no two of them are associates. Let χ be an additive character. Set $T(x):=\sum_{\beta \in x W} g(\beta) \chi(P(\beta))$ and let

$$
T_{1}(x):=\sum_{\substack{\rho \gamma \in x W \\ \rho \in \notin \mapsto}} g(\rho \gamma) \chi(P(\rho \gamma)), \quad T_{2}(x):=\sum_{\substack{\rho \gamma \in x W \\ \rho \in \notin \mathcal{~}}} g(\rho) g(\gamma) \chi(P(\rho \gamma)) .
$$

Then,

$$
\left|T_{1}(x)-T_{2}(x)\right| \leq \frac{c x^{2}}{\left|\rho_{1}\right|^{2}} A_{\wp}
$$

where $A_{\wp}=\sum_{j=1}^{r} \frac{1}{\left|\rho_{j}\right|^{2}}$.
Lemma 2. (WEYL) Let $f(x)=\alpha_{k} x^{k}+\ldots+\alpha_{1} x+\alpha_{0}$ be a polynomial with real coefficients $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$ and such that

$$
\left|\alpha_{k}-\frac{h}{q}\right| \leq \frac{1}{q^{2}}, \quad(h, q)=1
$$

Then,

$$
\sum_{x=1}^{P} e(f(x)) \ll P^{1+\varepsilon} q^{\varepsilon}\left(\frac{1}{P}+\frac{1}{q}+\frac{q}{P^{k}}\right)^{2^{1-k}}
$$

Proof. This result is due to H. Weyl and is stated (and proved) as Lemma 3.6 in the book of Hua [3].

Lemma 3. (Erdős-Turan-Koksma) Let $\left(x_{n}\right)$, where $n=1,2, \ldots, N$, be a sequence of points in \mathbb{R}^{s} and let G be an arbitrary positive integer. Then, the discrepancy $D_{N}\left(x_{n}\right)$ is less than

$$
2 s^{2} 3^{s+1}\left(\frac{1}{G}+\sum_{0<\|h\| \leq G} \frac{1}{R(h)}\left|\frac{1}{N} \sum_{n=1}^{N} e\left(<h, x_{n}>\right)\right|\right)
$$

where $<\cdot, \cdot>$ denotes the usual inner product on $\mathbb{R}^{s},\|h\|=\max _{i=1, \ldots, s}\left|h_{i}\right|$ for integral lattice points $h=\left(h_{1}, \ldots, h_{s}\right)$, and $R(h)=\prod_{j=1}^{s} \max \left(\left|h_{j}\right|, 1\right)$.
Proof. For a proof of this result, see the book of Kuipers and Niederreiter [4].

4 The proof of the main result

The case $k=1$ follows essentially from our Theorem 1 proved in [1]. Hence, we may assume that $k \geq 2$.

The first part of the proof follows exactly the same reasoning as that of the proof of Theorem 1 in [1].

Indeed, applying Lemma 1 with $a(\gamma)=g(\gamma)$ and $b(\gamma)=\sum_{\substack{\rho \in \mathfrak{s} \\ \rho \in \frac{x W}{\gamma}}} g(\rho) \chi(P(\rho \gamma))$, we get that

$$
\begin{gathered}
T_{2}(x)=\sum_{\gamma \in G^{*}} a(\gamma) b(\gamma), \\
\gamma \in \cup_{\rho \in \wp} \frac{x W}{\rho}
\end{gathered}
$$

with

$$
\begin{equation*}
\left|T_{1}(x)-T_{2}(x)\right| \leq \frac{c x^{2}}{\left|\rho_{1}\right|^{2}} A_{\wp} \tag{4.1}
\end{equation*}
$$

By the Cauchy-Schwarz Inequality, we obtain that

$$
\begin{equation*}
\left|T_{2}(x)\right| \leq\left(\sum_{\gamma}|a(\gamma)|^{2}\right)^{1 / 2} \cdot\left(\sum_{\gamma}|b(\gamma)|^{2}\right)^{1 / 2}=\Sigma_{1}^{1 / 2} \cdot \Sigma_{2}^{1 / 2} \tag{4.2}
\end{equation*}
$$

say.
On the one hand, it is clear that

$$
\begin{equation*}
\Sigma_{1} \ll x^{2} \tag{4.3}
\end{equation*}
$$

On the other hand, Σ_{2} can be written as

$$
\begin{equation*}
\Sigma_{2}=\sum_{\gamma} \sum_{\substack{\rho \in \mathfrak{c} \\ \rho \gamma \in x W}} 1+\sum_{\nu \neq j} \sum_{\gamma \in S_{\nu, j}} g\left(\rho_{\nu}\right) \overline{g\left(\rho_{j}\right)} \chi\left(P\left(\rho_{\nu} \gamma\right)\right) \overline{\chi\left(P\left(\rho_{j} \gamma\right)\right)} \tag{4.4}
\end{equation*}
$$

where $S_{\nu, j}=\frac{x W}{\rho_{\nu}} \cap \frac{x W}{\rho_{j}}$. Now, since χ is an additive character, it follows that

$$
\begin{equation*}
\chi\left(P\left(\rho_{\nu} \gamma\right)\right) \overline{\chi\left(P\left(\rho_{j} \gamma\right)\right)}=\chi\left(P\left(\rho_{\nu} \gamma\right)-P\left(\rho_{j} \gamma\right)\right) \tag{4.5}
\end{equation*}
$$

Assume that

$$
\chi(z):=e(k \Re(z)+\ell \Im(z)), \quad(k, \ell) \in \mathbb{Z} \times \mathbb{Z} \backslash\{(0,0)\}
$$

Then, set

$$
\begin{equation*}
B_{\nu, j}:=\sum_{\gamma \in S_{\nu, j}} \chi\left(P\left(\rho_{\nu} \gamma\right)-P\left(\rho_{j} \gamma\right)\right) \tag{4.6}
\end{equation*}
$$

In light of the estimates (4.1) through (4.6), it is clear that it is sufficient to prove that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{N(x)}\left|B_{\nu, j}\right|=0 \tag{4.7}
\end{equation*}
$$

To do so, we argue as in the proof of Theorem 1 of [1].
Let $\rho_{\nu}, \rho_{j} \in \wp$ be fixed, $\rho_{\nu} \neq \rho_{j}$. Further let $a=A+B i, \rho_{\nu}^{k}-\rho_{j}^{k}=P+Q i$, $U=K(A P-Q B)+L(A Q+B P)$. We must have that $U \neq 0$. Indeed, since

$$
U=(K P+L Q) A+(L P-K Q) B
$$

and $K P+L Q=0, L P-K Q=0$ would imply that $\frac{P}{Q}=\frac{K}{L}, \frac{P}{Q}=-\frac{L}{K}$, that is either $K=L$ or $K=-L$.

If $K=L$, then $K \neq 0$, and $K P+L Q=0, L P-K Q=0$, which would apply that $P+Q=0, P-Q=0$, implying that $P=Q=0$.

If $K=-L$, then $K \neq 0$, and so $P-Q=0, P+Q=0$ would follow, which is also impossible.

Since $A, B, 1$ are rationally independent, it follows that U is irrational and therefore that $k!U$ is an irrational number.

Let $0 \leq \lambda<1$ be the unique (irrational) number such that $e(k!U)=e(\lambda)$ and let $q_{1}<q_{2}<\ldots$ be a sequence of positive integers such that

$$
q_{\nu}\left\|\lambda q_{\nu}\right\|<1 \quad \text { holds for } \nu=1,2,3, \ldots
$$

holds.
Let

$$
Y(x)=\max _{q_{\nu}<\log x} q_{\nu}
$$

and

$$
B_{\nu, j}^{(x)}:=\frac{1}{Y(x)} \sum_{\gamma \in S_{\nu, j}} \sum_{\ell=0}^{Y(x)-1} \chi\left(P\left(\rho_{\nu}(\gamma+\ell)\right)-P\left(\rho_{j}(\gamma+\ell)\right)\right) .
$$

First, letting $N(x)=\#\left\{\gamma \in S_{\nu, j}\right\}$, we observe that $\left|B_{\nu, j}-B_{\nu, j}^{(x)}\right|=o(N(x))$ as $x \rightarrow \infty$. Thus in order to prove (4.7), we only need to prove that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{N(x)}\left|B_{\nu, j}^{(x)}\right|=0 \tag{4.8}
\end{equation*}
$$

Now let $N^{(0)}$ be the number of those γ for which $\gamma+\ell \in S_{\nu, j},(\ell=0,1, \ldots, Y(x)-$ 1). If $\gamma \in S_{\nu, j}$ and $\gamma+\ell \notin S_{\nu, j}$ for at least one $\ell \in\{0,1, \ldots, Y(x)-1\}$, then either $\gamma \rho_{\nu}$ or $\gamma \rho_{j}$ is close to the boundary of $x W$. Since W is a finite union of convex domains, the length of the boundary of $x W$ is $O(x)$, which implies that

$$
0 \leq N(x)-N^{(0)}(x) \ll x Y(x)=o(N(x)) \quad(x \rightarrow \infty)
$$

We shall now prove that

$$
\begin{equation*}
\max _{\gamma \in S_{\nu, j}} \frac{1}{Y(x)}\left|\sum_{\ell=0}^{Y(x)-1} \chi(Q(\ell))\right| \rightarrow 0 \quad(x \rightarrow \infty) \tag{4.9}
\end{equation*}
$$

where

$$
Q(\ell)=Q_{j}(\ell)=P\left(\rho_{\nu}(\gamma+\ell)\right)-P\left(\rho_{j}(\gamma+\ell)\right)
$$

To prove (4.9), we shall use Lemma 2. But in order to do so, we first observe that $Q(\ell)=a\left(\rho_{\nu}^{\ell}-\rho_{j}^{\ell}\right) \ell^{k}+\ldots$

Let $R(\ell)=K \Re Q(\ell)+L \Im Q(\ell)$. Then $R(\ell)$ is a polynomial of degree k, of which the coefficient of the main term is $K \Re a\left(\rho_{\nu}^{k}-\rho_{j}^{k}\right)+L \Im a\left(\rho_{\nu}^{k}-\rho_{j}^{k}\right)$.

Thus,

$$
T:=\sum_{\ell=0}^{Y(x)-1} \chi(Q(\ell))=\sum_{\ell=0}^{Y(x)-1} e(R(\ell)) .
$$

Applying Lemma 3 with $P=Y(x), f=R, \alpha_{k}=\lambda$, we may conclude that

$$
|T| \ll Y(x)^{1+2 \varepsilon}\left(\frac{1}{Y(x)}\right)^{2^{1-k}}
$$

where $\varepsilon>0$ is an arbitrary small constant. Thus, $T / Y(x) \rightarrow 0$ as $x \rightarrow \infty$ uniformly in γ, which completes the proof of (4.9) and therefore of (4.8). The estimates being uniform in t, Theorem 1 follows from Lemma 3.

References

[1] N. Bassily, J.M. De Koninck and I. Kátai, On a theorem of Daboussi related to the set of Gaussian integers, Mathematica Pannonica 14 (2003), 267-272.
[2] H. Daboussi and H. Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à 1, C.R. Acad. Sci. Paris Série A 278 (1974), 657-660.
[3] L.K. Hua, Additive Theory of Prime Numbers, Vol. 13, Translations of Mathematical Monographs, American Mathematical Society, Rhode island, 1965.
[4] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley and Sons, New York, 1974.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

JMDK, le 5 avril 2010; fichier: gaussian-avril2010.tex

