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Abstract

Let W stand for the union of finitely many convex bounded domains in
ℂ. Given x > 0, we denote by xW the set {xz : z ∈ W}. Let G = ℤ[i] be
the set of Gaussian integers and set G∗ := G ∖ {0}. Given a complex number
z = u + iv, where u, v ∈ ℝ, let {z} = {u} + i{v}, where {x} stands for the
fractional part of x. Let E := {w : 0 ≤ ℜ(w) < 1, 0 ≤ ℑ(w) < 1}. We say
that the sequence of complex numbers z1, z2, . . . is uniformly distributed mod

E if lim
N→∞

1

N
#{n ≤ N : ℜ({zn}) < u, ℑ({zn}) < v} = uv for every pair of real

numbers u, v ∈]0, 1]. Let T be the set of those functions t : G∗ → ℂ for which
t(�) + F (�) is uniformly distributed mod E in limit on xW (as x → ∞) for
every additive arithmetical function F , and such that the discrepancy does not
depend on F . We prove that if P (z) ∈ ℂ[z] is a polynomial of positive degree,
whose leading coefficient is a and such that the numbers 1, ℜ(a) and ℑ(a) are
rationally independent, then P ∈ T .

1 Introduction

Let W stand for the union of finitely many convex bounded domains in ℂ. Given
x > 0, we denote by xW the set {xz : z ∈ W}, and observe that with the Lebesgue
measure ∣ ⋅ ∣, we have ∣xW ∣ = x2∣W ∣. Let G = ℤ[i] be the set of Gaussian integers
and set G∗ := G ∖ {0}. Finally, let ℳ be the set of multiplicative functions defined
on G∗ and letℳ∗ be the subset ofℳ made of those g ∈ℳ satisfying ∣g(�)∣ ≤ 1 for
all � ∈ G∗. Let � be an arbitrary additive character, that is a function � : G→ {z :
∣z∣ = 1} for which �(0) = 1 and �(�1 + �2) = �(�1)�(�2) for all �1, �2 ∈ G. Using
the standard notation e(u) = e2�iu, we set �(1) = e(A) and �(i) = e(B), and then
denote by A the set of those �’s for which at least one of A and B is irrational. We
proved in [1] that, given � ∈ A and g ∈ℳ∗,

lim
x→∞

1

∣xW ∣
∑
�∈xW

g(�)�(�) = 0,

where the convergence is uniform in g, thereby generalizing a previous result of
Daboussi and Delange [2].

This paper is essentially a continuation of the results obtained in [1].
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2 The main result

Given a complex number z = u+ iv, where u, v ∈ ℝ, let {z} = {u}+ i{v}, where {x}
stands for the fractional part of x. Let E := {w : 0 ≤ ℜ(w) < 1, 0 ≤ ℑ(w) < 1}. We
say that the sequence of complex numbers z1, z2, . . . is uniformly distributed mod E
if

lim
N→∞

1

N
#{n ≤ N : ℜ({zn}) < u, ℑ({zn}) < v} = uv

for every pair of real numbers u, v ∈]0, 1].
A result of H. Weyl states that (see [3]) that the sequence zn is uniformly dis-

tributed mod E if

lim
N→∞

1

N

N∑
n=1

e(kℜ(zn) + ℓℑ(zn)) = 0

for each pair (k, ℓ) ∈ ℤ× ℤ ∖ {(0, 0)}.
For each real positive number x, let N(x) := #{� ∈ xW ∩ G∗} and further let

ℎ : G∗ → ℂ. For u, v ∈]0, 1], let

Fx(u, v) :=
1

N(x)
#{z ∈ xW ∩G∗ : ℜ({ℎ(z)}) < u, ℑ({ℎ(z)}) < v}.

We say that ℎ is uniformly distributed mod E in limit on xW for x→∞ if

(2.1) lim
x→∞

Fx(u, v) = uv holds for 0 < u ≤ 1, 0 < v ≤ 1.

Let T be the set of those functions t : G∗ → ℂ for which t(�) +F (�) is uniformly
distributed mod E in limit on xW (as x→∞) for every additive arithmetical function
F , and such that the discrepancy does not depend on F .

Theorem 1. Let P (z) ∈ ℂ[z] a polynomial of positive degree k. Let a be the coefficient
of zk in P (z). Assume that the numbers 1, ℜ(a) and ℑ(a) are rationally independent.
Then P ∈ T .

3 Preliminary lemmas

Lemma 1. Let ℘ = {�1, �2, . . . , �r} be a finite set of Gaussian primes, with ∣�1∣ ≤
∣�2∣ ≤ . . . ≤ ∣�r∣ such that no two of them are associates. Let � be an additive

character. Set T (x) :=
∑
�∈xW

g(�)�(P (�)) and let

T1(x) :=
∑
�∈xW
�∈℘

g(�)�(P (�)), T2(x) :=
∑
�∈xW
�∈℘

g(�)g()�(P (�)).

Then,

∣T1(x)− T2(x)∣ ≤ cx2

∣�1∣2
A℘,
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where A℘ =
r∑
j=1

1

∣�j∣2
.

Lemma 2. (Weyl) Let f(x) = �kx
k + . . . + �1x + �0 be a polynomial with real

coefficients �0, �1, . . . , �k and such that∣∣∣∣�k − ℎ

q

∣∣∣∣ ≤ 1

q2
, (ℎ, q) = 1.

Then,
P∑
x=1

e(f(x))≪ P 1+"q"
(

1

P
+

1

q
+

q

P k

)21−k

.

Proof. This result is due to H. Weyl and is stated (and proved) as Lemma 3.6 in the
book of Hua [3].

Lemma 3. (Erdős-Turan-Koksma) Let (xn), where n = 1, 2, . . . , N , be a se-
quence of points in ℝs and let G be an arbitrary positive integer. Then, the discrep-
ancy DN(xn) is less than

2s23s+1

⎛⎝ 1

G
+

∑
0<∥ℎ∥≤G

1

R(ℎ)

∣∣∣∣∣ 1

N

N∑
n=1

e(< ℎ, xn >)

∣∣∣∣∣
⎞⎠ ,

where < ⋅, ⋅ > denotes the usual inner product on ℝs, ∥ℎ∥ = maxi=1,...,s ∣ℎi∣ for integral
lattice points ℎ = (ℎ1, . . . , ℎs), and R(ℎ) =

∏s
j=1 max(∣ℎj∣, 1).

Proof. For a proof of this result, see the book of Kuipers and Niederreiter [4].

4 The proof of the main result

The case k = 1 follows essentially from our Theorem 1 proved in [1]. Hence, we may
assume that k ≥ 2.

The first part of the proof follows exactly the same reasoning as that of the proof
of Theorem 1 in [1].

Indeed, applying Lemma 1 with a() = g() and b() =
∑
�∈℘
�∈xW

g(�)�(P (�)), we

get that

T2(x) =
∑
∈G∗

 ∈ ∪�∈℘
xW

�

a()b(),

with

(4.1) ∣T1(x)− T2(x)∣ ≤ cx2

∣�1∣2
A℘.
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By the Cauchy-Schwarz Inequality, we obtain that

(4.2) ∣T2(x)∣ ≤

(∑


∣a()∣2
)1/2

⋅

(∑


∣b()∣2
)1/2

= Σ
1/2
1 ⋅ Σ

1/2
2 ,

say.
On the one hand, it is clear that

(4.3) Σ1 ≪ x2.

On the other hand, Σ2 can be written as

(4.4) Σ2 =
∑


∑
�∈℘

�∈xW

1 +
∑
� ∕=j

∑
∈S�,j

g(��)g(�j)�(P (��))�(P (�j)),

where S�,j =
xW

��
∩ xW

�j
. Now, since � is an additive character, it follows that

(4.5) �(P (��))�(P (�j)) = �(P (��)− P (�j)).

Assume that

�(z) := e(kℜ(z) + ℓℑ(z)), (k, ℓ) ∈ ℤ× ℤ ∖ {(0, 0)}.

Then, set

(4.6) B�,j :=
∑
∈S�,j

�(P (��)− P (�j)).

In light of the estimates (4.1) through (4.6), it is clear that it is sufficient to prove
that

(4.7) lim
x→∞

1

N(x)
∣B�,j∣ = 0.

To do so, we argue as in the proof of Theorem 1 of [1].
Let �� , �j ∈ ℘ be fixed, �� ∕= �j. Further let a = A + Bi, �k� − �kj = P + Qi,

U = K(AP −QB) + L(AQ+BP ). We must have that U ∕= 0. Indeed, since

U = (KP + LQ)A+ (LP −KQ)B,

and KP +LQ = 0, LP −KQ = 0 would imply that
P

Q
=
K

L
,
P

Q
= − L

K
, that is either

K = L or K = −L.
If K = L, then K ∕= 0, and KP + LQ = 0, LP − KQ = 0, which would apply

that P +Q = 0, P −Q = 0, implying that P = Q = 0.
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If K = −L, then K ∕= 0, and so P − Q = 0, P + Q = 0 would follow, which is
also impossible.

Since A,B, 1 are rationally independent, it follows that U is irrational and there-
fore that k!U is an irrational number.

Let 0 ≤ � < 1 be the unique (irrational) number such that e(k!U) = e(�) and let
q1 < q2 < . . . be a sequence of positive integers such that

q�∥�q�∥ < 1 holds for � = 1, 2, 3, . . .

holds.
Let

Y (x) = max
q�<log x

q�

and

B
(x)
�,j :=

1

Y (x)

∑
∈S�,j

Y (x)−1∑
ℓ=0

� (P (��( + ℓ))− P (�j( + ℓ))) .

First, letting N(x) = #{ ∈ S�,j}, we observe that ∣B�,j−B(x)
�,j ∣ = o(N(x)) as x→∞.

Thus in order to prove (4.7), we only need to prove that

(4.8) lim
x→∞

1

N(x)

∣∣∣B(x)
�,j

∣∣∣ = 0.

Now let N (0) be the number of those  for which +ℓ ∈ S�,j, (ℓ = 0, 1, . . . , Y (x)−
1). If  ∈ S�,j and +ℓ ∕∈ S�,j for at least one ℓ ∈ {0, 1, . . . , Y (x)−1}, then either ��
or �j is close to the boundary of xW . Since W is a finite union of convex domains,
the length of the boundary of xW is O(x), which implies that

0 ≤ N(x)−N (0)(x)≪ xY (x) = o(N(x)) (x→∞).

We shall now prove that

(4.9) max
∈S�,j

1

Y (x)

∣∣∣∣∣∣
Y (x)−1∑
ℓ=0

�(Q(ℓ))

∣∣∣∣∣∣→ 0 (x→∞),

where
Q(ℓ) = Qj(ℓ) = P (��( + ℓ))− P (�j( + ℓ)).

To prove (4.9), we shall use Lemma 2. But in order to do so, we first observe that
Q(ℓ) = a(�ℓ� − �ℓj)ℓk + . . .

Let R(ℓ) = KℜQ(ℓ) + LℑQ(ℓ). Then R(ℓ) is a polynomial of degree k, of which
the coefficient of the main term is Kℜa(�k� − �kj ) + Lℑa(�k� − �kj ).

Thus,

T :=

Y (x)−1∑
ℓ=0

�(Q(ℓ)) =

Y (x)−1∑
ℓ=0

e(R(ℓ)).
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Applying Lemma 3 with P = Y (x), f = R, �k = �, we may conclude that

∣T ∣ ≪ Y (x)1+2"

(
1

Y (x)

)21−k

,

where " > 0 is an arbitrary small constant. Thus, T/Y (x)→ 0 as x→∞ uniformly
in , which completes the proof of (4.9) and therefore of (4.8). The estimates being
uniform in t, Theorem 1 follows from Lemma 3.
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