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Abstract. For each integer n ≥ 2, let β(n) stand for the product of the exponents
in the prime factorization of n. Given an arbitrary integer k ≥ 2, let nk be the smallest
positive integer n such that β(n + 1)= β(n + 2)= · · · = β(n + k). We prove that
there exist positive constants c1 and c2 such that, for all integers k ≥ 2,

exp
{

c1
log3 k

log log k

}
< nk < exp{c2 k log3 k log log k}.

§1. Introduction. It has been proved by Heath-Brown [1] that there exist
infinitely many positive integers n such that τ(n)= τ(n + 1), where τ(n) stands
for the number of positive divisors of n. No one has yet proved whether

τ(n)= τ(n + 1)= τ(n + 2)

for infinitely many positive integers n.
In this paper, we prove such a result for a similar but slightly smaller

arithmetic function. Writing an integer n ≥ 2 as the product of its prime factors
in the usual form n = qα1

1 qα2
2 · · · q

αr
r , where the qi are the distinct prime factors

of n and the αi positive integers, let β(n)= α1α2 · · · αr . Note that β(n) stands
for the number of divisors of n/γ (n), where γ (n) :=

∏
p|n p. While the order

of τ(n) is log n, the function β(n) has an asymptotic mean value. Indeed, it can
easily be shown that

lim
x→∞

1
x

∑
n≤x

β(n)=
ζ(2)ζ(3)
ζ(6)

≈ 1.9436,

where ζ stands for the Riemann zeta function, a result which essentially follows
from the fact that

∞∑
n=1

β(n)

ns =
ζ(s)ζ(2s)ζ(3s)

ζ(6s)
(s > 1).

Given any arbitrary integer k ≥ 2, let nk be the smallest positive integer n
such that

β(n + 1)= β(n + 2)= · · · = β(n + k). (1)

A computer search indicates that the first values of nk are as follows.

k 2 3 4 5 6 7
nk 2 4 843 74 848 671 345 8 870 024

We also believe that n8 = 1770 019 255 373 287 038 727 484 868 192 109
228 823.
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Here, not only do we prove that nk exists for each integer k ≥ 2, but we also
find upper and lower bounds for the value of nk . More precisely, we prove the
following result.

THEOREM. There exist positive constants c1 and c2 such that, for all k ≥ 2,

exp
{

c1
log3 k

log log k

}
< nk < exp{c2 k log3 k log log k}.

§2. Preliminary lemmas. Throughout this paper, we assume that k ≥ 2 is a
large integer. Given an integer n ≥ 2, we let P(n) and p(n) stand for its largest
and smallest prime factor, respectively, and write ω(n) for the number of distinct
prime factors of n and �(n) for the total number of prime factors of n counting
their multiplicity, with ω(1)=�(1)= 0. We write [m1, m2, . . . , mk] for the
least common multiple of the integers m1, m2, . . . , mk .

Given a prime p and a non-zero integer `, we let νp(`) stand for the unique
non-negative integer α such that pα‖`.

We use the Vinogradov symbols� and� as well as the Landau symbols O
and o with their regular meanings and c1, c2, . . . for computable positive
constants which are labelled increasingly throughout the paper.

LEMMA 1. As k→∞,

[β(1), . . . , β(k)] ≤ exp
{
(1+ o(1))

log k log log k

log 2

}
.

Proof. Let t (n) be the largest possible multiplicity of any prime factor of n.
For each j = 1, 2, . . . , t (n), let ω j (n) be the number of distinct prime factors p
of n such that p j

‖n. Clearly,

ω(n)=
t (n)∑
j=1

ω j (n), �(n)=
t (n)∑
j=1

jω j (n) and β(n)=
t (n)∏
j=1

jω j (n).

Furthermore, if p is a prime and αp(n) := νp(β(n)), then

αp(n)=
∑
i≥1

∑
j≥1
pi
‖ j

iω j (n).

Since pi
≥ i p for all i ≥ 1, we obtain

αp(n)≤
1
p

∑
i≥1

∑
j≥1
pi
‖ j

piω j (n)≤
1
p

∑
j≥1

jω j (n)=
�(n)

p
≤

log n

p log 2
.

The above argument shows that

max
1≤ j≤k

νp(β( j))≤
log k

p log 2
.
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Hence, using the prime number theorem,

[β(1), . . . , β(k)]

∣∣∣∣ ∏
p≤log k/ log 2

pblog k/(p log 2)c,

and, therefore,

[β(1), . . . , β(k)] ≤
∏

p≤log k/ log 2

plog k/(p log 2)

= exp
{

log k

log 2

∑
p≤log k/ log 2

log p

p

}

= exp
{

1
log 2

(1+ o(1))(log k)(log log k)

}
as k→∞, thus completing the proof of Lemma 1. 2

LEMMA 2. If q1, . . . , qt are distinct prime factors of β(n), then

n ≥ p(n)q1+···+qt .

Proof. There exists a partition I1 ∪ I2 ∪ · · · ∪ Is of {1, . . . , t} and s distinct

prime numbers p1, . . . , ps such that p
∏

j∈Ii
q j

i is a divisor of n. Hence,

n ≥
s∏

i=1

p
∏

j∈Ii
q j

i ≥ p(n)
∑s

i=1
∏

j∈Ii
q j ,

and the conclusion of the lemma now follows from the inequality

∏̀
i=1

ai ≥
∑̀
i=1

ai

which is valid for all `≥ 1 and ai ≥ 2 for i = 1, . . . , `, applied to each one of
the products

∏
j∈Ii

q j . 2

§3. Proof of the upper bound. Set

µk := [β(1), β(2), . . . , β(k)],

and let a1, . . . , ak be positive integers such that:

(i) for i = 1, 2, . . . , k, all prime factors of ai belong to [k2, 2k2
];

(ii) (ai , a j )= 1 for i 6= j ;
(iii) β(ai )= µk/β(i) for all i = 1, 2, . . . , k.

We now justify that it is possible to choose such integers ai if k is large. Indeed,
let i ≤ k and write

µk

β(i)
= q j1q j2 . . . q j`i

,
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where the q js are primes which are not necessarily distinct. Note that

`i ≤�(µk)≤
log µk

log 2
� log k log log k, (2)

by Lemma 1. Since the interval [k2, 2k2
] contains � k2/ log k primes,

it follows that it is possible to choose ai =
∏`i

s=1 p
q js
i,s , with the set Pi :=

{pi,1, pi,2, . . . , pi,`i } consisting of `i distinct primes p all contained in the
interval [k2, 2k2

] and such that Pi ∩ Pj = ∅ for all i 6= j . (This is because,
by (2), we only need O(k log k log log k) elements in

⋃k
i=1 Pi , and we have

� k2/ log k admissible elements in [k2, 2k2
] to choose from.)

Furthermore, note that

ai ≤ ((2k2)log k/ log 2)`i ≤ exp{c3(log k)3(log log k)}, (3)

for some appropriate positive constant c3. Let

Nk = [1, 2, . . . , 2k]

and choose a positive integer n0 such that n0 ≡ 0 (mod N 2
k ) and n0 + i ≡ ai

(mod a2
i ) for i = 1, 2, . . . , k, whose existence is guaranteed by the Chinese

remainder theorem, after observing that (Nk, ai )= 1 for each i ∈ {1, 2, . . . , k}.
Put

n = n0 + mM where M = N 2
k

k∏
i=1

a2
i , m ≥ 0,

where n0 is the smallest positive integer satisfying the above system of
congruences.

Note that
n + i = i · ai · (ci,0 + mMi ),

where ci,0 = (n0 + i)/(iai ) and Mi = M/(iai ). Note also that ci,0 + mMi is
coprime to iai for each i = 1, 2, . . . , k. In fact, this number is congruent to
one modulo every prime factor of iai . Therefore, if m is such that ci,0 + mMi
is square-free for all i = 1, 2, . . . , k, then β(n + i)= β(iai )= β(i)β(ai )= µk
for all i = 1, 2, . . . , k, which shows that, for such an m, the corresponding n
satisfies n ≥ nk . To complete the proof of the upper bound, we show that there
exists m ≤ M such that the above k numbers ci,0 + mMi (i = 1, 2, . . . , k) are
all square-free.

Assume that, for some i , we have ci,0 + mMi ≡ 0 (mod p2) for some prime
p < 2M . Note that p > 2k. For every such prime p, the number of positive
integers m ≤ M satisfying the above congruence is at most M/p2

+ 1. Thus,
the total number of such possibilities over all such primes p < 2M and indices
i ∈ {1, 2, . . . , k} is at most

k∑
i=1

∑
2k<p<2M

(
M

p2 + 1
)
= k M

∑
p>2k

1

p2 + kπ(2M)

≤ kπ(2M)+ O

(
M

log k

)
. (4)
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Observing that Nk = exp{ψ(2k)}, where ψ(x) :=
∑

pα≤x log p, by applying the
prime number theorem, we obtain

M ≥ N 2
k = exp{2ψ(2k)} = exp{4(1+ o(1))k},

from which it follows that log M ≥ 4(1+ o(1))k as k→∞. Hence, using this
inequality and the prime number theorem again, we deduce that

π(2M)= (1+ o(1))
2M

log M
≤

(
1
2
+ o(1)

)
M

k
as k→∞.

Thus, π(2M)≤ 2M/3k if k is sufficiently large, which shows that the right-hand
side of inequality (4) is at most 3M/4 if k is sufficiently large.

Therefore, if k is large, there exist at least M/4 positive integers m ≤ M (in
particular, at least one of them), such that ci,0 + mMi is free of squares of primes
p < 2M for all i = 1, 2, . . . , k. However, note that such integers are necessarily
square-free as, if not, there must exist a prime p ≥ 2M such that p2

| ci,0 + mMi
for some i ∈ {1, 2, . . . , k}, leading to

(2M)2 ≤ p2
≤ ci,0 + mMi ≤ M + M2,

which is impossible for any M > 1.
This shows that, in light of (3),

nk ≤ n0 + M2
≤ 2M2

= 2N 4
k

k∏
i=1

a4
i ≤ exp{4 c3 k log3 k log log k + O(k)},

which completes the proof of the upper bound.

§4. Proof of the lower bound. By the results from §3, we know that nk
exists. We now let

tk :=

⌊
log(k/2)

log 2

⌋
− 1 and rk :=

∏
p≤tk

p.

We start with the following lemma.

LEMMA 3. For each integer k ≥ 2, ρk is a multiple of rk .

Proof. First we prove that, for any positive integer α such that 2α ≤ k/2,

α − 1 divides ρk . (5)

Since 2α ≤ k/2, there exists i ∈ {0, 1, 2, . . . , bk/2c} such that 2α | n + i , so that
2α−1
‖n + (i + 2α−1). Now

j := i + 2α−1
≤

⌊
k

2

⌋
+ 2α−1

≤
k

2
+

k

4
< k,

implying that j ≤ k − 1, and since 2α−1
‖n + j and j ≤ k − 1, we deduce that

α − 1 | β(nk + j), thus establishing (5).
It follows that, if p ≤ blog(k/2)/ log 2c − 1, then p | ρk . Indeed, since

2p+1
≤ k/2, we see that, by (5), (p + 1− 1)|ρk , from which Lemma 3

follows. 2
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Observe that, by Lemma 3 and the prime number theorem, we have

ρk ≥ rk = exp{(1+ o(1))tk} = exp{c4(1+ o(1)) log k} (k→∞), (6)

where c4 = 1/ log 2.
We are now ready to prove the lower bound. Let n = nk . For each integer

i ∈ {1, 2, . . . , k}, write n + i = ai bi , where P(ai )≤ k and p(bi )≥ k + 1. We
first use a classical argument of Erdős to show that one of the ai is “small”.
For each prime p ≤ k, select some j = j (p) ∈ {1, 2, . . . , k} such that νp(a j )=

max{νp(a`) : 1≤ `≤ k}, and consider the sets

S := { j (p) | p ≤ k} and T := {1, 2, . . . , k}\S.

Note that #T = k − #S = k − π(k)≥ k/2 for k ≥ 8.

Step 1. If k is large, then ∏
i∈T

ai ≤ k3k . (7)

Proof. This follows by observing that∏
i∈T

ai ≤
∏
p≤k

p
∑

1≤α≤log k/ log pb
k

pα c+1

≤ k!
∏
p≤k

plog k/ log p
≤ k!eπ(k) log k < k3k

if k is large. 2

Let i0 be some element of T such that ai0 =min{ai | i ∈ T }. Note that∏
i∈T

ai ≥ a#T
i0
≥ ak/2

i0
. (8)

From (7) and (8), we obtain
ai0 ≤ k6. (9)

Step 2. There exists a positive constant c5 such that

ω(β(ai0)) < c5

√
log k

log log k
(10)

for all k ≥ 2.

Proof. Indeed, write β(ai0)= qλ1
1 . . . qλs

s , where the qi are distinct primes
and the λ j are positive integers. From Lemma 2,

ai0 ≥ 2
∑s

i=1 qi .

Using (9), we obtain, by taking logarithms, that

6 log k

log 2
≥

s∑
i=1

qi � s2 log s,
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where we have used the prime number theorem. This last inequality implies that

s�

√
log k

log log k
,

which proves Step 2. 2

We are now ready to complete the proof of the lower bound.
Note that β(bi0)= ρk/β(ai0). Therefore, using (10) and Lemma 3,

` := ω(β(bi0)) = ω(ρk)− ω(β(ai0))

≥ π(tk)− c5

√
log k

log log k
≥ c6

log k

log log k
, (11)

where we can take c6 = 1/(2 log 2) provided that k is large enough.
Let q1, . . . , q` be all of the distinct prime factors of β(bi0). By Lemma 2,

n + k ≥ bi0 ≥ (k + 1)
∑`

i=1 qi ≥ exp{c7`
2 log ` log(k + 1)}

≥ exp

{
c8

log3 k

log log k

}
,

where one can take c7 = 1/3 and c8 = c7c2
6, provided that k is sufficiently large,

thus completing the proof of the lower bound and of the theorem.
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