ON THE INDEX OF COMPOSITION OF THE EULER FUNCTION AND OF THE SUM OF DIVISORS FUNCTION

JEAN-MARIE DE KONINCK and FLORIAN LUCA™

(Received 17 January 2007; accepted 20 June 2007)

Communicated by I. E. Shparlinski

Abstract

Given an integer $n \ge 2$, let $\lambda(n) := (\log n)/(\log \gamma(n))$, where $\gamma(n) = \prod_{p|n} p$, denote the index of composition of n, with $\lambda(1) = 1$. Letting ϕ and σ stand for the Euler function and the sum of divisors function, we show that both $\lambda(\phi(n))$ and $\lambda(\sigma(n))$ have normal order 1 and mean value 1. Given an arbitrary integer $k \ge 2$, we then study the size of $\min\{\lambda(\phi(n)), \lambda(\phi(n+1)), \ldots, \lambda(\phi(n+k-1))\}$ and of $\min\{\lambda(\sigma(n)), \lambda(\sigma(n+1)), \ldots, \lambda(\sigma(n+k-1))\}$ as n becomes large.

2000 Mathematics subject classification: primary 11N25; secondary 11A25.

Keywords and phrases: Euler function, sum of divisors function.

1. Introduction

Given an integer $n \ge 2$, we define its *index of composition* by

$$\lambda(n) := (\log n)/(\log \gamma(n)),$$

where $\gamma(n)$ (often called the *kernel* of n) stands for the product of the distinct primes dividing n. For convenience, we let $\lambda(1) = \gamma(1) = 1$. In a sense, $\lambda(n)$ measures the level of compositeness of n. First introduced by Browkin [2] in 2000, the function λ was further studied by De Koninck and Doyon [3] who examined its global and local behavior, namely by showing that its mean value is 1 and moreover by establishing that given any integer k > 2 and setting

$$Q_k(n) := \min\{\lambda(n), \lambda(n+1), \dots, \lambda(n+k-1)\},\tag{1}$$

and given any $\varepsilon > 0$, then

$$Q_k(n) > \frac{k}{k-1} - \varepsilon \tag{2}$$

The first author was supported in part by a grant from NSERC. The second author was supported in part by Grants SEP-CONACyT 46755, PAPIIT IN104505 and a Guggenheim Fellowship.

^{© 2009} Australian Mathematical Society 1446-7887/2009 \$16.00

for infinitely many values of n, which is most likely optimal. Indeed, De Koninck and Doyon [3, p. 164] conjecture that $\limsup_{n\to\infty}Q_k(n)=k/(k-1)$ and show that the abc conjecture implies the validity of the above conjecture when k=3. In this paper, we show that the above conjecture from [3] holds under the abc conjecture for all k>2.

More recently, De Koninck and Kátai [4] as well as De Koninck *et al.* [5] have studied the distribution function of $(\lambda(n) - 1) \log n$ as n runs through particular sets of integers, such as the shifted primes. The mean value of the function $\lambda(n)$ was also studied by Zhai [12].

In this paper, we also examine the global and local behavior of $\lambda(\phi(n))$ and $\lambda(\sigma(n))$, where ϕ and σ stand for the Euler function and the sum of divisors function, respectively. More precisely, we first establish that each of $\lambda(\phi(n))$ and $\lambda(\sigma(n))$ have normal orders 1 and mean values 1. Then, given an integer $k \geq 2$, we discuss the behavior of the expressions

$$F_k(n) := \min\{\lambda(\phi(n)), \lambda(\phi(n+1)), \dots, \lambda(\phi(n+k-1))\}$$
(3)

and

$$S_k(n) := \min\{\lambda(\sigma(n)), \lambda(\sigma(n+1)), \dots, \lambda(\sigma(n+k-1))\}$$
 (4)

and conjecture that, for any fixed k, $F_k(n)$ and $S_k(n)$ can become arbitrarily large, providing heuristic arguments in their favor.

In what follows, the letter p always stands for a prime number. Moreover, given any integer $n \ge 2$, let P(n) stand for the largest prime factor of n. We shall also write $\omega(n)$ for the number of distinct prime factors of n and $\Omega(n)$ for the total number of prime factors of n counting their multiplicity, with $\omega(1) = \Omega(1) = 0$. Finally, a positive integer n is said to be *powerful* (or *square-full*) if $p^2 \mid n$ whenever the prime number p divides n.

We write $\log_2 x$ for $\log \log x$ and we let $\log_k x = \log \log_{k-1} x$ for each integer $k \ge 3$. The input x will always be assumed to be large enough so that the resulting iterated logarithms are greater than 1.

We use the Landau symbols O and O as well as the Vinogradov symbols \ll and \gg with their usual meanings.

2. Preliminary results

Henceforth, given any integer $n \ge 2$, we shall write

$$\phi(n) = A(n)B(n), \quad \text{with } \gcd(A(n), B(n)) = 1, \tag{5}$$

where A(n) is the square-full part of $\phi(n)$ and B(n) its square-free part. To establish our results, we shall need the following lemmas.

LEMMA 1. As $x \to \infty$,

$$\#\{n \le x \mid \Omega(n) > 10 \log_2 x\} = O\left(\frac{x}{\log^2 x}\right).$$

[3]

PROOF. From [11, Lemma 13], uniformly for every positive integer K,

$$\sum_{n < x: \Omega(n) > K} 1 \ll \frac{K}{2^K} x \log x.$$

Applying this with $K = \lfloor 10 \log_2 x \rfloor$ leads to the desired estimate.

LEMMA 2. The inequality $A(n) \le (\log x)^4$ holds for all positive integers $n \le x$ with $O(x/(\log x)^2)$ exceptions.

PROOF. It is well known that the number of square-full numbers $n \le x$ is $O(\sqrt{x})$ (see, for example, [9, Theorem 14.4]). Given any $y \in [1, \sqrt{x}]$ and any square-full number $d \ge y$, it is clear that the number of positive integers $n \le x$ that are multiples of d is at most x/d, and therefore by Abel's summation formula, we easily get that the number of $n \le x$ having a square-full divisor $d \ge y$ is $O(x/\sqrt{y})$. Taking $y = (\log x)^4$, we get the desired result.

LEMMA 3. For large x, the number of positive integers $n \le x$ such that

$$\max\{\Omega(\phi(n)),\,\Omega(\sigma(n))\}>110(\log_2 x)^2$$

is $O(x/(\log x)^2)$.

PROOF. By Lemma 2, we may assume that $A(n) < (\log x)^4$. Thus,

$$\phi(A(n)) \le A(n) \le \sigma(A(n)) < (\log x)^5,$$

and therefore

$$\max\{\Omega(\phi(A(n))), \Omega(\sigma(A(n)))\} < (5/\log 2) \log \log x < 10 \log_2 x.$$

By Lemma 1, we may further assume that $\Omega(B(n)) < 10 \log_2 x$. Thus, if

$$\max\{\Omega(\phi(n)), \Omega(\sigma(n))\} > 110(\log_2 x)^2,$$

it then follows that there exists a prime divisor p of n such that $\Omega(p \pm 1) > 10 \log_2 x$. Let n = pm. Then p < x/m, so that $p \pm 1 \le x/m + 1 \le 2x/m$. The number of such numbers p is, by the argument from the proof of Lemma 1, at most a multiple of

$$\frac{K}{2^K} \frac{x \log x}{m}$$
,

where $K = \lfloor 10 \log_2 x \rfloor$. Summing up over all values of $m \leq x$, the number of such numbers $n \leq x$ is at most

$$\frac{K \log x}{2^K} \sum_{m < x} \frac{1}{m} \ll \frac{x (\log x)^2 \log_2 x}{2^{\lfloor 10 \log_2 x \rfloor}} \ll \frac{x}{(\log x)^2},$$

because $10 \log 2 > 4$.

LEMMA 4. The estimate

$$\#\{n \le x : p^2 \mid \sigma(n) \text{ for some } p > (\log x)^5\} = O\left(\frac{x}{(\log x)^2}\right)$$

holds as $x \to \infty$. A similar estimate holds when $\sigma(n)$ is replaced by $\phi(n)$.

PROOF. By Lemma 2, we may assume that $A(n) < (\log x)^4$. Hence,

$$\phi(A(n)) \le A(n) \le \sigma(A(n)) < (\log x)^5$$

for large x. If $p^2 \mid \sigma(n)$ or $p^2 \mid \phi(n)$ for some $p > (\log x)^5$, it follows that $p^2 \mid \sigma(B(n))$ or $p^2 \mid \phi(B(n))$, respectively. Now [1, Lemma 2] shows that

$$\#\{n \le x \mid \phi(B(n)) \equiv 0 \bmod p^2\} \ll \frac{x(\log_2 x)^2}{p^2},$$

and a straightforward adaptation of it shows that the same is true when ϕ is replaced by σ . Thus, the number of positive integers $n \le x$ such that either $p^2 \mid \sigma(n)$ or $p^2 \mid \phi(n)$ for some $p > (\log x)^5$ is, by the above inequality, at most a multiple of

$$x(\log_2 x)^2 \sum_{p > (\log x)^5} \frac{1}{p^2} < x(\log_2 x)^2 \int_{(\log x)^5}^{x^{1/2}} \frac{dt}{t^2} \ll \frac{x(\log_2 x)^2}{(\log x)^5} \ll \frac{x}{(\log x)^2}. \quad \Box$$

3. The normal order of $\lambda(\phi(n))$

Here, we prove the following result.

THEOREM 5. For every $\varepsilon > 0$, the inequality $1 \le \lambda(\phi(n)) \le 1 + \varepsilon$ holds for all n except for a set of asymptotic density zero. The same inequality holds when ϕ is replaced by σ .

PROOF. We shall prove this result only for σ since the proof for ϕ is entirely similar. Since $n \le \sigma(n) \ll n \log_2 n$ holds for all n, we have that

$$\log(\sigma(n)) = \log n + O(\log_3 n). \tag{6}$$

By Lemmas 2–4, for most n we have that if Q(n) is the largest prime p such that $p^2 \mid \sigma(n)$ (equivalently, $Q(n) = P(\sigma(n)/\gamma(\sigma(n)))$), then $Q(n) < (\log n)^5$. Furthermore, $\Omega(\sigma(n)) < 110(\log_2 n)^2$. This shows that

$$\log(\gamma(\sigma(n))) \ge \log(\sigma(n)) - \Omega(\sigma(n))\log(Q(n)) = \log n + O((\log_2 n)^3). \tag{7}$$

From estimates (6) and (7), we immediately get that for most n,

$$\lambda(\sigma(n)) = 1 + O\left(\frac{(\log_2 n)^3}{\log n}\right) = 1 + o(1), \quad \text{as } n \to \infty,$$

which is what we wanted to prove.

4. The mean value of $\lambda(\phi(n))$

In this section we prove the following result.

THEOREM 6. The estimate

$$\frac{1}{x} \sum_{n \le x} \lambda(\phi(n)) = 1 + o(1)$$

holds as $x \to \infty$. The same holds when ϕ is replaced by σ .

PROOF. Again, we shall give the proof only for σ since for ϕ it is entirely similar. The arguments from Section 3 show that the estimates

$$\log(\sigma(n)) = \log x + O(\log_3 x) \quad \text{and} \quad \log(\gamma(\sigma(n))) = \log x + O((\log_2 x)^3)$$

both hold for all positive integers $n \le x$ with at most $O(x/(\log x)^2)$ exceptions. On the exceptional set, it is clear that $\lambda(\sigma(n)) \le \log x$. Hence,

$$\begin{split} \sum_{n \leq x} \lambda(\sigma(n)) &= \sum_{\substack{n \leq x: Q(n) < (\log x)^5 \\ \Omega(\sigma(n)) < 110(\log_2 x)^2}} \left(1 + O\left(\frac{(\log_2 x)^3}{\log x}\right)\right) + O\left(\frac{x}{(\log x)^2} \log x\right) \\ &= x + O\left(\frac{x(\log_2 x)^3}{\log x}\right), \end{split}$$

which is the desired estimate.

5. The local behavior of $\lambda(\phi(n))$

We prove the analogue of [3, Theorem 3] for the case of the quantity $F_k(n)$ given by (3).

THEOREM 7. Given any integer $k \ge 2$, for every $\varepsilon > 0$, there exist infinitely many n such that

$$F_k(n) > \frac{k}{k-1} - \varepsilon.$$

PROOF. We follow the method of [3, Proof of Theorem 3]. Let y > k be sufficiently large so that the interval $[y, y + y^{2/3}]$ contains at least k prime numbers. Let these be $y < p_1 < \cdots < p_k < y + y^{2/3}$. Observe that

$$\frac{p_k}{p_1} = 1 + O\left(\frac{1}{y^{1/3}}\right) = 1 + o(1) \quad (y \to \infty).$$
 (8)

Let a > 3 be a large positive integer and let n be such that $n \equiv -i \mod p_i^a$ for all i = 1, 2, ..., k. This system is solvable by the Chinese remainder theorem and it therefore has a solution $n \in [M, 2M)$, where $M = \prod_{i=1}^k p_i^a$. Since

$$2M + O(1) \ge n + i > \phi(n+i) \gg \frac{n+i}{\log_2(n+i)} \ge \frac{M}{\log_2(2M+k)}$$

we get that

$$\log(\phi(n+i)) = n+i + O(\log_3 M) = \log M + O(\log_3 M), \quad i = 1, 2, \dots, k,$$
(9)

whenever the p_i are fixed and a tends to infinity. However, note that since $n + i = p_i^a m_i$ for some positive integer m_i ,

$$\phi(n+i) = p_i^{a-1}(p_i - 1)n_i,$$

for some positive integer n_i (here, $n_i = \phi(m_i)$ if $p_i \nmid m_i$ and $n_i = \phi(m_i)p_i/(p_i - 1)$ if $p_i \mid m_i$, so that in any case $n_i \leq m_i$ always holds). Therefore, in light of (9), for each $i = 1, 2, \ldots, k$,

$$\log(\gamma(\phi(n+i))) \le \log(p_i\gamma(p_i-1)\gamma(n_i)) \le \log(p_i^2m_i)$$

$$= \log\left(\frac{p_i^a m_i}{p_i^{a-2}}\right) = \log\left(\frac{n+i}{p_i^{a-2}}\right)$$

$$= \log(\phi(n+i)) + O(\log_3 M) - (a-2)\log p_i$$

$$= \log M + O(\log_3 M) - (a-2)\log p_i. \tag{10}$$

On the other hand, using (8), it is clear that

$$\log M = a \sum_{j=1}^{k} \log p_j = ka(1 + o(1)) \log p_i, \quad i = 1, 2, \dots, k.$$
 (11)

Combining (10) and (11), we obtain that

$$\log(\gamma(\phi(n+i))) \le \log M - \frac{\log M}{k} (1 + o(1)) + O(\log_3 M)$$
$$= \left(1 - \frac{1}{k} + o(1)\right) \log M,$$

which together with estimate (9) shows that, for each i = 1, 2, ..., k,

$$\lambda(\phi(n+i)) = \frac{\log(\phi(n+i))}{\log(\gamma(\phi(n+i)))} \ge \frac{1}{1 - (1/k) + o(1)} = \frac{k}{k-1} + o(1),$$

which implies the desired inequality.

6. The local behavior of $\lambda(\sigma(n))$

Here, the method of proof of Theorem 7 does not work because if p is a fixed prime and a is a positive integer, then $\gamma(\sigma(p^a))$ is not small (in fact, it probably tends to infinity with a, and the abc conjecture predicts that it is as large as $p^{a(1-\varepsilon)}$ for every $\varepsilon>0$ provided that a is sufficiently large with respect to ε). However, the same result holds nevertheless.

THEOREM 8. Given any integer $k \ge 2$, for every $\varepsilon > 0$, the inequality

$$S_k(n) \ge \frac{k}{k-1} - \varepsilon$$

holds for infinitely many positive integers n.

We shall need the following well-known lemma, essentially due to Erdős [7].

LEMMA 9. There exists a constant $\delta \in (0, 1)$ such that the estimate

$$\#\{p \in [y, 2y] \mid P(p+1) < y^{\delta}\} \gg \pi(y)$$

holds for large y.

Specific values of δ are known from the work of several mathematicians but they are of no use to us.

PROOF. Let $\delta \in (0, 1)$ be as in Lemma 9, y be large and $\varepsilon \in (0, 1 - \delta)$. Let $U = \lfloor y^{\delta + \varepsilon} \rfloor$ and V = kU. Choose $p_1 < \cdots < p_V$ primes in (y, 2y) such that

$$P(p_i + 1) < y^{\delta}$$
 for all $i = 1, 2, ..., V$.

This is possible for large y by Lemma 9 and the fact that $V = O(y^{\delta + \varepsilon}) = o(\pi(y))$ as $y \to \infty$. For j = 1, 2, ..., k put

$$m_j = \prod_{i=U(j-1)+1}^{Uj} p_i.$$

Note that

$$\log m_j = \sum_{i=U(j-1)+1}^{U_j} \log p_i = U \log y + O(U) = (1 + o(1))y^{\delta + \varepsilon} \log y$$

for all j = 1, 2, ..., k as $y \to \infty$. Since $\sigma(m_j) = \prod_{p|m_j} (p+1)$, it follows, from the way we have chosen the prime factors of m_j , that

$$\gamma(\sigma(m_j)) \le \prod_{p \le y^{\delta}} p = \exp((1 + o(1))y^{\delta}),$$

where the last estimate follows from the prime number theorem. Therefore

$$\log \gamma(\sigma(m_j)) \le (1 + o(1))y^{\delta} = o(\log(m_j))$$

for all j = 1, 2, ..., k as $y \to \infty$. Now let n be a positive integer such that $n + j \equiv 0 \mod m_j$ for all j = 1, 2, ..., k. The above system is solvable by the Chinese remainder theorem and all its solutions are of the form $n = M\ell + N$, where $M = \prod_{j=1}^k m_j$ and $N \in [0, 1, ..., M-1]$ is the smallest nonnegative solution of

the above system of congruences. We claim that there exists $\ell \in [y, 2y]$ such that the corresponding n satisfies the fact that $(n+j)/m_j$ and m_j are coprime for $j=1,2,\ldots,k$. Indeed, note that

$$(n+j) = M\ell + (N+j) = m_j((M/m_j)\ell + (N+j)/m_j),$$

so that

$$(n+j)/m_i = (M/m_i)\ell + (N+j)/m_i$$
.

Clearly, M/m_j and m_j are coprime since M is square-free. Thus, if $(n+j)/m_j$ and m_j are, say, both divisible by the prime p, then this puts ℓ into a certain uniquely determined congruence class modulo p. The number of such ℓ in the interval [y, 2y] is less than or equal to y/p+1. Thus, the number of $\ell \in [y, 2y]$ for which the corresponding n has the property that $(n+j)/m_j$ and m_j are not coprime for some $j=1,2,\ldots,k$ is at most

$$y \sum_{p \mid M} \frac{1}{p} + \omega(M) \le \frac{ky^{1+\delta+\varepsilon}}{y} + ky^{\delta+\varepsilon} < 2ky^{\delta+\varepsilon}.$$

Since $\delta + \varepsilon < 1$ and since the interval [y, 2y] contains at least y - 1 integers, we get that there are at least $y - 1 - 2ky^{\delta + \varepsilon} > 0$ integers $\ell \in [y, 2y]$ such that the corresponding n does indeed have the property that $(n + j)/m_j$ and m_j are coprime for all j = 1, 2, ..., k. Such an n has the following properties:

$$\log(\sigma(n+j)) = (1 + o(1)) \log n = (1 + o(1)) (\log M + \log y)$$

= $(k + o(1)) y^{\delta + \varepsilon} \log y$;

further, since $(n + j)/m_i$ and m_i are coprime,

$$\sigma(n+j) = \sigma(m_j)\sigma((n+j)/m_j),$$

so that

$$\begin{split} \log(\gamma(\sigma(n+j))) & \leq \log(\gamma(\sigma(m_j))) + \log(\gamma(\sigma((n+j)/m_j))) \\ & = o(\log(m_j)) + (1 + o(1))\log((n+j)/m_j) \\ & = (1 + o(1))(\log n - \log m_j) \\ & = (1 + o(1))(\log M + \log y - \log m_j) \\ & = (k - 1 + o(1))y^{\delta + \varepsilon} \log y, \end{split}$$

which yields

$$\lambda(\sigma(n+j)) \ge \frac{k}{k-1} + o(1)$$

for all j = 1, 2, ..., k as $y \to \infty$, therefore establishing the desired conclusion. \Box

7. Heuristics

As we have already mentioned, [3, Theorem 3] shows that inequality (2) holds for infinitely many n, and it was conjectured that apart from the ε this inequality is the best possible. Here, we prove that this is indeed so under the abc conjecture.

THEOREM 10. For each integer $k \ge 2$, let $Q_k(n)$ be as in (1). The estimate

$$\limsup_{n \to \infty} Q_k(n) = \frac{k}{k-1}$$

holds under the abc conjecture.

PROOF. Instead of recalling the *abc* conjecture, we recall the following consequence of it (see [6, 8], or [10]).

LEMMA 11 (The ABC conjecture). Let f be a homogeneous polynomial with integer coefficients having no repeated irreducible factors. Then for every $\varepsilon > 0$ and coprime positive integers m and n,

$$\gamma(f(m,n)) \gg \max\{m,n\}^{d-2-\varepsilon},$$

where d is the degree of f and the constant implied by the Vinogradov symbol above depends on both f and ε .

The classical *abc* conjecture is usually the above statement for the polynomial f(X, Y) = XY(X + Y). To deduce Theorem 10 from Lemma 11, we may assume that $k \ge 3$ and look at the homogeneous polynomial

$$f(X, Y) = XY(Y - X)(2Y - X)(3Y - 2X) \dots ((k-1)Y - (k-2)X),$$

which obviously has degree k + 1 and no repeated factors. Note that

$$f(n, n + 1) = n(n + 1)(n + 2)(n + 3) \dots (n + k - 1),$$

so that by Lemma 11 we have that the inequality

$$\gamma(n(n+1)\dots(n+k-1)) \gg n^{k-1-\varepsilon/2} \tag{12}$$

holds for every fixed $\varepsilon > 0$ where the implied constant depends on ε and k. Now consider an integer n such that

$$Q_k(n) \ge \frac{k}{k-1} + \varepsilon.$$

Then

$$\gamma(n+i) \le (n+i)^{((k-1)/(k+(k-1)\varepsilon))} \ll n^{((k-1)/(k+(k-1)\varepsilon))}, \quad i = 0, 1, \dots, k.$$

Multiplying all these relations for i = 0, 1, ..., k - 1, we get that

$$\prod_{i=1}^{k} \gamma(n+i-1) \ll n^{((k(k-1))/(k+(k-1)\varepsilon))}.$$

But for $\varepsilon < 1/(k-1)$,

$$\frac{k(k-1)}{k+(k-1)\varepsilon} < k-1-\varepsilon,$$

because this last inequality is equivalent to $(k-1)^2 \ge k + (k-1)\varepsilon$, which is implied by $(k-1)^2 \ge k+1$ (because $\varepsilon \le 1/(k-1)$), and this last inequality is equivalent to k > 3. Hence,

$$\gamma(n(n+1)\dots(n+k-1)) \le \prod_{i=1}^k \gamma(n+i-1) \ll n^{k-1-\varepsilon},$$

which compared with inequality (12) gives us an upper bound on n. This completes the proof of the theorem.

We conjecture that, unlike $Q_k(n)$, both the amounts $F_k(n)$ and $S_k(n)$ should be unbounded and that in fact each of the inequalities $F_k(n) \gg \log n$ and $S_k(n) \gg \log n$ should hold for infinitely many positive integers n, where the implied constants depend on k. In what follows, we will treat only the case of $F_k(n)$. To see why, let us first look at the case k = 2.

If there existed infinitely many primes p of the form $2^a \cdot 3^b + 1$, then it would follow that $F_2(n)$ is unbounded. Indeed, let $p = 2^a \cdot 3^b + 1$ be such a large prime and set n = p - 1. Then

$$\phi(n) = \phi(2^a \cdot 3^b) = 2^a \cdot 3^{b-1}$$
 and $\phi(n+1) = 2^a \cdot 3^b$,

so that $\lambda(\phi(n)) = ((a \log 2 + (b-1) \log 3)/(\log 2 + \log 3)) \gg \log n$ and similarly $\lambda(\phi(n+1)) \gg \log n$. Hence, $F_2(n) \gg \log n$, proving our claim. A computer check showed that the number of primes $p \le x$ of the above form is equal to 66 for $x = 10^{10}$ and to 789 for $x = 10^{100}$.

Using essentially the same argument as above, let us show how one would go about constructing integers n for which $F_k(n) \gg \log n$. Assume that

$$2 = p_1 < p_2 < \cdots < p_k$$

are the first k prime numbers. Assume that a_1, \ldots, a_k are such that $a_i > \log k / \log p_i$ and such that if we set

$$n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k},$$

then (n+i)/i is a prime number for all $i=1,2,\ldots,k$. Note that, from the conditions we imposed on the exponents a_i , the number (n+i)/i is always an integer coprime to i. If this is the case, then

$$\phi(n+i) = \phi(i) \left(\frac{n+i}{i} - 1\right) = \frac{\phi(i)n}{i},$$

so that

[11]

$$\gamma(\phi(n+i)) = \log(p_1 \dots p_k) = O(1)$$
 for all $i = 1, 2, \dots, k$.

Thus

$$\lambda(\phi(n+i)) \gg \log(\phi(n+i)) \gg \log n$$

for all such choices of n.

To back up our construction a little more, we give heuristic support to the existence of infinitely many positive integers n of the above form. Let X be a large positive integer. There are at least a multiple of X^k k-tuples of integers (a_1, \ldots, a_k) such that $(a_1, \ldots, a_k) \in (X, 2X)^k$. For each one of them, we assume, heuristically, that the probability of each one of the numbers (n + i)/i being prime is roughly

$$1/\log((n+i)/i) \gg 1/X.$$

Of course, this cannot possibly be true for all such k-tuples (a_1, \ldots, a_k) because the number n/i might end up having all exponents divisible by the same odd prime in which case the expression n/i + 1 factors in an obvious way. To fix this, we may first fix a_1, \ldots, a_{k-1} in an arbitrary manner, and then fix a_k to be any prime in (X, 2X)which does not divide any of a_i for i = 1, 2, ..., k - 1 (note that if X is large, a_k can be any prime in (X, 2X) except for at most k-1 of them). Assuming further that the events that (n+i)/i are prime are independent for $i=1,2,\ldots,k$, we conclude that if X is large, for a suitable set of choices of $(a_1, \ldots, a_k) \in (X, 2X)^k$ of total cardinality at least a multiple of

$$X^{k-1}(\pi(2X) - \pi(X) - k + 1) \gg X^k / \log X$$
,

the probability that all numbers (n+i)/i are simultaneously prime is at least a multiple of $1/X^k$. Multiplying those two amounts, we get that the expected number of such primes is at least a multiple of $1/\log X$. Now letting $X=2^{\ell}$ go to infinity through powers of 2 starting with a sufficiently large 2^{ℓ_0} , we get that the number of such numbers n should be at least a multiple of $\sum_{\ell > \ell_0} 1/\ell$, hence, an infinite number of them.

Computationally, letting k = 4 and choosing

$$n = 2^8 \cdot 3^{30} \cdot 5^{20} = 5\,026\,638\,967\,154\,516\,601\,562\,500\,000\,000,$$

\overline{k}	n	Number of digits of <i>n</i>	$\lfloor F_k(n) \rfloor$
2	$2^{44} \cdot 3^{40}$	33	40
2	$2^{491} \cdot 3^{579}$	425	544
3	$2^{77} \cdot 3^{213}$	125	159
4	$2^{43} \cdot 3 \cdot 5^7$	19	17
4	$2^8 \cdot 3^{30} \cdot 5^{20}$	31	20
4	$2^{12} \cdot 3^{29} \cdot 5^{281}$	214	144
5	$2^{46} \cdot 3^{41} \cdot 5^{19}$	47	31
6	$2^{42} \cdot 3^6 \cdot 5^5 \cdot 7^4 \cdot 13^{24}$	58	16

TABLE 1. Some values of $F_k(n)$.

one can check that n + 1, (n + 2)/2 and (n + 3)/3 are all prime numbers. This allows us to obtain that

$$\phi(n) = 2^{10} \cdot 3^{29} \cdot 5^{19},$$
so that $\lambda(\phi(n)) = \frac{10 \log 2 + 29 \log 3 + 19 \log 5}{\log 2 + \log 3 + \log 5} \approx 20.3959,$

$$\phi(n+1) = 2^8 \cdot 3^{30} \cdot 5^{20},$$
so that $\lambda(\phi(n+1)) = \frac{8 \log 2 + 30 \log 3 + 20 \log 5}{\log 2 + \log 3 + \log 5} \approx 20.7845,$

$$\phi(n+2) = \phi(2^8 \cdot 3^{30} \cdot 5^{20} + 2) = \phi(2(2^7 \cdot 3^{30} \cdot 5^{20} + 1)) = 2^7 \cdot 3^{30} \cdot 5^{20},$$
so that $\lambda(\phi(n+2)) = \frac{7 \log 2 + 30 \log 3 + 20 \log 5}{\log 2 + \log 3 + \log 5} \approx 20.5807,$

$$\phi(n+3) = \phi(2^8 \cdot 3^{30} \cdot 5^{20} + 3) = \phi(3(2^8 \cdot 3^{29} \cdot 5^{20} + 1)) = 2 \cdot 2^8 \cdot 3^{29} \cdot 5^{20},$$
so that $\lambda(\phi(n+3)) = \frac{9 \log 2 + 29 \log 3 + 20 \log 5}{\log 2 + \log 3 + \log 5} \approx 20.6653,$

thus establishing that

$$F_4(n) \approx 20.3959 = \min(20.3959, 20.7845, 20.5807, 20.6653).$$

More examples can be seen in Table 1.

As mentioned above, similar heuristics apply for $S_k(n)$. In fact, if instead one does not start with only the first k primes $2 = p_1 < \cdots < p_k$, but with the first 2k primes and sets $n = p_1^{a_1} p_2^{a_2} \dots p_{2k}^{a_{2k}}$ for some sufficiently large positive integers a_i with $i = 1, 2, \ldots, 2k$, then one can further assume that (n + i)/n and (n - i)/n are both primes for all $i = 1, 2, \ldots, k$, and then with such n one finds that the even

stronger inequality $\min\{F_k(n), S_k(n)\} \gg \log n$ holds. We let the reader fill in the details of such a deduction as well as working out a heuristic that would predict that there should indeed be infinitely many such positive integers n.

Acknowledgments

The authors thank the anonymous referee and Professor Igor Shparlinski for helpful suggestions.

References

- [1] N. L. Bassily, I. Kátai and M. Wijsmuller, 'On the prime power divisors of the iterates of the Euler- ϕ function', *Publ. Math. Debrecen* **55**(1–2) (1999), 17–32.
- [2] J. Browkin, 'The *abc*-conjecture', in: *Number Theory*, Trends in Mathematics (Birkhäuser, Basel, 2000), pp. 75–105.
- [3] J. M. De Koninck and N. Doyon, 'À propos de l'indice de composition des nombres', Monatsh. Math. 139 (2003), 151–167.
- [4] J. M. De Koninck and I. Kátai, 'On the mean value of the index of composition', *Monatsh. Math.* **145** (2005), 131–144.
- [5] J. M. De Koninck, I. Kátai and M. V. Subbarao, 'On the index of composition of integers from various sets', Arch. Math. 88 (2007), 524–536.
- [6] N. Elkies, 'ABC implies Mordell', Internat. Math. Res. Notices 7 (1991), 99–109.
- [7] P. Erdős, 'On the normal number of prime factors of p-1 and some other related problems concerning Euler's ϕ function', *Quart. J. Math.* 6 (1935), 205–213.
- [8] A. Granville, 'ABC allows us to count squarefrees', Internat. Math. Res. Notices 19 (1998), 991–1009.
- [9] A. Ivić, The Riemann Zeta-Function. Theory and Applications (Dover, Minneola, NY, 2003).
- [10] M. Langevin, 'Partie sans facteur carré d'un produit d'entiers voisins', in: Approximations diophantiennes et nombres transcendants (Luminy, 1990) (de Gruyter, Berlin, 1992), pp. 203–214.
- [11] F. Luca and C. Pomerance, 'Irreducible radical extensions and Euler function chains', in: *Combinatorial Number Theory (Proceedings of the 'Integers Conference 2005' in Celebration of the 70th Birthday of R. Graham)* (eds. B. Landman, M. Nathanson, J. Nešetril, R. Nowakowski and C. Pomerance) (de Gruyter, Berlin, 2007), pp. 351–362.
- [12] W. Zhai, 'On the mean value of the index of composition of an integer', Acta Arith. 125 (2006), 331–345.

JEAN-MARIE DE KONINCK, Département de mathématiques et de statistique, Université Laval, Québec G1V OA6, Canada

e-mail: jmdk@mat.ulaval.ca

FLORIAN LUCA, Mathematical Institute, UNAM, Ap. Postal 61-3 (Xangari), CP 58 089, Morelia, Michoacán, Mexico

e-mail: fluca@matmor.unam.mx