
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 5, May 2009, Pages 1585–1592
S 0002-9939(08)09702-5
Article electronically published on November 18, 2008

ON STRINGS OF CONSECUTIVE INTEGERS
WITH A DISTINCT NUMBER OF PRIME FACTORS

JEAN-MARIE DE KONINCK, JOHN B. FRIEDLANDER, AND FLORIAN LUCA

(Communicated by Ken Ono)

Abstract. Let ω(n) be the number of distinct prime factors of n. For any
positive integer k let n = nk be the smallest positive integer such that
ω(n + 1), . . . , ω(n + k) are mutually distinct. In this paper, we give upper
and lower bounds for nk. We study the same quantity when ω(n) is replaced
by Ω(n), the total number of prime factors of n counted with repetitions.

Let ω(n) and Ω(n) denote respectively the number of distinct prime factors of n
and the total number of prime factors of n counted with repetitions. For any positive
integer k let n = nk be the smallest positive integer n such that ω(n+1), . . . , ω(n+k)
are mutually distinct. We also let m = mk be the smallest positive integer m such
that Ω(m + 1), . . . , Ω(m + k) are mutually distinct. Using a computer, we easily
obtain that n2 = 4, n3 = 27, n4 = 416, n5 = 14321, n6 = 461889, n7 = 46908263
and n8 = 7362724274, and also that m2 = 2, m3 = 5, m4 = 14, m5 = 59, m6 = 725,
m7 = 6317, m8 = 189374, m9 = 755967 and m10 = 683441870. In this paper, we
give upper and lower bounds for nk and mk. Let pi be the i-th prime number. Let
n = nk. Since the set {ω(n+ j) : j = 1, . . . , k} consists of k nonnegative integers, it
follows that one of n+ j for j = 1, . . . , k must have at least k distinct prime factors.
Thus,

n + k ≥
k∏

i=1

pi = exp((1 + o(1))pk) = exp((1 + o(1))k log k)

as k → ∞ by the Prime Number Theorem; therefore

nk ≥ exp((1 + o(1))k log k) as k → ∞.

Similarly, letting m = mk, we get that Ω(m+ i) ≥ k for some i ∈ {1, . . . , k}. Thus,
m + k ≥ 2k, giving mk ≥ exp((log 2 + o(1))k) as k → ∞.

We start by improving these trivial estimates as follows.

Theorem 1. The inequality

nk ≥ exp((2 + o(1))k log k)

holds as k → ∞. Furthermore, the inequality

mk ≥ exp((1/2 + o(1))k log k)

holds as k → ∞.
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The problem of finding lower and upper bounds for nk and mk was raised in
the recent book [1] by the first author. We remark that, after writing this paper,
we noticed that the first of these bounds is essentially equivalent to one due to
Erdős [2]. We were somewhat surprised that we could not find any other work on
these problems.

Proof. We start with the first inequality. Assume that ω(n + 1), . . . , ω(n + k) are
mutually distinct. Let ε ∈ (0, 1) be arbitrarily small but fixed. Put s = �k1−ε�.
Let i1, . . . , is be s distinct integers in {1, . . . , k} such that ω(n + ij) ≥ k − j for
j = 1, . . . , s. Let Aij

be the set of prime factors of n + ij . Note that if j �= � and
p ∈ Aij

∩Ai�
, then p | (n + ij)− (n + i�) = (ij − i�) and 1 ≤ |ij − i�| ≤ k− 1. Since

ω(m) 
 log m/ log log m holds for all positive integers, we get that

#
(
Aij

∩ Ai�

)
< c1

log k

log log k

holds for all j �= � with some absolute constant c1. By the Principle of Inclusion
and Exclusion,

#

⎛
⎝ s⋃

j=1

Aij

⎞
⎠ ≥

s∑
j=1

#Aij
−

∑
1≤j<�≤s

#
(
Aij

∩ Ai�

)

≥ ks − s(s + 1)
2

− c1

(
s

2

)
log k

log log k
> (1 − ε)k2−ε

provided that k > kε. Thus, using the Prime Number Theorem once more, we have

(n + k)s ≥
s∏

j=1

(n + ij) ≥
∏

1≤i<(1−ε)k2−ε

pi

≥ exp ((2 − ε + o(1))ks log k)

as k → ∞. This leads to n ≥ exp((2 − ε + o(1))k log k) as k → ∞, which implies
the desired conclusion since ε ∈ (0, 1) was arbitrary.

We now deal with the second inequality. Let m = mk. For any given prime
number p and positive integer n we let νp(n) be the exact exponent with which p
appears in the prime factorization of n. For each p ≤ k let ip ∈ {1, . . . , k} be such
that

(1) νp(m + ip) = max
1≤i≤k

νp(m + i).

If more than one value for ip ∈ {1, . . . , k} exists for which equality (1) is satisfied,
we simply pick one of them. Clearly, the set I of indices ip so chosen satisfies

(2) #I ≤ π(k).

An elementary argument (see, for example, Lemma 2 in [3]) shows that if we write

m + i = aibi,

where the largest prime factor of ai is ≤ k and the smallest prime factor of bi

exceeds k, then ∏
1≤i≤k

i �∈I

ai ≤ kk.
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In particular,

(3)
∑

1≤i≤k
i �∈I

Ω(ai) = Ω

⎛
⎜⎜⎝

∏
1≤i≤k

i �∈I

ai

⎞
⎟⎟⎠ <

k log k

log 2
< 2k log k.

Let
J = {i �∈ I : Ω(ai) > k1/2}.

Then inequality (3) shows that

(4) #J < 2k1/2 log k.

Finally, let
K = {i �∈ I ∪ J : Ω(m + i) ≤ k2/3}.

Since the numbers Ω(m + j) are distinct for j = 1, . . . , k, it follows that

(5) #K ≤ k2/3.

Let S = {1, . . . , k} − (I ∪ J ∪ K) and put s = #S. Let ε > 0 be fixed. Estimates
(2), (4) and (5) show that

s ≥ k − π(k) − 2k1/2 log k − k2/3 > (1 − ε)k,

provided that k > kε. Note that if i ∈ S, then

Ω(ai) ≤ k1/2 = (k2/3)3/4 ≤ Ω(m + i)3/4,

so that

Ω(bi) = Ω(m + i) − Ω(ai) ≥ Ω(m + i) − Ω(m + i)3/4 ≥ (1 − ε)Ω(m + i)

for all i ∈ S, assuming that k > kε. Thus, since the Ω(m + i) are distinct,

(m + k)s ≥
∏
i∈S

bi > k
∑

i∈S Ω(bi) >
(
k

∑
i∈S Ω(m+i)

)(1−ε)

>
(
k

∑s
j=1 j

)(1−ε)

> exp((1/2 − ε)s2 log k).

Hence,
mk ≥ exp((1/2 − ε)s log k) > exp((1/2 − 2ε)k log k).

Since ε > 0 is arbitrary, we get the desired conclusion. �

We next turn our attention to upper bounds for nk and mk. We have the
following result.

Theorem 2. The inequalities

nk ≤ exp((6/ log 2 + o(1))k2(log k)2)

and
mk ≤ exp((4/ log 2 + o(1))k2(log k)2)

hold as k → ∞.
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Proof. We assume that k ≥ 2. Again, we deal first with nk. We let A be a positive
integer depending on k, to be determined later. We let q1 < q2 < · · · < qm < · · ·
be all the consecutive prime numbers exceeding k. For j = 1, . . . , k, we put Tj =
j(j − 1)/2 and

Mj =
Tj+1A∏

�=TjA+1

q�.

Put M =
∏k

j=1 Mj and let N be the smallest positive integer such that Mj divides
N + j for each j with 1 ≤ j ≤ k. Such an integer N exists by the Chinese
Remainder Theorem. Note that N + k < M . Indeed, if not, then N = M − i for
some i ∈ {1, . . . , k}, and by taking some j �= i ∈ {1, . . . , k} (which exists because
k ≥ 2), we would get that Mj | N + j = M + (j − i); therefore Mj | j − i, which is
impossible. Let n = Mλ + N be a positive integer with λ ∈ [M, 2M ]. Note that

n + j = Mλ + (N + j) = Mj ((M/Mj)λ + (N + j)/Mj) , j = 1, . . . , k.

By setting Aj = (N + j)/Mj and Bj = M/Mj , it follows that

jA = Tj+1A − TjA = ω(Mj) ≤ ω(n + j) ≤ jA + ω(Bjλ + Aj),

so that if λ is such that

(6) ω(Bjλ + Aj) < A, for all j = 1, . . . , k − 1,

then

jA ≤ ω(n + j) < jA + A ≤ ω(n + j + 1) for all j = 1, . . . , k − 1.

Hence, we certainly have that ω(n + 1), . . . , ω(n + k) are pairwise distinct.
It now remains to estimate A and M such that we can guarantee the existence

of a positive integer λ ∈ [M, 2M ] with the property that all of the inequalities (6)
hold.

We claim that Aj and Bj are coprime. Indeed, to see this, note first that

Bj = M/Mj =
∏

1≤�≤k
� �=j

M�.

If there exists a prime p | (Aj , Bj), we then get that p | M� for some � �= j. Since
M� | N + �, we get that p | N + �. But obviously p | Aj | N + j; therefore
p | (N + �)− (N + j) = (�− j), and 1 ≤ |�− j| < k. Thus p < k, which is impossible
because all prime factors of M exceed k, proving the claim.

Now note that since N + k ≤ M , we have

Bjλ + Aj ≤ 1
Mj

(Mλ + N + k) <
2Mλ

Mj
≤ 4M2

Mj
< M2

for all λ ∈ [M, 2M ] and j = 1, . . . , k, when k ≥ 3, because in this case all primes
dividing M exceed 4 and N +k < M . Thus, writing τ (m) for the number of divisors
of m, we obtain

τ (Bjλ + Aj) ≤ 2
∑

d|Bjλ+Aj

d≤M

1.
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Summing the above inequality over all λ ∈ [M, 2M ] and changing the order of
summation, we find that∑

λ∈[M,2M ]

τ (Bjλ + Aj) ≤ 2
∑

λ∈[M,2M ]

∑
d|Bjλ+Aj

d≤M

1 ≤ 2
∑
d≤M

∑
λ∈[M,2M ]

Bjλ+Aj≡0 (mod d)

1

≤ 2
∑
d≤M

(⌊
M

d

⌋
+ 1

)
≤ 4M

∑
d≤M

1
d

≤ 4M(log M + 1).(7)

In the above chain of inequalities, we used the fact that, since Aj and Bj are
coprime, the congruence Bjλ + Aj ≡ 0 (mod d) has at most �M/d� + 1 solutions
λ ∈ [M, 2M ]. This is true assuming that d and Bj are coprime. When d and Bj

are not coprime, then this congruence has no integer solution λ. Thus, if λ is such
that ω(Bjλ + Aj) ≥ A, then τ (Bjλ + Aj) ≥ 2A and inequality (7) shows that

#{λ ∈ [M, 2M ] : ω(Bjλ + Aj) ≥ A} ≤ 4M(log M + 1)
2A

.

Summing the above inequality over j = 1, . . . , k − 1, we get that
k−1∑
j=1

#{λ ∈ [M, 2M ] : ω(Bjλ + Aj) ≥ A} ≤ 4(k − 1)M(log M + 1)
2A

.

Hence, assuming that

(8) M >
4(k − 1)M(log M + 1)

2A
,

we see that there exists a number λ ∈ [M, 2M ] such that all inequalities (6) are
satisfied, and therefore

(9) n < n + 1 = Mλ + N + 1 < 2M2 + M < 3M2.

It remains to estimate the size of the minimal integer A depending on k such that
inequality (8) holds. Clearly, M has Ak(k + 1)/2 prime factors, which are all the
consecutive primes starting with the first one exceeding k. Thus, by the Prime
Number Theorem,

M = exp((1/2 + o(1))k2A(log k2A))
as k → ∞ uniformly in A ≥ 1. Thus, inequality (8) is fulfilled when

A log 2 > log(4(k − 1)) + log(log M + 1) = (3 + o(1)) log k + O(log log k + log A).

This shows that given ε > 0, we may choose A = �(3/ log 2 + ε) log k�, and then
inequality (8) is fulfilled once k > kε. With this choice of A, we have that

M < exp((3/ log 2 + 2ε)k2(log k)2)

provided that k is sufficiently large, and now inequality (9) shows that

n < exp((6/ log 2 + 5ε)k2(log k)2)

if k is sufficiently large with respect to ε, which implies the desired estimate as
k → ∞, since ε ∈ (0, 1) may be chosen arbitrarily small.

We now turn our attention to the upper bound for mk. We follow the same
line of attack, based on the Chinese Remainder Theorem, although the details are
somewhat different.
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We assume again that k ≥ 2; we take M0 = (k!)2, Mj = qjA
j for j = 1, . . . , k,

and let N be the smallest positive integer m in the arithmetic progression

m + j ≡ 0 (mod Mj), j = 0, . . . , k.

Here,

(10) M =
k∏

j=0

Mj = (k!)2
k∏

j=1

qjA
j = exp((1/2 + o(1))k2A log k)

as k → ∞. Let m = Mλ + N again be such that λ ∈ [M, 2M ]. Then

m + i = iMi

(
M

iMi
λ +

N + i

iMi

)
, for all i = 1, . . . , k,

so that if we set Ai = (N + i)/(iMi) and Bi = M/(iMi), we have

Ω(m + i) = Ω(i) + Ω(Mi) + Ω(Biλ + Ai).

Now since i ≤ k, it follows that Ω(i) ≤ (log k)/ log 2. Furthermore, Ω(Mi) = iA.
Thus, if

(11) Ω(Biλ + Ai) < A − (log k)/ log 2, for all i = 1, . . . , k − 1,

then

Ω(m + i) < A(i + 1) = Ω(Mi+1) < Ω(m + i + 1), for all i = 1, . . . , k − 1,

which certainly shows that Ω(m + 1), . . . , Ω(m + k) are pairwise distinct.
Now let i ∈ {1, . . . , k}. As in the analysis of the nk case, one shows that Ai and

Bi are coprime and that Biλ+Ai < Mλ+N +k < 2M2+M < 3M2. Furthermore,
since M0/i is a divisor of Bi for all i = 1, . . . , k and M0/i = (k!)2/i is divisible by
all primes p ≤ k, it follows that the smallest prime factor of Biλ + Ai exceeds k.
Write

Biλ + Ai = UiVi,

where all prime factors of Ui are ≤ M1/2 and all prime factors of Vi are > M1/2.
Clearly, Ω(Vi) ≤ 4 because M > 9. We will now bound from above the number
of λ such that Ui is not squarefree for some i = 1, . . . , k. There exists a prime
p ∈ [k, M1/2] such that Biλ+Ai ≡ 0 (mod p2). For a fixed prime p, the number of
integers λ ∈ [M, 2M ] for which the above congruence holds is at most �M/p2�+1 ≤
2M/p2. Thus,

#{λ ∈ [M, 2M ] : p2 | Biλ + Ai for some p ∈ [k, M1/2]} ≤ 2M
∑
p>k

1
p2


 M

k log k

uniformly in i ∈ {1, . . . , k}. Summing this over all i ∈ {1, . . . , k}, we get that
k∑

i=1

#{λ ∈ [M, 2M ] : Ui is not squarefree} 
 M

log k
.

In particular, if k is large, then
k∑

i=1

#{λ ∈ [M, 2M ] : Ω(Biλ + Ai) > ω(Biλ + Ai) + 4} <
M

2
.
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Let λ be some number in [M, 2M ] such that Ω(Biλ + Ai) ≤ ω(Biλ + Ai) + 4. As
we have seen, there are at least M/2 such values for λ. If there is such a positive
integer λ with the additional property that

(12) ω(Biλ + Ai) < A − log k

log 2
− 4, for all i = 1, . . . , k,

it follows that inequalities (11) are satisfied. So, let us look at the number of
λ ∈ [M, 2M ] such that at least one of the inequalities (12) fails. The argument
used in the proof of the upper bound for nk (based on the fact that τ (m) ≥ 2ω(m))
shows that

k∑
i=1

#{λ ∈ [M, 2M ] : ω(Biλ + Ai) ≥ A − (log k)/ log 2 − 4}

≤ 4(k − 1)M(log M)
2A−(log k)/(log 2)−4

.

Thus, if

(13)
4(k − 1)M(log M)
2A−(log k)/(log 2)−4

<
M

2
,

then the number of λ ∈ [M, 2M ] such that at least one of the inequalities (12) fails
is < M/2. Since we have ≥ M/2 values of λ to choose from, it follows that one
can indeed choose such a value of λ for which all inequalities in (11) hold. Clearly,
with such a value of λ, we have that mk ≤ m = Mλ + N < 3M2. Inequality (13)
is equivalent, via estimate (10), to

A log 2 − (log k) − 4 log 2 > log(8(k − 1)) + 2 log k + O(log log k + log A),

which holds if we first fix ε > 0, then take k > kε, and finally choose A = �(4/ log 2+
ε) log k�. With this choice of A, we have

M < exp((2/ log 2 + 2ε)k2(log k)2)

once k > kε. Therefore,

mk < 3M2 < exp((4/ log 2 + 5ε)k2(log k)2)

if k is large with respect to ε, which implies the desired inequality since ε > 0 can
be chosen arbitrarily small. �

Acknowledgements

We thank the referee for a careful reading of the paper and for helpful sugges-
tions. Work on this paper started during a pleasant visit of the third author to the
mathematics department of the University of Toronto. The hospitality and support
of this institution is gratefully acknowledged. The work of the third author was
also supported in part by Grant SEP-CONACyT 46755. The second author was
supported in part by NSERC Grant A5123. Finally, the first author was supported
in part by NSERC Grant A8729.

Licensed to Universite Laval. Prepared on Wed Jun 13 10:25:37 EDT 2012 for download from IP 132.203.18.47.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1592 JEAN-MARIE DE KONINCK, JOHN B. FRIEDLANDER, AND FLORIAN LUCA

References

[1] J.-M. De Koninck, Ces nombres qui nous fascinent, Ellipses, Paris, 2008.
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Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089,
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