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RESUME. Soit ¢ > 2 un entier. Nous disons qu’un entier positif n = dyds - - - d,
ol les d; sont les chiffres de n en base ¢, est g-esthétique si |d; — d;—1| = 1 pour
tout entier ¢ tel que 2 < ¢ < 7. Soit N,(r) le nombre de nombres g-esthétiques a
r chiffres. Nous obtenons une expression explicite pour Ny (r) et nous étudions son

comportement asymptotique lorsque r — oo.

ABSTRACT. Given an integer ¢ > 2, we say that a positive integer n = dyds - - - d,,
where the d;’s are the digits of n in base ¢, is g-esthetic if |d; — d;_1| = 1 for each
integer ¢ with 2 < ¢ < r. Letting N,(r) stand for the number of  digit g-esthetic
numbers, we obtain an explicit expression for Ny(r) and we also study its asymptotic

behavior as r — oo.

1. Introduction and preliminary observations

Given an integer ¢ > 2, we say that a positive integer n = dids - - - d,., where the
d;’s are the digits of n in base g, is g-esthetic (or simply esthetic) if |d; — d;—1| = 1 for
each integer ¢ with 2 < ¢ < r. For convenience, we say that the numbers 1,2, . ..

are g-esthetic.

Our first goal will be to study the function N,(r) which represents the number of
r digit g-esthetic numbers. First observe that, using a computer, one can generate the

following table.
L r J1[2]3[4[5]6[7[8]09
No(r) |[1T| 1] 1711 1 1 1 1
Ns(r) {2346 8 | 12|16 |24 | 32
Na(r) |35 ] 8 |13[21 |34 |55 8 | 144
Ns(r) |47 | 1221 | 36 | 63 | 108 | 189 | 324
Ne(r) |59 | 16|29 52 | 94 | 169 | 305 | 549
N7z(r) {61120 |37 68 | 126|232 |430| 792
Ng(r) || 7 (13|24 45| 84 | 158 | 296 | 557 | 1045
No(r) || 8 15|28 |53 (100|190 | 360 | 685 | 1300
Nio(r) {917 32|61 116|222 | 424|813 | 1556

Recu le 9 avril 2009 et, sous forme définitive, le 24 novembre 2009.
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In the case ¢ = 2, it is clear that

(1) Ny(r) =1, forr=1,2,...
In the case ¢ = 3, it is quite easy to show that

20H1)/2 = /2. (\/2)" if 7 is odd,
{ 3-20/2)-1 = (3/2) . (v/2)" ifris even.
When ¢ = 4, we will see that
3) Ny(r) = Frys,
where F; denotes the i-th term of the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, ...

2) Ns(r) =

For ¢ > 5, the situation becomes more complicated. Hence, our first task will be to
establish an exact formula for N,(r). From this formula, it will be clear that for each
integer ¢ > 3, there exists a real number o = o, such that 1 < o < 2 and Nq(r) ~a’,
and moreover that the sequence {«,} increases with ¢ and tends to 2 as ¢ — oo.

2. The linear algebra set up

Let ¢ > 2 be a fixed integer and let IV, (r, i) denote the number of r digit g-esthetic
numbers whose last digit is ¢, for 0 < ¢ < g—1. Consider the vectoru = (0,1,1,...,1)
of length ¢ and let M = M, = (m;;) be the ¢ x ¢ matrix defined by

1 ifli—j] =1,
Mej = ol .
0 1f|2_]‘7£17

so that for example

0 1 0 10 (1)(1)?8

M,y = ., My=11 01 and M, =
10 010 0101
0010

In view of (1), and since Na(r,0) = %, while No(r,1) = %, we
shall assume from now on that ¢ > 3. The following three relations are immediate
consequences of the definition of N, (r,):

Ng(r,0) = Ng(r —1,1),

Ny(r,qg—1) = Ny(r —1,q — 2),

Ny(r,i) = Ng(r —1,i — 1) + Ny(r — 1,i+1), forl1 <i<gqg-—2.
It follows that, fort = 0,1,2,...,q — 1,

Ny(r,i) = (Mr_lu) where r = 1,2,3, ...

i+l
that is, the (i + 1)-th component of the vector M"~!u, so that

where r = 1,2,3, ...

Ny(r) = ' Ny(r,i) = ‘ (Mr_lu)z.+1,
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3. A preliminary lemma

Lemma 1. Given a positive integer k < g, let 0, = kw/(q+ 1). Then

(4,k),
q g+1
(b) Zsinz(jek) =
7j=1
where
-1 ifkisevenorifk = ©* andg=3 (mod 4),
(@ k) =14 0 ifk=%% andg=1 (mod 4),
0
1?(5:70:9]{ otherwise.

Proof. To simplify the notation, let @ = 6. In order to prove (a), we study sepa-
rately the cases k = q;r—l and k # q;rl. Ifk = %, then § = 7 and in this case,

1 2 1 -1 ifg=3 (mod 4),
- sin(j60) = sin(j0) =
smHjZ:; (76) ]2232 () { 0 ifg=1 (mod4).

If k # 931, we first evaluate A(6) := > =0 sin(j0). Itis clear that

4q eiif _ o—ijf 1 1 — gikm 1 — g tkm
E:O 271 1— eikﬂ'/(‘l"‘l) N 1— e_ik”/(‘ﬁ‘l) ’
j:

“4)

On the one hand, if & is even, this last expression is 0, since e’*™ = ¢~™ = 1, in which
case

(&)

1 .
s1n0 Zsm jo) = sm& Zsm j) —sinf | = Sine(O—smﬁ) =—1
On the other hand, if & is odd, e**™ = e~%7™ — _1_in which case,

1 1 1 sin 6
A(0) = B (1 _ eikm/(q+1) 1 _ e—ikﬂ/(q+1)> ~ 1—cosf’

so that
1 & 1 I
(6) g Zsm(y@) = 7 Zsm(y@) —sin@
Jj=2 J=0
B 1 sin @ 00
~ sinf \ 1 —cosf St
B cosf
1—cosf

Combining (4) and (6) as well as the special case (5), we obtain (a).
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Finally, using the identity

sin ((n+3) ¢)

1+ 2cos ¢ +2cos(2¢) + - + 2cos(ng) = sin(¢/2) ’

for 0 < ¢ < 2,

and the identity sin? ¢ = 3 (1 — cos 2¢)), we obtain

ji;sin2(j9) _ 3 (;—;cos(2j9)>

g 1 /sin(2¢+1)0 1
2 4 sin @
: km
B g_} 51n(2/£7r—q+1) -
2 4\ sin(kn/(¢g+1))
_ g 1 sin(kr/(¢g+1)) _1
2 4\ sin(kr/(¢g+1))
g+l
= 5
which proves (b). Il

4. A sequence of polynomials and their roots

Consider the sequence of polynomials po(z), p1(x), p2(z), . . . defined by
po(z) =1, pi(zr) =2 and pj(z) =xpj—1(z) — pj—2(x), for j > 2.

These polynomials are similar to Chebyshev polynomials which have been extensively
studied (see for instance Rivlin [1]). One can establish that the p;’s may also be defined
by

P A v ] -V Jj—2v
o= (7, )
which quickly reveals the first few terms of the sequence: 1, =, 2 =1, 23— 2z,
=322+ 1, 2° —42® + 3z, 25 =52t +622 -1, 27— 62° + 1023 — 4.

We now move to find the roots of p,, (z) for any fixed positive integer n.

Proposition 2. Given a positive integer n, the roots ai, aa, . .., oy, of p,(x) are
given by

k
ak:2cos< T

n

), for k=1,2,...,n.
1
Proof. Given a real number a # 0 such that |a| < 2, consider the 2 x 2 matrix

K:K(a)::< 0 1>.

-1 «
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It follows from the definition of p,, () that

(7) Kn<i>:<ppn(1¢a)>, for n=0,1,2,...
n+

The characteristic equation of K is A> — a\ + 1 = 0, yielding the eigenvalues

A2
A:%iiivga.

Since clearly |\| = 1, these values can be written as ¢ and e =%, with

0 :=arctan | ——— | .

a
The corresponding eigenvectors of K are then (1, ¢") and (1, e~%).
It follows that we can write the matrix K as K = QDQ ™!, where D is the diagonal

. e 0 11
matrix D = ( 0 =it > and Q) = < pif =i ) Therefore,

n 1 o —1\n 1
k() = eoey())
_ nA—1( 1
— QD ( ! )
1 eiln=1)0 _ . cind
T2 SineQ e~ _ o—i(n=1)0 |-
Combining this relation with (7), we obtain

pa(e) 1 11 piln—1)0 _ gind
poti(e) ) 2ising \ e e ¥ qe—ind _ g—itn—1)0 | -

thus allowing us to obtain an explicit value for p, («), namely

®  pala) = g (0 = g (e )

 2isind

forn =0,1,2,... Hence,

) pn(a) = 0 <= sin(n — 1)§ = asinné.

Besides this, since e~ + ¢ = q, it follows that & = 2 cos 6. Therefore, from (9), we
obtain that

pn(a) =0 <= sin(n —1)0 = 2cosfsinnd

<= cosfsinnb + cosnbsinf =0
sin(n+ 1) =0
— 0= lm, for k=1,2,...,n,
n—+1

since 6 €10, 7/2]. O
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5. Identifying the eigenvalues of the matrix M,

We first show that the ¢ eigenvalues of M = M, coincide with the ¢ roots of py(x).

Proposition 3. The real number « is an eigenvalue of the matrix M = M, if and
only if py(c) = 0.

Proof. Denoting by I = I, the identity matrix and given a real number «, it is
clear that

po(c) po() — apr(a) + pa(a) 0
(M—o) pi(a) _ pi(a) — apa(a) + p3(a) _ :
: : 0 ’
pg-1() pg-3(a) — apg—2(a) + pg—1(e) o (a
1 " py2(0) — appr(a) pa(c)
so that
po(a) 0
(M — o) plfa) - ? —  pla)=0.
pg—1(a) 0

But as we saw in Proposition 2, the roots of the polynomial p,(z) are all simple and
distinct. Hence, it follows that the g eigenvalues of the matrix M, are all accounted for,
thus completing the proof of Proposition 3. g

6. A formula for N,(r, 1)

Let o be an eigenvalue of M = M, and consider its corresponding eigenvector

Vo = (]_,pl(a),pz(oé), o apr*l(a)) )

already mentioned in the proof of Proposition 3. Since M is a real symmetric matrix,
its eigenvalues are all real (as shown in Propositions 2 and 3) and its eigenvectors are
orthogonal. A well known result in linear algebra (see for instance Propositions 15.6

Vo

[val

and 15.9 of Smith [2]) guarantees that the g vectors form an orthonormal basis of

RY. Hence, we may write
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so that, for each integer > 1,

(10) M =Y Ya ' % =1y,

— Vo " Uy
- Z* a2 ©

where
(11) Voy, = (Lpl(ak)apQ(ak)""aqul(ak))a for k = 1a27"'aq

In light of (8), we have that for each root & = «y, of p,(x), with the notation
0 =kn/(qg+1),
(12)
sin(j —1)0 — asinjf  sin(j — 1) — 2 cos @ sin j6 sm(j +1)0
pj(a) = =

—sin6 —sind sin @

so that by using (11) and relation (a) of Lemma 1, we obtain

q—1
(13) vak-uzz Zsmy—i—l Zsmjé?f x(q, k).
j=1

Similarly, using relation (b) of Lemma 1, we obtain

q—1
q+1
14 2 =
(14 e Z T 2sin?f
7=0

By substituting (13) and (14) in (10), and letting 0y, = 0x(q) = km/(q + 1), we obtain

27’
(15) My = | Zsm 0 cos" L0y, x(q, k) Vo s
k=1

so that by combining (11), (12) and (15), it follows that

P
Ny(r,i) = ) Zsin&k sin((i + 1)0) cos” 1 0y, x(q, k), for 0 <i<gqg-—1,
k=1
Hence,
q—1
(16) Ny(r) = Ny ka (¢, k Zsm J0k).
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Now, in light of formula (a) of Lemma 1, we easily obtain

Zsin(j@k) = sinfk(1+ x(g,k))
j=1

0 ifkisevenorifk:%landqz?) (mod 4),
_ sin 6y, ifk:%landqzl (mod 4),
in 6
STk therwise.
1 — cos by

From this, it is easily seen that (16) can be written as

2" a sin? 0y,

17 N, = "0y
a7 () qg+1 ; oS Tk (1 — cosby)?
k odd, kz2EL
2 I

= P Z cos” O (cot Oy + csc Hk)Q .
k=1

k odd, kz2EL

Using this formula and a computer, one can easily extend indefinitely the lines and
columns of the table of Section 1.

Observe that, for small values of ¢, relation (17) can be considerably simplified.
Thus, by setting ¢ = 3 in (17), we indeed obtain (2). Setting ¢ = 4 in (17), we obtain

Ny(r) = 2; ((5 +2V5)(1+V5)" + (5 —2v5)(1 — \/S)’“)
- 1 1_’_\/5 r+3 1_\/3 r+3
V4 2 a 2
= Fr+37

as claimed in (3). Finally, setting ¢ = 5 in (17), we easily obtain

{ 4-30=1/2 = (4/3/3) - (v/3)" if ris odd,
Ns(r) = .
(7/3) - (vV/3)" if r is even.

7. The asymptotic behavior of IN,(7)

The asymptotic behaviors of N, () and N, (r, ) do have some nice properties. We
begin with the former. First of all, observe that

(18) costh > cosfly > --- > cosbly_1 >cosfy and cosfy = —cosb;.

On the one hand, if ¢ is even, then the dominating term of the sum appearing in (17) is
the one with index k£ = 1. Setting &« = 2cosf; = 2cos(m/(q + 1)), that is the largest
root of p,(z), it follows from (17) and (18) that, as r — oo,

T

Ny(r) = (1 + o(1))—=

1 (cot 01 + cscbp)?, for ¢ even.
q
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On the other hand, if ¢ is odd, the sum appearing in (17) has two dominating terms,
namely those of index £ = 1 and index k& = ¢. In this case, it follows from (17) and
(18) that, as » — o0,

a” sinf; > n (—a)" sinf; >
qg+1\1—cosb qg+1 \ 1+ cosb

r

Ny(r)

(1+0(1)2. 7

(1+0(1)) P

Hence, for all ¢ > 3, N,(r) = o" for some a = oy €]1,2[, and limy_,o0 g = 2, as
claimed in Section 1.

(csc2 6, + cot? 01) if riseven,

1 csc 1 cot 01 if r is odd.

We can also study the behaviour of N, ([cg?]) when c is a fixed real number and
q — +o0. Indeed, if r = [ch], then, as ¢ — oo,

(19) cos" 0, =

Furthermore,
(20)
sin? 6y, 1+4cosb, 4 4(q+1)? k2
_ —Cavo@) ="M (1 o(2)).
(1—cosby)®> 1—cosl, 62 (1+0(0) k2m? ( " (q2>)

Combining (19) and (20) in (17), we obtain

L4 k2
@1 Ny(r) = (Ho(l))?’“qZWexp{—c - }
k=1

L 4 ck?n?
k=1

Thus if we set

= 4 ck?n?
0= pe { -5}
k=1
and 7 = [cg?], (21) can be written as

Ny(r) = (1+0(1))27qf(c)  asq— +oo.
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