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Abstract

Let Fq(n) be the number of digits needed to write the factorization of n in base
q. Several authors have studied the cardinality of the set of economical numbers, that
is those integers n for which Fq(n) ≤

⌊
log n
log q

⌋
+ 1. The fact that the set of economical

numbers is of zero density in the set of integers reveals nothing about the normal
behavior of Fq(n). In this note, we study the central distribution of the function Fq(n)
and show that it is Gaussian.

§1. Introduction and notations

Let Fq(n) be the number of digits needed to write the factorization of n in base q. For
example, F10(125) = F10(5

3) = 2 and F10(30) = F10(2 · 3 · 5) = 3. In 1995, Santos [7]
introduced the notion of economical numbers in base q, q ≥ 2, namely those integers n for
which Fq(n) ≤

⌊
log n
log q

⌋
+1, meaning that the number of digits needed to write the factorization

of n is smaller or equal to the number of digits appearing in its digital expansion in base
q. Since then, several authors have studied the counting function of economical numbers, in
particular De Koninck and Luca [3], [4], and more recently De Koninck, Doyon and Luca [5].
Here, for a fixed q ≥ 2, we study the distribution function Hq(x, y) := #{n < x : Fq(n) < y}
and more precisely the case where y = y(x, c) = log x

log q
+ 1

2
log log x+c

√
log log x. We show that

in this case, the expression G(c) = limx→∞ 1
x
Hq(x, y) is well defined and that G(c) = Φ(

√
3c)

where Φ(y) := 1√
2π

∫ y
−∞ e

−t2

2 dt is the distribution function of the standard normal law.

For real number y ≥ 0, we let byc stand for the largest integer smaller or equal to y and
we write {y} := y − byc for its fractional part. As usual, the letter p will always denote a
prime number, while π(x) will stand for the number of prime numbers p ≤ x. On the other

hand, φ(y) := 1√
2π

e
−y2

2 stands for the density function of the standard normal law. Moreover,

we let ω(n) stand for the number of distinct prime factors of n and we let γ(n) :=
∏

p|n p be
the kernel of n. Finally, by log log x we mean max(1, log log x).

§2. The main results

It is clear that

Fq(n) :=
∑

p|n

(⌊
log p

log q

⌋
+ 1

)
+

∑
a≥2
pa‖n

(⌊
log a

log q

⌋
+ 1

)
.

The first sum counts the number of digits needed to write the prime factors of n while the
second counts the number of digits needed to write the exponents ≥ 2. Using the identities
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⌊
log p
log q

⌋
= log p

log q
−

{
log p
log q

}
and

∑
p|n

log p
log q

= log γ(n)
log q

, it is easily seen that

Fq(n) =
log γ(n)

log q
+

∑

p|n

(
1−

{
log p

log q

})
+

∑
a≥2
pa‖n

(⌊
log a

log q

⌋
+ 1

)
,

which can also be written as

Fq(n) =
log n

log q
− h1(n) + h2(n) + h3(n),(1)

where

h1(n) : =
log(n/γ(n))

log q
,

h2(n) : =
∑
a≥2
pa‖n

(⌊
log a

log q

⌋
+ 1

)
,

h3(n) : =
∑

p|n

(
1−

{
log p

log q

})
.

Let Hq(x, y) be the distribution function of Fq, that is,

Hq(x, y) = #{n < x : Fq(n) < y}

and consider the function

G(c) := lim
x→∞

1

x
Hq

(
x,

log x

log q
+

1

2
log log x + c

√
log log x

)
.

Theorem 1. For each real number c,

G(c) = Φ
(√

3c
)
.

Remark. The fact that the function G(c) is well defined is in itself an interesting result.

The following theorem reveals the interval in which the function Fq(n) takes its values.

Theorem 2. For each integer q ≥ 2 and each integer n ≥ 2,

 log log
(
n1/ω(n)

)

log q

 + ω(n) ≤ Fq(n) ≤
⌊
log n

log q

⌋
+ 2ω(n).
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§3. Preliminary results

The first lemma contains classical estimates on powerful numbers. Recall that a positive
integer is said to be a powerful number if p|n implies that p2|n. But first, some notation.
Given a positive integer n, we shall write n = uv where

u = u(n) :=
∏

p‖n
p

and
v = v(n) :=

n

u
,

so that u is the square free part of n and v its powerful part.

Lemma 1. As y →∞,

(i)
∑
n>y

p|n=⇒p2|n

1

n
¿ 1√

y
,

(ii) #{n < x : v(n) > y} ¿ x√
y
, where the implicit constant does not depend on x.

Proof of Lemma 1. For (i), see De Koninck and Kátai [2].

To establish (ii), we simply observe that it follows from (i) that

#{n < x : v(n) > y} ≤ ∑
v>y

p|v=⇒p2|v

x

v
¿ x√

y
.

Lemma 2. There exist two positive constants c1 and c2 such that, as x →∞,

∑

p≤x

1

p
= log log x + c1 + O

(
exp{−c2(log x)3/5}

)
.

Proof of Lemma 2. It is known (see Vinogradov [8]) that

∏

p≤x

(
1− 1

p

)
=

e−γ

log x

(
1 + O

(
exp{−c2(log x)3/5}

))
,

where γ is Euler’s constant. Taking logarithms on both sides, we easily see that

∑

p≤x

1

p
= log log x + γ − ∑

p≤x, ν≥2

1

νpν
+ log

(
1 + O

(
exp{−c2(log x)3/5}

))

= log log x + γ − ∑

p, ν≥2

1

νpν
+ O

(
1

x

)
+ O

(
exp{−c2(log x)3/5}

)

= log log x + c1 + O
(
exp{−c2(log x)3/5}

)
,

as required.

3



Lemma 3. (Central Limit Theorem) Let X1, X2, . . . be independent random variables
and let

µi = E[Xi],

σ2
i = E[(Xi − µi)

2],

r3
i = E[(Xi − µi)

3].

If

lim
n→∞

(
∑n

i=1 r3
i )

1/3

√∑n
i=1 σ2

i

= 0,

then

lim
n→∞P




∑n
i=1 Xi −∑n

i=1 µi√∑n
i=1 σ2

i

< y


 = Φ(y).

Proof of Lemma 3. This is Lyapunov’s condition in the Central Limit Theorem. For a
proof of this classical result, see Bernstein [1].

Lemma 4. For each fixed integer q ≥ 2 and each fixed integer r ≥ 1, we have, as x →∞,

∑
p<x

1

p

{
log p

log q

}
=

log log x

2
+ O(1),

∑
p<x

1

p

{
log p

log q

}r

=
log log x

r + 1
+ O




√
log log x

r


 .

Proof of Lemma 4. We first establish the second relation. To do so, we call upon the
following inequality which is valid for all positive integers k and r:

∑
p<x

1

p

{
log p

log q

}r

=
k−1∑

j=0

∑
p<x

j
k
≤{ log p

log q}<
j+1

k

1

p

{
log p

log q

}r

.(2)

The sum on the right hand side can be written as

∑
p<x

j
k
≤{ log p

log q}<
j+1

k

1

p

{
log p

log q

}r

=

b log x
log q c∑

`=0

∑

q
`+

j
k≤p<min

(
q

`+
j+1

k ,x

)
1

p

{
log p

log q

}r

.(3)

On the other hand, observe that

∑

q
`+

j
k≤p<q

`+
j+1

k

1

p

{
log p

log q

}r

=

(
j

k
+

ξ

k

)r ∑

q
`+

j
k≤p<q

`+
j+1

k

1

p
(4)
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for some real ξ such that |ξ| < 1. Using Lemma 2 (replacing the error term by O(1/ log2 x),
say), we obtain

∑

q
`+

j
k≤p<q

`+
j+1

k

1

p
= log log

(
q`+ j+1

k

)
− log log

(
q`+ j

k

)
+ O

(
1

`2 log2 q

)
(5)

= log
(
` +

j + 1

k

)
− log

(
` +

j

k

)
+ O

(
1

`2 log2 q

)

=
1

k`
+ O

(
1

k`2

)
+ O

(
1

`2 log2 q

)
.

Combining relations (3), (4) and (5), we obtain that

∑
p<x

j
k
≤{ log p

log q}<
j+1

k

1

p

{
log p

log q

}r

=

(
j

k
+

ξ

k

)r b log x
log q c∑

`=1

(
1

k`
+ O

(
1

k`2

)
+ O

(
1

`2 log2 q

))
.(6)

Observe also that

b log x
log q c∑

`=1

(
1

k`
+ O

(
1

k`2

)
+ O

(
1

`2 log2 q

))
=

1

k
log log x + O(1).(7)

Combining relations (2), (6) and (7) with the identity
(

j

k
+

ξ

k

)r

=
jr

kr
+ O

(
r(j + 1)r−1

kr

)
,

we obtain

∑
p<x

1

p

{
log p

log q

}r

=
k−1∑

j=0

(
jr

kr+1
log log x + O

(
r(j + 1)r−1

kr+1
log log x

)
+ O

(
jr

kr

))
+ O(1).(8)

The right hand side member of (8) is equal to

1

r + 1
log log x + O

(
(k + 1)r

kr+1
log log x

)
+ O

(
k

r

)
+ O(1).(9)

Choosing k =
⌊√

r log log x
⌋
, the proof of the second relation of Lemma 4 then follows from

relations (8) and (9).
In order to prove the first relation of Lemma 4, we first observe that, using the Prime

Number Theorem in the form
∑
p<x

log p

p
= log x + O(1), we have

∑
p<x

1

p

{
log p

log q

}
=

∑
p<x

1

p

log p

log q
− ∑

p<x

1

p

⌊
log p

log q

⌋

=
log x

log q
+ O(1)− ∑

p<x

1

p

⌊
log p

log q

⌋
.
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Moreover,

∑
p<x

1

p

⌊
log p

log q

⌋
=

b log x
log q c∑

j=0

j
∑

qj<p≤min(x,qj+1)

1

p
.

Using Lemma 2 (replacing the error term by O(1/ log3 x), say) we obtain

∑

qj<p≤qj+1

1

p
= log log qj+1 − log log qj + O

(
1

j3 log3 q

)

=
1

j
− 1

2j2
+ O

(
1

j3

)
(j ≥ 1).

We may therefore conclude that

∑
p<x

1

p

⌊
log p

log q

⌋
=

b log x
log q c−1∑

j=1

(
1− 1

2j
+ O

(
1

j2

))
+ O(1)

=
log x

log q
− log log x

2
+ O(log log q) + O(1),

which proves the first equation of Lemma 4 and thus completes the proof of the lemma.

Let x be a large fixed positive integer and set

R := x
∏
p<x

p.

We consider the set U = {n < R} with the probability measure

P (S) =
#S

R
, for each S ⊆ U.

For each prime number p < x, we introduce the random variables

ξp(n) :=
{

1−
{

log p
log q

}
if p|n ,

0 otherwise.

Lemma 5. For each prime number p < x, the following equalities hold:

µp : = E [ξp] =
1

p

(
1−

{
log p

log q

})
,

σ2
p : = E

[
(ξp − µp)

2
]

=

(
1

p
− 1

p2

) (
1−

{
log p

log q

})2

,

E
[
(ξp − µp)

3
]

=

(
1

p
− 3

p2
+

2

p3

) (
1−

{
log p

log q

})3

.
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Proof of Lemma 5. Since for each prime number p < x, we have p|R, the random variables
ξp are independent. Moreover, one can easily verify the following equalities:

P

(
ξp = 1−

{
log p

log q

})
=

1

p
,

P (ξp = 0) =
p− 1

p
.

From these, it follows immediately that

E [ξp] =
1

p

(
1−

{
log p

log q

})
,(10)

E
[
ξ2
p

]
=

1

p

(
1−

{
log p

log q

})2

,(11)

E
[
ξ3
p

]
=

1

p

(
1−

{
log p

log q

})3

.(12)

All three equalities of Lemma 5 then easily follow from (10), (11) and (12).

Lemma 6. For each real number y,

lim
x→∞P




∑
p<x ξp − 1

2
log log x√

1
3
log log x

< y


 = Φ(y).

Proof of Lemma 6. This result follows from Lemmas 4, 5 and 3 (Central Limit Theorem).

On the same probability space {n < R}, we define the random variables

χp(n) :=

{
1−

{
log p
log q

}
if p|a,

0 otherwise,

where a is the smallest positive integer such that a ≡ n (mod x).

Lemma 7. As x →∞,

E

[∣∣∣∣∣
∑
p

ξp −
∑
p

χp

∣∣∣∣∣

]
<

π(x)

x
=

1 + o(1)

log x
.

Proof of Lemma 7. We only need to observe that

P

(
χp = 1−

{
log p

log q

})
=

1

R
#{n < R : p|a} =

1

R

R

x

⌊
x

p

⌋
=

1

x

⌊
x

p

⌋
.

Indeed, it then follows that

E[χp] =

(
1−

{
log p

log q

})
1

x

⌊
x

p

⌋
=

1

p

(
1−

{
log p

log q

})
+

ξ

x
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for some |ξ| < 1. Hence ∣∣∣∣E[χp]− E[ξp]
∣∣∣∣ <

1

x

and therefore

E

[∣∣∣∣∣
∑
p

ξp −
∑
p

χp

∣∣∣∣∣

]
≤ ∑

p<x

∣∣∣∣E[χp]− E[ξp]
∣∣∣∣ <

π(x)

x
,

which completes the proof of Lemma 7.

Lemma 8. As x →∞,

P




∣∣∣∣∣
∑
p<x

ξp −
∑
p<x

χp

∣∣∣∣∣ > 1


 <

1 + o(1)

log x
.

Proof of Lemma 8. This result is an immediate consequence of Lemma 7 and the Markov
inequality (see for instance Galambos [6], p. 150).

Lemma 9. Given a fixed integer N ≥ 2, let αi ≥ t ≥ N1/(N−1) for i = 1, . . . , N . Then

N∑

i=1

αi ≤ 1

c

N∏

i=1

αi,

where c = tN−1

N
.

Proof of Lemma 9. Assume that αi ≥ t ≥ N1/(N−1) for i = 1, . . . , N and that

N∑

i=1

αi >
1

c

N∏

i=1

αi.

We then have
N∑

i=1

αi >

(
N

tN−1

∏N
i=1 αi

αj

)
αj (j = 1, . . . , N).

Observe that, using the fact that αi ≥ t,

N

tN−1

∏N
i=1 αi

αj

≥ N (j = 1, . . . , N).

We therefore obtain that for each integer j = 1, . . . , N ,

N∑

i=1

αi > Nαj,

which contradicts the fact that
N∑

i=1

αi ≤ N max
i

αi,

thus completing the proof of Lemma 9.
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§4. The proofs of the main results

Proof of Theorem 1. Assume that n ≤ x satisfies the inequality

v(n) < log log n.

By Lemma 1(ii), we thus omit at most x√
log log x

integers n ≤ x. By the definition of the

function h1(n), we then obtain

h1(n) = O(log log log n).(13)

Moreover, by definition, we have

h2(n) ≤ ω(v(n))




 log
(

log v(n)
log 2

)

log q

 + 1


 .

It follows from this that

h2(n) ¿ log v(n)

log log v(n)
log log v(n) ¿ log log log n.(14)

Hence, combining (13) and (14), we have

h1(n) + h2(n) = O (log log log n) .(15)

Assume also that x
log log x

< n < x, so that

log n

log q
=

log x

log q
+ O(log log log x).(16)

Combining (1), (13), (15) and (16), we obtain

#

{
n < x : Fq(n) <

log x

log q
+ w

}
(17)

= # {n < x : h3(n) < w + O (log log log x)}+ O

(
x√

log log x

)
.

Calling upon the identity
h3(n) =

∑
p<x

χp(n),(18)

it follows from (17) and (18) that

#

{
n < x : Fq(n) <

log x

log q
+ w

}
(19)

= #



n < x :

∑
p<x

χp(n) < w + O (log log log x)



 + O

(
x√

log log x

)
.
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By the definition of the χp(n), we have that

#



n < x :

∑
p<x

χp(n) < w + O (log log log x)



(20)

=
x

R
#



n < R :

∑
p<x

χp(n) < w + O (log log log x)



 .

On the other hand, by Lemma 8, we have that

#



n < R :

∑
p<x

χp(n) < w + O (log log log x)



(21)

= #



n < R :

∑
p<x

ξp(n) < w + O (log log log x)



 + O

(
R

log x

)
.

From (21) and Lemma 7, it then follows that

#



n < R :

∑
p<x

χp(n) <
1

2
log log x + c

√
log log x + O (log log log x)



(22)

= R (1 + o(1)) Φ(
√

3c).

Combining (19), (20) and (22), we finally obtain

#

{
n < x : Fq(n) <

log x

log q
+

1

2
log log x + c

√
log log x

}
= x (1 + o(1)) Φ(

√
3c),

thus completing the proof of Theorem 1.

Proof of Theorem 2. We first proof the upper bound. We have

Fq(n) =
∑

p|n

(⌊
log p

log q

⌋
+ 1

)
+

∑
pa‖n
a≥2

(⌊
log a

log q

⌋
+ 1

)

≤
log

(∏
pa‖n ap

)

log q
+ 2ω(n).

Since a
1

a−1 ≤ 2 for each a ≥ 2, we have that ap ≤ pa for each prime p ≥ 2. Hence,

Fq(n) ≤ log n

log q
+ 2ω(n),

thus establishing the upper bound.
We now prove the lower bound. As before, we write n = u(n)v(n). Since (u(n), v(n)) = 1,

we have

Fq(n) ≥ ∑

p|u(n)

max

(
1,

log p

log q

)
+

∑

pa‖v(n)

max

(
2,

log log pa

log q

)

10



=
1

log q


 ∑

p|u(n)

max(log q, log p) +
∑

pa‖v(n)

max
(
log q2, log log pa

)



≥ 1

log q

∑

pa‖n
max (log q, log log pa)

=
1

log q
log


 ∏

pa‖n
max (q, log pa)


 .

Using Lemma 9, we then have

Fq(n) ≥ 1

log q
log


qω(n)−1

ω(n)

∑

pa‖n
max(q, log pa)




≥ 1

log q
log

(
qω(n)−1

ω(n)
log n

)

=
log log n

log q
+ ω(n)− 1− log ω(n)

log q
.

Moreover, since
log log n

1
ω(n)

log q
is not an integer for n, q ≥ 2, it follows that

Fq(n) ≥



log log n
1

ω(n)

log q
+ ω(n)− 1




=




log log n
1

ω(n)

log q




+ ω(n)− 1

=

 log log n
1

ω(n)

log q

 + ω(n),

thus establishing the lower bound and completing the proof of Theorem 2.

§5. Final remarks

The study of the behavior of the function Hq(x, y) is still very much uncharted. For
instance, for any fixed value of y, Theorem 2 only reveals that Hq(∞, y) < ∞. Hence,
obtaining a general fairly good estimate for Hq(x, y) is certainly an interesting challenge. On
the other hand, we believe that the result for economical numbers could be generalized to
yield

Hq

(
x,

log x

log q
+ c log log x

)
=

x

(log x)R(q,c)+o(1)

(
x →∞,−∞ < c <

1

2

)
.

To prove or disprove this claim and moreover to describe the behavior of the function R(q, c)
in the eventuality that the claim is true would also be very interesting.
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