

Available online at www.sciencedirect.com



JOURNAL OF Number Theory

Journal of Number Theory 128 (2008) 557-563

www.elsevier.com/locate/jnt

# Integers divisible by sums of powers of their prime factors

Jean-Marie De Koninck<sup>a,\*</sup>, Florian Luca<sup>b</sup>

<sup>a</sup> Département de Mathématiques, Université Laval, Québec G1K 7P4, Canada <sup>b</sup> Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ap. Postal 61-3 (Xangari), C.P. 58089, Morelia, Michoacán, Mexico

Received 15 May 2006

Available online 23 March 2007

Communicated by C. Pomerance

#### Abstract

For each positive integer j, let  $\beta_j(n) := \sum_{p|n} p^j$ . Given a fixed positive integer k, we show that there are infinitely many positive integers n having at least two distinct prime factors and such that  $\beta_j(n) | n$  for each  $j \in \{1, 2, ..., k\}$ .

© 2007 Elsevier Inc. All rights reserved.

## 1. Introduction

Recently, the authors [2] estimated the counting function B(x) of the set of integers  $n \le x$  which are not prime powers and which are divisible by the sum of their prime factors. They showed that, for x sufficiently large, there exist positive constants  $c_1$  and  $c_2$  such that

$$x \exp\{-c_1(1+o(1))\ell(x)\} < B(x) < x \exp\{-c_2(1+o(1))\ell(x)\},\$$

where  $\ell(x) := \sqrt{\log x \log \log x}$ .

In this paper, we consider a smaller set. Indeed, for each positive integer j, let  $\beta_j(n) := \sum_{n|n} p^j$ . Given an integer  $k \ge 2$ , we are interested in the set of positive integers n having at

\* Corresponding author.

0022-314X/\$ – see front matter  $\,$  © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2007.01.010

E-mail addresses: jmdk@mat.ulaval.ca (J.-M. De Koninck), fluca@matmor.unam.mx (F. Luca).

least two distinct prime factors and such that  $\beta_j(n) \mid n$  for each  $j \in \{1, 2, ..., k\}$ . We have the following result.

**Theorem 1.** For any positive integer k, there exist infinitely many positive integers n which are not prime powers and such that  $\beta_i(n) \mid n$  for all j = 1, ..., k.

Let k be a large positive integer and set  $s = k^3$ . Throughout,  $\varepsilon > 0$  is a small real number which depends on k. We use the Landau symbols O and o as well as the Vinogradov symbols  $\ll$  and  $\gg$  with their usual meanings. The constants and convergence implied by them might depend on k and  $\varepsilon$ .

# 2. Preliminary results

The following theorem can be easily deduced from Theorem 16 in Hua's book [4], p. 139.

**Theorem A** (*Hua*). Given an integer  $k \ge 2$ , let *s* be an integer which is  $\ge s_0$ , where  $s_0$  is defined according to the following table:

| k                     | 2 | 3  | 4  | 5   | 6   | 7   | 8   | 9    | 10   | ≥11                                   |
|-----------------------|---|----|----|-----|-----|-----|-----|------|------|---------------------------------------|
| <i>s</i> <sub>0</sub> | 7 | 19 | 49 | 113 | 243 | 417 | 675 | 1083 | 1773 | $2k^2(3\log k + \log\log k + 4) - 21$ |

Let  $N_1 < \cdots < N_k$  be positive integers and let also  $I(N_1, \ldots, N_k)$  be the set of prime solutions  $p_1, \ldots, p_s$  of the system of equations

$$\begin{cases} p_1 + p_2 + \dots + p_s = N_1, \\ p_1^2 + p_2^2 + \dots + p_s^2 = N_2, \\ \vdots \\ p_1^k + p_2^k + \dots + p_s^k = N_k. \end{cases}$$
(1)

Set  $P = N_k^{1/k}$ . Then

$$#I(N_1,\ldots,N_k) = \frac{b_1 P^{s-\frac{1}{2}k(k+1)} \mathcal{G}(N_1,\ldots,N_k)}{(\log P)^s} + O\left(\frac{P^{s-\frac{1}{2}k(k+1)}}{(\log P)^{s+1}} \log \log P\right),$$

where  $b_1 = b_1(N_1, ..., N_k)$  is a non negative constant encoding the solvability in positive real numbers of system (1) and  $\mathcal{G}(N_1, ..., N_k)$ , called the singular series, encodes the condition of congruence solvability of system (1) (these quantities being given explicitly on pp. 139 and 140 of Hua's book [4]).

In what follows, we will give some sufficient conditions on the parameters  $N_1, \ldots, N_k$  which, using Theorem A, will ensure that system (1) admits solutions in prime numbers which furthermore are in appropriate arithmetic progressions.

## 3. The condition of positive solvability

For j = 1, 2, ..., s, let

$$c_j := \sum_{i=1}^s \frac{1}{i^j}.$$

For a large positive real number X and an arbitrarily small  $\varepsilon > 0$ , let  $I_{j,\varepsilon}(X)$  be the open interval

$$I_{j,\varepsilon}(X) := \left(c_j X^j (1-\varepsilon), c_j X^j (1+\varepsilon)\right), \quad k = 1, 2, \dots, s.$$

Moreover, for j = 1, 2, ..., s, let  $N_j \in I_{j,\varepsilon}(X)$  be positive integers and set

$$\delta_j := \frac{N_j}{X^j}, \quad k = 1, 2, \dots, s,$$

and observe that  $\delta_i - c_i = O(\varepsilon)$  for k = 1, 2, ..., s.

The argument on p. 159 in Hua's book [4] shows that if we consider the equations

$$X_{\ell} = x_1^{\ell} + \dots + x_s^{\ell} - \delta_{\ell} = 0, \quad 0 \leq x_{\nu} \leq 1, \ \nu = 1, \dots, s, \ 1 \leq \ell \leq k,$$

where the  $x_{\nu}$ 's are distinct real numbers, then

$$b_1 = \int_{\substack{0 \\ 0 \leqslant x_{\ell} \leqslant 1, \ X_{\ell} = 0}}^{1} \dots \int_{\substack{0 \\ k_{\ell} \leqslant 1, \ X_{\ell} = 0}}^{1} \frac{dx_{k+1} \cdots dx_s}{k! \prod_{1 \leqslant i < j \leqslant k} |x_i - x_j|}$$

where the index  $\ell$  runs in the set  $1, \ldots, k$ .

Note that, by continuity and from the way we have chosen the integers  $N_1, \ldots, N_k$ , there exists a constant  $C_1$  depending on k, such that, for every

$$(x_{k+1},\ldots,x_s)\in\left(\frac{1}{k+1}(1-C_1\varepsilon),\frac{1}{k+1}(1+C_1\varepsilon)\right)\times\cdots\times\left(\frac{1}{s}(1-C_1\varepsilon),\frac{1}{s}(1+C_1\varepsilon)\right),$$

there exists  $(x_1, \ldots, x_k) \in (1 - \varepsilon, 1 + \varepsilon) \times (\frac{1}{2}(1 - \varepsilon), \frac{1}{2}(1 + \varepsilon)) \times \cdots \times (\frac{1}{k}(1 - \varepsilon), \frac{1}{k}(1 + \varepsilon))$  such that  $X_j = 0$  for  $j = 1, 2, \ldots, k$ .

The above argument now easily implies that there exists a positive constant  $C_2$  depending only k such that if  $\varepsilon$  is sufficiently small, say  $0 < \varepsilon < \varepsilon_0(k)$ , then

$$b_1 \ge b'_{1,\varepsilon} := \int_{I_{k+1,C_1\varepsilon}(1)} \dots \int_{I_{s,C_1\varepsilon}(1)} \frac{dx_{k+1}\cdots dx_s}{k!\prod |x_i - x_j|} > C_2\varepsilon^s.$$

Note that the above lower bound does not depend on *X*.

Note also that our choice of parameters implies that the real solutions encoded in the multiple integral representing  $b'_{1,\varepsilon}$  are of the form  $(x_1, \ldots, x_s)$  with  $x_i$  and  $x_j$  being "far apart", because  $x_j/x_1 = 1/j \times (1 + O(\varepsilon))$  for  $j = 1, 2, \ldots, s$ .

# 4. Singular series

Given an integer  $k \ge 2$ , let

$$M = \prod_{p \leqslant k^{2k}} p^{k^3}.$$
 (2)

Assume that  $\ell$  is a positive integer depending on k such that the system of congruences

$$\begin{cases} y_1 + y_2 + \dots + y_k \equiv N_1 - (s - k) \pmod{p^{\ell}}, \\ y_1^2 + y_2^2 + \dots + y_k^2 \equiv N_2 - (s - k) \pmod{p^{\ell}}, \\ \vdots & \vdots \\ y_1^k + y_2^k + \dots + y_k^k \equiv N_k - (s - k) \pmod{p^{\ell}}, \end{cases}$$
(3)

with  $1 \leq y_j \leq p^{\ell} - 1$ ,  $p \not| y_j$  for j = 1, 2, ..., k, and furthermore  $p^{\ell} \| \prod_{1 \leq i < j \leq k} (y_i - y_j)$ , admits at least one solution  $(y_1, ..., y_k)$  for all  $p \mid M$ . Then the argument from Section 11.3 of Hua's book [4] shows that  $\mathcal{G}(N_1, ..., N_k)$  is bounded below by a constant  $C_3$  depending only on k. Furthermore, note that under our assumptions, the primes  $p_i$  for i = k + 1, ..., s, may be assumed to be congruent to 1 modulo M.

Now, for each prime divisor p of M and each positive integer  $j \leq k$ , let  $a_{j,p} = 1 + p^j$ . Moreover, let  $n_j \in \{0, ..., M - 1\}$  be the congruence class modulo M such that

$$n_j \equiv s - k + \sum_{i=1}^k a_{i,p}^j \pmod{p^{k^3}}$$
 for all  $j = 1, \dots, k$ , and  $p \mid M$ . (4)

Note that these exist and are unique by the Chinese Remainder Theorem.

We note that if  $N_j \equiv n_j \pmod{M}$ , the system (3) admits the solution  $y_i \equiv a_{i,p} \pmod{p^{\ell}}$  for i = 1, ..., k, and that the exact order at which p appears in  $\prod_{1 \leq i < j \leq k} (a_{i,p} - a_{j,p})$  is precisely  $k(k^2 - 1)/6$ . This allows us to take  $\ell = k(k^2 - 1)/6$ .

To summarize the result obtained so far and using the notation introduced in this section, we have established the following theorem.

**Theorem 2.** Let k be large,  $s = k^3$  and  $\varepsilon = \varepsilon(k) > 0$  be sufficiently small. Assume that X is large and  $N_1, \ldots, N_k$  are positive integers in the intervals  $I_{1,\varepsilon}(X), \ldots, I_{k,\varepsilon}(X)$ , which also satisfy  $N_j \equiv n_j \pmod{M}$  for  $j = 1, \ldots, k$ . Then there exists a positive constant  $C_4$ , depending on k but not on  $\varepsilon$ , such that if X is sufficiently large, depending on the choice of both k and  $\varepsilon$ , the system of equations (1) admits a prime solution  $p_1, \ldots, p_s$  such that  $p_i \equiv 1 \pmod{M}$  for  $i = 1, \ldots, s$ , and furthermore  $|p_j/p_1 - 1/j| < C_4 \varepsilon$  for  $j = 1, \ldots, s$ .

We shall now be using the powerful Theorem 2 to prove Theorem 1.

**Proof of Theorem 1.** Let *M* be as in (2) and again let  $s = k^3$ . Let  $b_j$  be a positive integer with  $2M - n_j + 1 + 2(-1)^{j-1}$  prime factors all congruent to 1 modulo *M* for all j = 1, ..., k, where the  $n_j$ 's are the ones appearing in (4). Furthermore, let  $\varepsilon > 0$  be small and assume that

$$b_j^j \in I_{j,\varepsilon}(b_1/c_1), \quad j = 1, 2, \dots, k.$$
 (5)

560

It is easy to see that such numbers exist provided  $b_1$  is chosen sufficiently large with respect to k and  $\varepsilon$ .

Choose a number *m* of the form m = pq, where both *p* and *q* are congruent to -1 modulo *M* and moreover  $p - q = O(p/\log p)$ . Assume furthermore that  $p \in [\sqrt{b_1}, 2\sqrt{b_1}]$ . It is clear that such primes *p* and *q* exist if  $b_1$  is large enough. Now let

$$N_{j} := b_{j}^{j} \cdot m^{j} - \beta_{j} (b_{j}^{j} \cdot m^{j}), \quad j = 1, 2, \dots, k$$
(6)

and observe that

$$N_j \equiv 1 - 2(-1)^j - \omega(b_j) \equiv n_j \pmod{M}, \quad j = 1, 2, \dots, k.$$

Here,  $\omega(n)$  stands for the number of distinct prime factors of *n*.

Furthermore, observe that in light of (6),  $m = N_1/b_1(1 + O(\varepsilon))$ , and also that, in light of (5),  $(b_jc_1)^j/(c_jb_1^j) = 1 + O(\varepsilon)$ . Hence it follows from (6) that, by choosing  $X = N_1/c_1$ ,

$$N_{j} = b_{j}^{j} m^{j} \left( 1 + O\left(\frac{1}{X^{j/2}}\right) \right) = \frac{b_{j}^{j} c_{1}^{j}}{b_{1}^{j}} X^{j} \left( 1 + O\left(\varepsilon + \frac{1}{X^{1/2}}\right) \right) = c_{j} X^{j} \left( 1 + O\left(\varepsilon + X^{-1/2}\right) \right)$$

holds for j = 1, ..., k, as X becomes large. From Theorem 2, it follows that if  $\varepsilon$  is sufficiently small and X is large enough, then there exist prime numbers  $p_1, ..., p_s$  such that  $N_j = \sum_{i=1}^s p_i^j$  and such that also  $p_i \equiv 1 \pmod{M}$  for all i = 1, ..., s, and  $p_i \gg X$  for all i = 1, ..., s.

Since the prime factors of *m* are congruent to -1 modulo *M*, it follows that  $p_i \nmid m$  for i = 1, ..., s and also that if *X* is sufficiently large, then  $p_i \nmid b_j$  for all i = 1, ..., s and j = 1, ..., k.

Finally, observing that the number

$$n = \prod_{j=1}^{k} b_j^j \cdot m^k \cdot \prod_{i=1}^{s} p_i$$

satisfies  $\beta_i(n) \mid n$  for all j = 1, ..., k, Theorem 1 is proved.  $\Box$ 

#### 5. Further remarks

In Hua's book [4], page 157, it is shown that one may choose  $s \gg k^2 \log k$  once the arithmetic conditions and the conditions for positive solvability are satisfied. We only took k large and  $s = k^3$ , so that the above inequality is clearly met. Note that there is recent work by Arkhipov and Chubarikov [1] in which they improve somewhat upon Hua's work.

Now let

$$\kappa(x) = \max\{k \ge 1: \beta_j(n) \mid n \text{ for all } j = 1, \dots, k \text{ for some } n \le x \text{ with } \omega(n) \ge 2\}$$

Our Theorem 1 shows that  $\kappa(x) \to \infty$  as  $x \to \infty$ . One may inquire about the growth rate of  $\kappa(x)$ . A lower bound on  $\kappa(x)$  could be deduced from the proofs of our Theorems 1 and 2 provided that the constants in Theorem A are made explicit. A trivial upper bound is  $\kappa(x) < (\log x)/(\log 3)$  and follows by observing that if  $n \leq x$  is such that  $\beta_k(n) \mid n$  for  $k = \kappa(x)$  then, since  $\omega(n) \geq 2$ , we have

$$3^k < \beta_k(n) \leqslant n \leqslant x,$$

so that  $k < (\log x)/(\log 3)$ . In this section, we give a nontrivial upper bound for  $\kappa(x)$ .

**Theorem 3.** The estimate  $\kappa(x) \leq (\log x)/(4 \log \log \log x)$  holds for all sufficiently large x.

**Proof.** Let *x* be large, put  $k = \kappa(x)$  and let  $n \le x$  with  $\omega(n) \ge 2$  be such that  $\beta_j(n) | n$  for j = 1, ..., k. Let  $n = p_1^{\alpha_1} \cdots p_t^{\alpha_t}$ , where  $p_1 < \cdots < p_t$  are primes and  $\alpha_i$  are positive integers for i = 1, ..., t. Let  $y = p_t$ . Since

$$y^k = p_t^k \leqslant \beta_k(n) \leqslant n \leqslant x,$$

we get that  $k \leq \log x / \log y$ . Moreover, note that each one of the relations

$$p_1^j + p_2^j + \dots + p_t^j - \beta_j(n) = 0$$

provides a solution to the equation

$$x_1 + x_2 + \dots + x_{t+1} = 0 \tag{7}$$

in unknowns  $x_1, \ldots, x_{t+1}$  which are integers all the prime factors of which are contained in the set  $\{p_1, \ldots, p_t\}$  and  $gcd(x_1, \ldots, x_{t+1}) = 1$ . Furthermore,  $t + 1 \ge 3$ , and  $x_i > 0$  for all  $i = 1, \ldots, t$ , implying that all such solutions are *non-degenerate* in the sense that  $\sum_{i \in I} x_i \ne 0$  if I is any proper subset of  $\{1, 2, \ldots, t\}$ . A result of Evertse [3] shows that the total number of such solutions of (7) does not exceed

$$(2^{35}(t+1)^2)^{(t+1)^4}$$

from which it follows that

$$k \leqslant \left(2^{35}(t+1)^2\right)^{(t+1)^4}.$$
(8)

Assume first that  $y \leq (\log \log x)^{1/4}$ . Then since  $t \leq \pi(y)$ , estimate (8) on the size of k shows that

$$k \leq \exp(\operatorname{O}(t^4 \log t)) = \exp(\operatorname{O}(\pi(y)^4 \log \pi(y))) = \exp(\operatorname{o}(y^4)) = (\log x)^{\operatorname{o}(1)} \ (x \to \infty),$$

allowing us to conclude that, in this case,  $k < (\log x)/(4 \log \log \log x)$  for all sufficiently large x. On the other hand, if  $y > (\log \log x)^{1/4}$ , then  $k < (\log x)/(\log y) < (\log x)/(4 \log \log \log x)$ , thereby covering the other case.

# 6. Numerical data

For each positive integer k, let  $\tilde{n_k}$  be the smallest positive integer n with  $\omega(n) \ge 2$  and such that  $\beta_j(n) \mid n$  for j = 1, 2, ..., k.

In the following table, we give the values of  $\tilde{n_1}$ ,  $\tilde{n_2}$  and  $\tilde{n_3}$ , and also what we believe to be the values of  $\tilde{n_4}$  and  $\tilde{n_5}$ .

| k | $n = \widetilde{n_k}$                                                                                               | $\beta_i(n)$                                                                |
|---|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 1 | $30 = 2 \cdot 3 \cdot 5$                                                                                            | $\beta_1(n) = 10 = 2 \cdot 5$                                               |
| 2 | $99528 = 2^3 \cdot 3 \cdot 11 \cdot 13 \cdot 29$                                                                    | $\beta_1(n) = 58 = 2 \cdot 29$                                              |
|   |                                                                                                                     | $\beta_2(n) = 1144 = 2^3 \cdot 11 \cdot 13$                                 |
| 3 | $12192180 = 2^2 \cdot 3 \cdot 5 \cdot 7^2 \cdot 11 \cdot 13 \cdot 29$                                               | $\beta_1(n) = 70 = 2 \cdot 5 \cdot 7$                                       |
|   |                                                                                                                     | $\beta_2(n) = 1218 = 2 \cdot 3 \cdot 7 \cdot 29$                            |
|   |                                                                                                                     | $\beta_3(n) = 28420 = 2^2 \cdot 5 \cdot 7^2 \cdot 29$                       |
| 4 | $\widetilde{n_4} \leqslant n = 2078479331940068525081053440$                                                        | $\beta_1(n) = 2 \cdot 3^3 \cdot 11$                                         |
|   | $= 2^8 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 31 \cdot 37$                             | $\beta_2(n) = 2^2 \cdot 7 \cdot 17 \cdot 71$                                |
|   | $\cdot 41^2 \cdot 47 \cdot 53 \cdot 61 \cdot 71 \cdot 83 \cdot 89$                                                  | $\beta_3(n) = 2^3 \cdot 3 \cdot 31 \cdot 37 \cdot 83$                       |
|   | (a 28-digit number)                                                                                                 | $\beta_4(n) = 2^8 \cdot 17 \cdot 23 \cdot 41^2$                             |
| 5 | $\widetilde{n_5} \leqslant n = 2^4 \cdot 3 \cdot 5 \cdot 7^4 \cdot 11 \cdot 13 \cdot 23 \cdot 29 \cdot 31 \cdot 41$ | $\beta_1(n) = 2 \cdot 13 \cdot 137$                                         |
|   | $\cdot 43 \cdot 47 \cdot 53 \cdot 67 \cdot 73 \cdot 79 \cdot 83 \cdot 89 \cdot 97$                                  | $\beta_2(n) = 2^3 \cdot 3 \cdot 7 \cdot 41 \cdot 73$                        |
|   | $\cdot 101 \cdot 103 \cdot 107 \cdot 109 \cdot 113 \cdot 127 \cdot 131$                                             | $\beta_3(n) = 2^4 \cdot 7^4 \cdot 13 \cdot 163$                             |
|   | $\cdot 137 \cdot 151 \cdot 163 \cdot 167 \cdot 173 \cdot 179$                                                       | $\beta_4(n) = 2^2 \cdot 3 \cdot 7 \cdot 47 \cdot 109 \cdot 173 \cdot 191$   |
|   | $\cdot181\cdot191\cdot199\cdot211\cdot223$                                                                          | $\beta_5(n) = 2^3 \cdot 11 \cdot 89 \cdot 97 \cdot 127 \cdot 151 \cdot 179$ |
|   | (a 70-digit number)                                                                                                 |                                                                             |

## Acknowledgments

This work was done in April of 2006, while the second author was in residence at the Centre de recherches mathématiques in Montréal for the thematic year *Analysis and Number Theory*. This author thanks the organizers for the opportunity of participating in this program. He was also supported in part by Grants SEP-CONACyT 46755, PAPIIT IN104505 and a Guggenheim Fellowship. The first author was supported in part by a grant from NSERC. The authors would also like to thank Moubariz Garaev for pointing out some key references.

#### References

- [1] G.I. Arkhipov, V.N. Chubarikov, On the number of summands in Vinogradov's additive problem and its generalizations, in: IV International Conference "Modern Problems of Number Theory and its Applications": Current Problems, Part I, Tula, 2001, Mosk. Gos. Univ. im. Lomonosova, Mekh.-Mat. Fak., Moscow, 2002, pp. 5–38 (Russian).
- [2] J.M. De Koninck, F. Luca, Integers divisible by the sum of their prime factors, Mathematika 52 (2005) 69–77.
- [3] J.-H. Evertse, The number of solutions of decomposable form equations, Invent. Math. 122 (1995) 559-601.
- [4] L.K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monogr., vol. 13, American Mathematical Society, Providence, RI, 1965.