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Abstract

For each positive integer j , let βj (n) := ∑
p|n pj . Given a fixed positive integer k, we show that there

are infinitely many positive integers n having at least two distinct prime factors and such that βj (n) | n for
each j ∈ {1,2, . . . , k}.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

Recently, the authors [2] estimated the counting function B(x) of the set of integers n � x

which are not prime powers and which are divisible by the sum of their prime factors. They
showed that, for x sufficiently large, there exist positive constants c1 and c2 such that

x exp
{−c1

(
1 + o(1)

)
�(x)

}
< B(x) < x exp

{−c2
(
1 + o(1)

)
�(x)

}
,

where �(x) := √
logx log logx.

In this paper, we consider a smaller set. Indeed, for each positive integer j , let βj (n) :=∑
p|n pj . Given an integer k � 2, we are interested in the set of positive integers n having at
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least two distinct prime factors and such that βj (n) | n for each j ∈ {1,2, . . . , k}. We have the
following result.

Theorem 1. For any positive integer k, there exist infinitely many positive integers n which are
not prime powers and such that βj (n) | n for all j = 1, . . . , k.

Let k be a large positive integer and set s = k3. Throughout, ε > 0 is a small real number
which depends on k. We use the Landau symbols O and o as well as the Vinogradov symbols �
and � with their usual meanings. The constants and convergence implied by them might depend
on k and ε.

2. Preliminary results

The following theorem can be easily deduced from Theorem 16 in Hua’s book [4], p. 139.

Theorem A (Hua). Given an integer k � 2, let s be an integer which is � s0, where s0 is defined
according to the following table:

k 2 3 4 5 6 7 8 9 10 � 11

s0 7 19 49 113 243 417 675 1083 1773 2k2(3 logk + log logk + 4) − 21

Let N1 < · · · < Nk be positive integers and let also I (N1, . . . ,Nk) be the set of prime solutions
p1, . . . , ps of the system of equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1 + p2 + · · · + ps = N1,

p2
1 + p2

2 + · · · + p2
s = N2,

...

pk
1 + pk

2 + · · · + pk
s = Nk.

(1)

Set P = N
1/k
k . Then

#I (N1, . . . ,Nk) = b1P
s− 1

2 k(k+1)G(N1, . . . ,Nk)

(logP)s
+ O

(
P s− 1

2 k(k+1)

(logP)s+1
log logP

)
,

where b1 = b1(N1, . . . ,Nk) is a non negative constant encoding the solvability in positive real
numbers of system (1) and G(N1, . . . ,Nk), called the singular series, encodes the condition of
congruence solvability of system (1) (these quantities being given explicitly on pp. 139 and 140
of Hua’s book [4]).

In what follows, we will give some sufficient conditions on the parameters N1, . . . ,Nk which,
using Theorem A, will ensure that system (1) admits solutions in prime numbers which further-
more are in appropriate arithmetic progressions.
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3. The condition of positive solvability

For j = 1,2, . . . , s, let

cj :=
s∑

i=1

1

ij
.

For a large positive real number X and an arbitrarily small ε > 0, let Ij,ε(X) be the open
interval

Ij,ε(X) := (
cjX

j (1 − ε), cjX
j (1 + ε)

)
, k = 1,2, . . . , s.

Moreover, for j = 1,2, . . . , s, let Nj ∈ Ij,ε(X) be positive integers and set

δj := Nj

Xj
, k = 1,2, . . . , s,

and observe that δj − cj = O(ε) for k = 1,2, . . . , s.
The argument on p. 159 in Hua’s book [4] shows that if we consider the equations

X� = x�
1 + · · · + x�

s − δ� = 0, 0 � xν � 1, ν = 1, . . . , s, 1 � � � k,

where the xν ’s are distinct real numbers, then

b1 =
1∫

0

. . .

1∫
0

0�x��1, X�=0

dxk+1 · · ·dxs

k!∏1�i<j�k |xi − xj | ,

where the index � runs in the set 1, . . . , k.
Note that, by continuity and from the way we have chosen the integers N1, . . . ,Nk , there

exists a constant C1 depending on k, such that, for every

(xk+1, . . . , xs) ∈
(

1

k + 1
(1 − C1ε),

1

k + 1
(1 + C1ε)

)
× · · · ×

(
1

s
(1 − C1ε),

1

s
(1 + C1ε)

)
,

there exists (x1, . . . , xk) ∈ (1 − ε,1 + ε)× ( 1
2 (1 − ε), 1

2 (1 + ε))×· · ·× ( 1
k
(1 − ε), 1

k
(1 + ε)) such

that Xj = 0 for j = 1,2, . . . , k.
The above argument now easily implies that there exists a positive constant C2 depending

only k such that if ε is sufficiently small, say 0 < ε < ε0(k), then

b1 � b′
1,ε :=

∫
Ik+1,C1ε(1)

. . .

∫
Is,C1ε(1)

dxk+1 · · ·dxs

k!∏ |xi − xj | > C2ε
s.

Note that the above lower bound does not depend on X.
Note also that our choice of parameters implies that the real solutions encoded in the multiple

integral representing b′
1,ε are of the form (x1, . . . , xs) with xi and xj being “far apart”, because

xj/x1 = 1/j × (1 + O(ε)) for j = 1,2, . . . , s.
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4. Singular series

Given an integer k � 2, let

M =
∏

p�k2k

pk3
. (2)

Assume that � is a positive integer depending on k such that the system of congruences⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 + y2 + · · · + yk ≡ N1 − (s − k) (modp�),

y2
1 + y2

2 + · · · + y2
k ≡ N2 − (s − k) (modp�),

...
...

yk
1 + yk

2 + · · · + yk
k ≡ Nk − (s − k) (modp�),

(3)

with 1 � yj � p� − 1, p 	 |yj for j = 1,2, . . . , k, and furthermore p�‖∏
1�i<j�k(yi − yj ), ad-

mits at least one solution (y1, . . . , yk) for all p | M . Then the argument from Section 11.3 of
Hua’s book [4] shows that G(N1, . . . ,Nk) is bounded below by a constant C3 depending only
on k. Furthermore, note that under our assumptions, the primes pi for i = k + 1, . . . , s, may be
assumed to be congruent to 1 modulo M .

Now, for each prime divisor p of M and each positive integer j � k, let aj,p = 1 + pj .
Moreover, let nj ∈ {0, . . . ,M − 1} be the congruence class modulo M such that

nj ≡ s − k +
k∑

i=1

a
j
i,p (modpk3

) for all j = 1, . . . , k, and p | M. (4)

Note that these exist and are unique by the Chinese Remainder Theorem.
We note that if Nj ≡ nj (modM), the system (3) admits the solution yi ≡ ai,p (modp�) for

i = 1, . . . , k, and that the exact order at which p appears in
∏

1�i<j�k(ai,p − aj,p) is precisely

k(k2 − 1)/6. This allows us to take � = k(k2 − 1)/6.
To summarize the result obtained so far and using the notation introduced in this section, we

have established the following theorem.

Theorem 2. Let k be large, s = k3 and ε = ε(k) > 0 be sufficiently small. Assume that X is large
and N1, . . . ,Nk are positive integers in the intervals I1,ε(X), . . . , Ik,ε(X), which also satisfy
Nj ≡ nj (modM) for j = 1, . . . , k. Then there exists a positive constant C4, depending on k but
not on ε, such that if X is sufficiently large, depending on the choice of both k and ε, the system
of equations (1) admits a prime solution p1, . . . , ps such that pi ≡ 1 (modM) for i = 1, . . . , s,
and furthermore |pj/p1 − 1/j | < C4ε for j = 1, . . . , s.

We shall now be using the powerful Theorem 2 to prove Theorem 1.

Proof of Theorem 1. Let M be as in (2) and again let s = k3. Let bj be a positive integer with
2M − nj + 1 + 2(−1)j−1 prime factors all congruent to 1 modulo M for all j = 1, . . . , k, where
the nj ’s are the ones appearing in (4). Furthermore, let ε > 0 be small and assume that

b
j ∈ Ij,ε(b1/c1), j = 1,2, . . . , k. (5)
j
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It is easy to see that such numbers exist provided b1 is chosen sufficiently large with respect to k

and ε.
Choose a number m of the form m = pq , where both p and q are congruent to −1 modulo M

and moreover p − q = O(p/ logp). Assume furthermore that p ∈ [√b1,2
√

b1 ]. It is clear that
such primes p and q exist if b1 is large enough. Now let

Nj := b
j
j · mj − βj

(
b

j
j · mj

)
, j = 1,2, . . . , k (6)

and observe that

Nj ≡ 1 − 2(−1)j − ω(bj ) ≡ nj (modM), j = 1,2, . . . , k.

Here, ω(n) stands for the number of distinct prime factors of n.
Furthermore, observe that in light of (6), m = N1/b1(1 + O(ε)), and also that, in light of (5),

(bj c1)
j /(cj b

j

1) = 1 + O(ε). Hence it follows from (6) that, by choosing X = N1/c1,

Nj = b
j
j m

j

(
1 + O

(
1

Xj/2

))
= b

j
j c

j

1

b
j

1

Xj

(
1 + O

(
ε + 1

X1/2

))
= cjX

j
(
1 + O

(
ε + X−1/2))

holds for j = 1, . . . , k, as X becomes large. From Theorem 2, it follows that if ε is sufficiently
small and X is large enough, then there exist prime numbers p1, . . . , ps such that Nj = ∑s

i=1 p
j
i

and such that also pi ≡ 1 (modM) for all i = 1, . . . , s, and pi � X for all i = 1, . . . , s.
Since the prime factors of m are congruent to −1 modulo M , it follows that pi � m for i =

1, . . . , s and also that if X is sufficiently large, then pi � bj for all i = 1, . . . , s and j = 1, . . . , k.
Finally, observing that the number

n =
k∏

j=1

b
j
j · mk ·

s∏
i=1

pi

satisfies βj (n) | n for all j = 1, . . . , k, Theorem 1 is proved. �
5. Further remarks

In Hua’s book [4], page 157, it is shown that one may choose s � k2 logk once the arithmetic
conditions and the conditions for positive solvability are satisfied. We only took k large and
s = k3, so that the above inequality is clearly met. Note that there is recent work by Arkhipov
and Chubarikov [1] in which they improve somewhat upon Hua’s work.

Now let

κ(x) = max
{
k � 1: βj (n) | n for all j = 1, . . . , k for some n � x with ω(n) � 2

}
.

Our Theorem 1 shows that κ(x) → ∞ as x → ∞. One may inquire about the growth rate of κ(x).
A lower bound on κ(x) could be deduced from the proofs of our Theorems 1 and 2 provided that
the constants in Theorem A are made explicit. A trivial upper bound is κ(x) < (logx)/(log 3)
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and follows by observing that if n � x is such that βk(n) | n for k = κ(x) then, since ω(n) � 2,
we have

3k < βk(n) � n � x,

so that k < (logx)/(log 3). In this section, we give a nontrivial upper bound for κ(x).

Theorem 3. The estimate κ(x) � (logx)/(4 log log logx) holds for all sufficiently large x.

Proof. Let x be large, put k = κ(x) and let n � x with ω(n) � 2 be such that βj (n) | n for
j = 1, . . . , k. Let n = p

α1
1 · · ·pαt

t , where p1 < · · · < pt are primes and αi are positive integers for
i = 1, . . . , t . Let y = pt . Since

yk = pk
t � βk(n) � n � x,

we get that k � logx/ logy. Moreover, note that each one of the relations

p
j

1 + p
j

2 + · · · + p
j
t − βj (n) = 0

provides a solution to the equation

x1 + x2 + · · · + xt+1 = 0 (7)

in unknowns x1, . . . , xt+1 which are integers all the prime factors of which are contained in
the set {p1, . . . , pt } and gcd(x1, . . . , xt+1) = 1. Furthermore, t + 1 � 3, and xi > 0 for all i =
1, . . . , t , implying that all such solutions are non-degenerate in the sense that

∑
i∈I xi 	= 0 if I

is any proper subset of {1,2, . . . , t}. A result of Evertse [3] shows that the total number of such
solutions of (7) does not exceed

(
235(t + 1)2)(t+1)4

,

from which it follows that

k �
(
235(t + 1)2)(t+1)4

. (8)

Assume first that y � (log logx)1/4. Then since t � π(y), estimate (8) on the size of k shows
that

k � exp
(
O(t4 log t)

) = exp
(
O

(
π(y)4 logπ(y)

)) = exp
(
o(y4)

) = (logx)o(1) (x → ∞),

allowing us to conclude that, in this case, k < (logx)/(4 log log logx) for all sufficiently large x.
On the other hand, if y > (log logx)1/4, then k < (logx)/(logy) < (logx)/(4 log log logx),
thereby covering the other case.
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6. Numerical data

For each positive integer k, let ñk be the smallest positive integer n with ω(n) � 2 and such
that βj (n) | n for j = 1,2, . . . , k.

In the following table, we give the values of ñ1, ñ2 and ñ3, and also what we believe to be the
values of ñ4 and ñ5.

k n = ñk βi(n)

1 30 = 2 · 3 · 5 β1(n) = 10 = 2 · 5

2 99528 = 23 · 3 · 11 · 13 · 29 β1(n) = 58 = 2 · 29
β2(n) = 1144 = 23 · 11 · 13

3 12192180 = 22 · 3 · 5 · 72 · 11 · 13 · 29 β1(n) = 70 = 2 · 5 · 7
β2(n) = 1218 = 2 · 3 · 7 · 29
β3(n) = 28420 = 22 · 5 · 72 · 29

4 ñ4 � n = 2078479331940068525081053440 β1(n) = 2 · 33 · 11
= 28 · 33 · 5 · 7 · 11 · 13 · 17 · 23 · 31 · 37 β2(n) = 22 · 7 · 17 · 71

·412 · 47 · 53 · 61 · 71 · 83 · 89 β3(n) = 23 · 3 · 31 · 37 · 83
(a 28-digit number) β4(n) = 28 · 17 · 23 · 412

5 ñ5 � n = 24 · 3 · 5 · 74 · 11 · 13 · 23 · 29 · 31 · 41 β1(n) = 2 · 13 · 137
·43 · 47 · 53 · 67 · 73 · 79 · 83 · 89 · 97 β2(n) = 23 · 3 · 7 · 41 · 73
·101 · 103 · 107 · 109 · 113 · 127 · 131 β3(n) = 24 · 74 · 13 · 163
·137 · 151 · 163 · 167 · 173 · 179 β4(n) = 22 · 3 · 7 · 47 · 109 · 173 · 191
·181 · 191 · 199 · 211 · 223 β5(n) = 23 · 11 · 89 · 97 · 127 · 151 · 179

(a 70-digit number)
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