Integers divisible by sums of powers of their prime factors

Jean-Marie De Koninck ${ }^{\text {a,* }}$, Florian Luca ${ }^{\text {b }}$
${ }^{\text {a }}$ Département de Mathématiques, Université Laval, Québec G1K 7P4, Canada
${ }^{\text {b }}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ap. Postal 61-3 (Xangari), C.P. 58089, Morelia, Michoacán, Mexico
Received 15 May 2006
Available online 23 March 2007
Communicated by C. Pomerance

Abstract

For each positive integer j, let $\beta_{j}(n):=\sum_{p \mid n} p^{j}$. Given a fixed positive integer k, we show that there are infinitely many positive integers n having at least two distinct prime factors and such that $\beta_{j}(n) \mid n$ for each $j \in\{1,2, \ldots, k\}$. © 2007 Elsevier Inc. All rights reserved.

1. Introduction

Recently, the authors [2] estimated the counting function $B(x)$ of the set of integers $n \leqslant x$ which are not prime powers and which are divisible by the sum of their prime factors. They showed that, for x sufficiently large, there exist positive constants c_{1} and c_{2} such that

$$
x \exp \left\{-c_{1}(1+\mathrm{o}(1)) \ell(x)\right\}<B(x)<x \exp \left\{-c_{2}(1+\mathrm{o}(1)) \ell(x)\right\},
$$

where $\ell(x):=\sqrt{\log x \log \log x}$.
In this paper, we consider a smaller set. Indeed, for each positive integer j, let $\beta_{j}(n):=$ $\sum_{p \mid n} p^{j}$. Given an integer $k \geqslant 2$, we are interested in the set of positive integers n having at

[^0]least two distinct prime factors and such that $\beta_{j}(n) \mid n$ for each $j \in\{1,2, \ldots, k\}$. We have the following result.

Theorem 1. For any positive integer k, there exist infinitely many positive integers n which are not prime powers and such that $\beta_{j}(n) \mid n$ for all $j=1, \ldots, k$.

Let k be a large positive integer and set $s=k^{3}$. Throughout, $\varepsilon>0$ is a small real number which depends on k. We use the Landau symbols O and o as well as the Vinogradov symbols \ll and \gg with their usual meanings. The constants and convergence implied by them might depend on k and ε.

2. Preliminary results

The following theorem can be easily deduced from Theorem 16 in Hua's book [4], p. 139.

Theorem A (Hua). Given an integer $k \geqslant 2$, let s be an integer which is $\geqslant s_{0}$, where s_{0} is defined according to the following table:

k	2	3	4	5	6	7	8	9	10	$\geqslant 11$
s_{0}	7	19	49	113	243	417	675	1083	1773	$2 k^{2}(3 \log k+\log \log k+4)-21$

Let $N_{1}<\cdots<N_{k}$ be positive integers and let also $I\left(N_{1}, \ldots, N_{k}\right)$ be the set of prime solutions p_{1}, \ldots, p_{s} of the system of equations

$$
\left\{\begin{array}{l}
p_{1}+p_{2}+\cdots+p_{s}=N_{1} \tag{1}\\
p_{1}^{2}+p_{2}^{2}+\cdots+p_{s}^{2}=N_{2} \\
\vdots \\
p_{1}^{k}+p_{2}^{k}+\cdots+p_{s}^{k}=N_{k}
\end{array}\right.
$$

Set $P=N_{k}^{1 / k}$. Then

$$
\# I\left(N_{1}, \ldots, N_{k}\right)=\frac{b_{1} P^{s-\frac{1}{2} k(k+1)} \mathcal{G}\left(N_{1}, \ldots, N_{k}\right)}{(\log P)^{s}}+\mathrm{O}\left(\frac{P^{s-\frac{1}{2} k(k+1)}}{(\log P)^{s+1}} \log \log P\right)
$$

where $b_{1}=b_{1}\left(N_{1}, \ldots, N_{k}\right)$ is a non negative constant encoding the solvability in positive real numbers of system (1) and $\mathcal{G}\left(N_{1}, \ldots, N_{k}\right)$, called the singular series, encodes the condition of congruence solvability of system (1) (these quantities being given explicitly on pp. 139 and 140 of Hua's book [4]).

In what follows, we will give some sufficient conditions on the parameters N_{1}, \ldots, N_{k} which, using Theorem A, will ensure that system (1) admits solutions in prime numbers which furthermore are in appropriate arithmetic progressions.

3. The condition of positive solvability

For $j=1,2, \ldots, s$, let

$$
c_{j}:=\sum_{i=1}^{s} \frac{1}{i^{j}} .
$$

For a large positive real number X and an arbitrarily small $\varepsilon>0$, let $I_{j, \varepsilon}(X)$ be the open interval

$$
I_{j, \varepsilon}(X):=\left(c_{j} X^{j}(1-\varepsilon), c_{j} X^{j}(1+\varepsilon)\right), \quad k=1,2, \ldots, s
$$

Moreover, for $j=1,2, \ldots, s$, let $N_{j} \in I_{j, \varepsilon}(X)$ be positive integers and set

$$
\delta_{j}:=\frac{N_{j}}{X^{j}}, \quad k=1,2, \ldots, s
$$

and observe that $\delta_{j}-c_{j}=\mathrm{O}(\varepsilon)$ for $k=1,2, \ldots, s$.
The argument on p. 159 in Hua's book [4] shows that if we consider the equations

$$
X_{\ell}=x_{1}^{\ell}+\cdots+x_{s}^{\ell}-\delta_{\ell}=0, \quad 0 \leqslant x_{v} \leqslant 1, v=1, \ldots, s, 1 \leqslant \ell \leqslant k
$$

where the x_{v} 's are distinct real numbers, then

$$
b_{1}=\int_{\substack{0 \\ 0 \leqslant x_{\ell} \leqslant 1, 0}}^{1} \ldots \int_{\ell}^{1} \frac{d x_{k+1} \cdots d x_{s}}{k!\prod_{1 \leqslant i<j \leqslant k}\left|x_{i}-x_{j}\right|},
$$

where the index ℓ runs in the set $1, \ldots, k$.
Note that, by continuity and from the way we have chosen the integers N_{1}, \ldots, N_{k}, there exists a constant C_{1} depending on k, such that, for every

$$
\left(x_{k+1}, \ldots, x_{s}\right) \in\left(\frac{1}{k+1}\left(1-C_{1} \varepsilon\right), \frac{1}{k+1}\left(1+C_{1} \varepsilon\right)\right) \times \cdots \times\left(\frac{1}{s}\left(1-C_{1} \varepsilon\right), \frac{1}{s}\left(1+C_{1} \varepsilon\right)\right),
$$

there exists $\left(x_{1}, \ldots, x_{k}\right) \in(1-\varepsilon, 1+\varepsilon) \times\left(\frac{1}{2}(1-\varepsilon), \frac{1}{2}(1+\varepsilon)\right) \times \cdots \times\left(\frac{1}{k}(1-\varepsilon), \frac{1}{k}(1+\varepsilon)\right)$ such that $X_{j}=0$ for $j=1,2, \ldots, k$.

The above argument now easily implies that there exists a positive constant C_{2} depending only k such that if ε is sufficiently small, say $0<\varepsilon<\varepsilon_{0}(k)$, then

$$
b_{1} \geqslant b_{1, \varepsilon}^{\prime}:=\int_{I_{k+1}, C_{1} \varepsilon} \ldots \int_{I_{s, C_{1} \varepsilon}(1)} \frac{d x_{k+1} \cdots d x_{s}}{k!\prod\left|x_{i}-x_{j}\right|}>C_{2} \varepsilon^{s}
$$

Note that the above lower bound does not depend on X.
Note also that our choice of parameters implies that the real solutions encoded in the multiple integral representing $b_{1, \varepsilon}^{\prime}$ are of the form $\left(x_{1}, \ldots, x_{s}\right)$ with x_{i} and x_{j} being "far apart", because $x_{j} / x_{1}=1 / j \times(1+\mathrm{O}(\varepsilon))$ for $j=1,2, \ldots, s$.

4. Singular series

Given an integer $k \geqslant 2$, let

$$
\begin{equation*}
M=\prod_{p \leqslant k^{2 k}} p^{k^{3}} \tag{2}
\end{equation*}
$$

Assume that ℓ is a positive integer depending on k such that the system of congruences

$$
\left\{\begin{array}{c}
y_{1}+y_{2}+\cdots+y_{k} \equiv N_{1}-(s-k)\left(\bmod p^{\ell}\right) \tag{3}\\
y_{1}^{2}+y_{2}^{2}+\cdots+y_{k}^{2} \equiv N_{2}-(s-k)\left(\bmod p^{\ell}\right) \\
\vdots \\
y_{1}^{k}+y_{2}^{k}+\cdots+y_{k}^{k} \equiv N_{k}-(s-k)\left(\bmod p^{\ell}\right)
\end{array}\right.
$$

with $1 \leqslant y_{j} \leqslant p^{\ell}-1, p \nmid y_{j}$ for $j=1,2, \ldots, k$, and furthermore $p^{\ell} \| \prod_{1 \leqslant i<j \leqslant k}\left(y_{i}-y_{j}\right)$, admits at least one solution $\left(y_{1}, \ldots, y_{k}\right)$ for all $p \mid M$. Then the argument from Section 11.3 of Hua's book [4] shows that $\mathcal{G}\left(N_{1}, \ldots, N_{k}\right)$ is bounded below by a constant C_{3} depending only on k. Furthermore, note that under our assumptions, the primes p_{i} for $i=k+1, \ldots, s$, may be assumed to be congruent to 1 modulo M.

Now, for each prime divisor p of M and each positive integer $j \leqslant k$, let $a_{j, p}=1+p^{j}$. Moreover, let $n_{j} \in\{0, \ldots, M-1\}$ be the congruence class modulo M such that

$$
\begin{equation*}
n_{j} \equiv s-k+\sum_{i=1}^{k} a_{i, p}^{j}\left(\bmod p^{k^{3}}\right) \quad \text { for all } j=1, \ldots, k, \text { and } p \mid M \tag{4}
\end{equation*}
$$

Note that these exist and are unique by the Chinese Remainder Theorem.
We note that if $N_{j} \equiv n_{j}(\bmod M)$, the system (3) admits the solution $y_{i} \equiv a_{i, p}\left(\bmod p^{\ell}\right)$ for $i=1, \ldots, k$, and that the exact order at which p appears in $\prod_{1 \leqslant i<j \leqslant k}\left(a_{i, p}-a_{j, p}\right)$ is precisely $k\left(k^{2}-1\right) / 6$. This allows us to take $\ell=k\left(k^{2}-1\right) / 6$.

To summarize the result obtained so far and using the notation introduced in this section, we have established the following theorem.

Theorem 2. Let k be large, $s=k^{3}$ and $\varepsilon=\varepsilon(k)>0$ be sufficiently small. Assume that X is large and N_{1}, \ldots, N_{k} are positive integers in the intervals $I_{1, \varepsilon}(X), \ldots, I_{k, \varepsilon}(X)$, which also satisfy $N_{j} \equiv n_{j}(\bmod M)$ for $j=1, \ldots, k$. Then there exists a positive constant C_{4}, depending on k but not on ε, such that if X is sufficiently large, depending on the choice of both k and ε, the system of equations (1) admits a prime solution p_{1}, \ldots, p_{s} such that $p_{i} \equiv 1(\bmod M)$ for $i=1, \ldots, s$, and furthermore $\left|p_{j} / p_{1}-1 / j\right|<C_{4} \varepsilon$ for $j=1, \ldots, s$.

We shall now be using the powerful Theorem 2 to prove Theorem 1.
Proof of Theorem 1. Let M be as in (2) and again let $s=k^{3}$. Let b_{j} be a positive integer with $2 M-n_{j}+1+2(-1)^{j-1}$ prime factors all congruent to 1 modulo M for all $j=1, \ldots, k$, where the n_{j} 's are the ones appearing in (4). Furthermore, let $\varepsilon>0$ be small and assume that

$$
\begin{equation*}
b_{j}^{j} \in I_{j, \varepsilon}\left(b_{1} / c_{1}\right), \quad j=1,2, \ldots, k \tag{5}
\end{equation*}
$$

It is easy to see that such numbers exist provided b_{1} is chosen sufficiently large with respect to k and ε.

Choose a number m of the form $m=p q$, where both p and q are congruent to -1 modulo M and moreover $p-q=\mathrm{O}(p / \log p)$. Assume furthermore that $p \in\left[\sqrt{b_{1}}, 2 \sqrt{b_{1}}\right]$. It is clear that such primes p and q exist if b_{1} is large enough. Now let

$$
\begin{equation*}
N_{j}:=b_{j}^{j} \cdot m^{j}-\beta_{j}\left(b_{j}^{j} \cdot m^{j}\right), \quad j=1,2, \ldots, k \tag{6}
\end{equation*}
$$

and observe that

$$
N_{j} \equiv 1-2(-1)^{j}-\omega\left(b_{j}\right) \equiv n_{j}(\bmod M), \quad j=1,2, \ldots, k
$$

Here, $\omega(n)$ stands for the number of distinct prime factors of n.
Furthermore, observe that in light of (6), $m=N_{1} / b_{1}(1+\mathrm{O}(\varepsilon))$, and also that, in light of (5), $\left(b_{j} c_{1}\right)^{j} /\left(c_{j} b_{1}^{j}\right)=1+\mathrm{O}(\varepsilon)$. Hence it follows from (6) that, by choosing $X=N_{1} / c_{1}$,

$$
N_{j}=b_{j}^{j} m^{j}\left(1+\mathrm{O}\left(\frac{1}{X^{j / 2}}\right)\right)=\frac{b_{j}^{j} c_{1}^{j}}{b_{1}^{j}} X^{j}\left(1+\mathrm{O}\left(\varepsilon+\frac{1}{X^{1 / 2}}\right)\right)=c_{j} X^{j}\left(1+\mathrm{O}\left(\varepsilon+X^{-1 / 2}\right)\right)
$$

holds for $j=1, \ldots, k$, as X becomes large. From Theorem 2 , it follows that if ε is sufficiently small and X is large enough, then there exist prime numbers p_{1}, \ldots, p_{s} such that $N_{j}=\sum_{i=1}^{s} p_{i}^{j}$ and such that also $p_{i} \equiv 1(\bmod M)$ for all $i=1, \ldots, s$, and $p_{i} \gg X$ for all $i=1, \ldots, s$.

Since the prime factors of m are congruent to -1 modulo M, it follows that $p_{i} \nmid m$ for $i=$ $1, \ldots, s$ and also that if X is sufficiently large, then $p_{i} \nmid b_{j}$ for all $i=1, \ldots, s$ and $j=1, \ldots, k$.

Finally, observing that the number

$$
n=\prod_{j=1}^{k} b_{j}^{j} \cdot m^{k} \cdot \prod_{i=1}^{s} p_{i}
$$

satisfies $\beta_{j}(n) \mid n$ for all $j=1, \ldots, k$, Theorem 1 is proved.

5. Further remarks

In Hua's book [4], page 157, it is shown that one may choose $s \gg k^{2} \log k$ once the arithmetic conditions and the conditions for positive solvability are satisfied. We only took k large and $s=k^{3}$, so that the above inequality is clearly met. Note that there is recent work by Arkhipov and Chubarikov [1] in which they improve somewhat upon Hua's work.

Now let

$$
\kappa(x)=\max \left\{k \geqslant 1: \beta_{j}(n) \mid n \text { for all } j=1, \ldots, k \text { for some } n \leqslant x \text { with } \omega(n) \geqslant 2\right\} .
$$

Our Theorem 1 shows that $\kappa(x) \rightarrow \infty$ as $x \rightarrow \infty$. One may inquire about the growth rate of $\kappa(x)$. A lower bound on $\kappa(x)$ could be deduced from the proofs of our Theorems 1 and 2 provided that the constants in Theorem A are made explicit. A trivial upper bound is $\kappa(x)<(\log x) /(\log 3)$
and follows by observing that if $n \leqslant x$ is such that $\beta_{k}(n) \mid n$ for $k=\kappa(x)$ then, since $\omega(n) \geqslant 2$, we have

$$
3^{k}<\beta_{k}(n) \leqslant n \leqslant x
$$

so that $k<(\log x) /(\log 3)$. In this section, we give a nontrivial upper bound for $\kappa(x)$.
Theorem 3. The estimate $\kappa(x) \leqslant(\log x) /(4 \log \log \log x)$ holds for all sufficiently large x.
Proof. Let x be large, put $k=\kappa(x)$ and let $n \leqslant x$ with $\omega(n) \geqslant 2$ be such that $\beta_{j}(n) \mid n$ for $j=1, \ldots, k$. Let $n=p_{1}^{\alpha_{1}} \cdots p_{t}^{\alpha_{t}}$, where $p_{1}<\cdots<p_{t}$ are primes and α_{i} are positive integers for $i=1, \ldots, t$. Let $y=p_{t}$. Since

$$
y^{k}=p_{t}^{k} \leqslant \beta_{k}(n) \leqslant n \leqslant x
$$

we get that $k \leqslant \log x / \log y$. Moreover, note that each one of the relations

$$
p_{1}^{j}+p_{2}^{j}+\cdots+p_{t}^{j}-\beta_{j}(n)=0
$$

provides a solution to the equation

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{t+1}=0 \tag{7}
\end{equation*}
$$

in unknowns x_{1}, \ldots, x_{t+1} which are integers all the prime factors of which are contained in the set $\left\{p_{1}, \ldots, p_{t}\right\}$ and $\operatorname{gcd}\left(x_{1}, \ldots, x_{t+1}\right)=1$. Furthermore, $t+1 \geqslant 3$, and $x_{i}>0$ for all $i=$ $1, \ldots, t$, implying that all such solutions are non-degenerate in the sense that $\sum_{i \in I} x_{i} \neq 0$ if I is any proper subset of $\{1,2, \ldots, t\}$. A result of Evertse [3] shows that the total number of such solutions of (7) does not exceed

$$
\left(2^{35}(t+1)^{2}\right)^{(t+1)^{4}}
$$

from which it follows that

$$
\begin{equation*}
k \leqslant\left(2^{35}(t+1)^{2}\right)^{(t+1)^{4}} \tag{8}
\end{equation*}
$$

Assume first that $y \leqslant(\log \log x)^{1 / 4}$. Then since $t \leqslant \pi(y)$, estimate (8) on the size of k shows that

$$
k \leqslant \exp \left(\mathrm{O}\left(t^{4} \log t\right)\right)=\exp \left(\mathrm{O}\left(\pi(y)^{4} \log \pi(y)\right)\right)=\exp \left(\mathrm{o}\left(y^{4}\right)\right)=(\log x)^{\mathrm{o}(1)}(x \rightarrow \infty)
$$

allowing us to conclude that, in this case, $k<(\log x) /(4 \log \log \log x)$ for all sufficiently large x. On the other hand, if $y>(\log \log x)^{1 / 4}$, then $k<(\log x) /(\log y)<(\log x) /(4 \log \log \log x)$, thereby covering the other case.

6. Numerical data

For each positive integer k, let $\widetilde{n_{k}}$ be the smallest positive integer n with $\omega(n) \geqslant 2$ and such that $\beta_{j}(n) \mid n$ for $j=1,2, \ldots, k$.

In the following table, we give the values of $\widetilde{n_{1}}, \widetilde{n_{2}}$ and $\widetilde{n_{3}}$, and also what we believe to be the values of $\widetilde{n_{4}}$ and $\widetilde{n_{5}}$.

k	$n=\widetilde{n_{k}}$	$\beta_{i}(n)$
1	$30=2 \cdot 3 \cdot 5$	$\beta_{1}(n)=10=2 \cdot 5$
2	$99528=2^{3} \cdot 3 \cdot 11 \cdot 13 \cdot 29$	$\beta_{1}(n)=58=2 \cdot 29$
		$\beta_{2}(n)=1144=2^{3} \cdot 11 \cdot 13$
3	$12192180=2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13 \cdot 29$	$\beta_{1}(n)=70=2 \cdot 5 \cdot 7$
		$\beta_{2}(n)=1218=2 \cdot 3 \cdot 7 \cdot 29$
		$\beta_{3}(n)=28420=2^{2} \cdot 5 \cdot 7^{2} \cdot 29$
4	$\widetilde{n_{4}} \leqslant n=2078479331940068525081053440$	$\beta_{1}(n)=2 \cdot 3^{3} \cdot 11$
	$=2^{8} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 31 \cdot 37$	$\beta_{2}(n)=2^{2} \cdot 7 \cdot 17 \cdot 71$
	$\cdot 41^{2} \cdot 47 \cdot 53 \cdot 61 \cdot 71 \cdot 83 \cdot 89$	$\beta_{3}(n)=2^{3} \cdot 3 \cdot 31 \cdot 37 \cdot 83$
	$($ a 28 -digit number $)$	$\beta_{4}(n)=2^{8} \cdot 17 \cdot 23 \cdot 41^{2}$
5	$\widetilde{n_{5}} \leqslant n=2^{4} \cdot 3 \cdot 5 \cdot 7^{4} \cdot 11 \cdot 13 \cdot 23 \cdot 29 \cdot 31 \cdot 41$	$\beta_{1}(n)=2 \cdot 13 \cdot 137$
	$\cdot 43 \cdot 47 \cdot 53 \cdot 67 \cdot 73 \cdot 79 \cdot 83 \cdot 89 \cdot 97$	$\beta_{2}(n)=2^{3} \cdot 3 \cdot 7 \cdot 41 \cdot 73$
	$\cdot 101 \cdot 103 \cdot 107 \cdot 109 \cdot 113 \cdot 127 \cdot 131$	$\beta_{3}(n)=2^{4} \cdot 7^{4} \cdot 13 \cdot 163$
	$\cdot 137 \cdot 151 \cdot 163 \cdot 167 \cdot 173 \cdot 179$	$\beta_{4}(n)=2^{2} \cdot 3 \cdot 7 \cdot 47 \cdot 109 \cdot 173 \cdot 191$
	$\cdot 181 \cdot 191 \cdot 199 \cdot 211 \cdot 223$	$\beta_{5}(n)=2^{3} \cdot 11 \cdot 89 \cdot 97 \cdot 127 \cdot 151 \cdot 179$
	(a 70-digit number)	

Acknowledgments

This work was done in April of 2006, while the second author was in residence at the Centre de recherches mathématiques in Montréal for the thematic year Analysis and Number Theory. This author thanks the organizers for the opportunity of participating in this program. He was also supported in part by Grants SEP-CONACyT 46755, PAPIIT IN104505 and a Guggenheim Fellowship. The first author was supported in part by a grant from NSERC. The authors would also like to thank Moubariz Garaev for pointing out some key references.

References

[1] G.I. Arkhipov, V.N. Chubarikov, On the number of summands in Vinogradov's additive problem and its generalizations, in: IV International Conference "Modern Problems of Number Theory and its Applications": Current Problems, Part I, Tula, 2001, Mosk. Gos. Univ. im. Lomonosova, Mekh.-Mat. Fak., Moscow, 2002, pp. 5-38 (Russian).
[2] J.M. De Koninck, F. Luca, Integers divisible by the sum of their prime factors, Mathematika 52 (2005) 69-77.
[3] J.-H. Evertse, The number of solutions of decomposable form equations, Invent. Math. 122 (1995) 559-601.
[4] L.K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monogr., vol. 13, American Mathematical Society, Providence, RI, 1965.

[^0]: * Corresponding author.

 E-mail addresses: jmdk@mat.ulaval.ca (J.-M. De Koninck), fluca@matmor.unam.mx (F. Luca).

