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Abstract

Letting f(n) = A log n+ t(n), where t(n) is a small additive function
and A a positive constant, we obtain estimates for

∑
x≤n≤x+H 1/f(Q(n))

and
∑

x≤p≤x+H 1/f(Q(p)), where H = H(x) satisfies certain growth
conditions, p runs over prime numbers and Q is a polynomial with
integer coefficients, whose leading coefficient is positive, and with all
its roots simple.
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§1. Introduction

Let t(n) be an additive function for which there exist two positive con-
stants c and ξ > 0 such that

|t(pα)| ≤ c

pξ
for all prime powers pα,(1)

and let A > 0 be a fixed number; then let

f(n) := A log n + t(n).(2)

Additive functions of the type (2) include the family of additive functions
f for which Ivić [3] obtained estimates of

∑
n≤x, f(n)6=0 1/f(n); the same is

true for the family of additive functions studied by Brinitzer [1].
Let Q be a polynomial with integer coefficients, whose leading coefficient

is positive, and such that all its roots are simple. Our goal here is to provide
good estimates for each of the two sums

∑

x≤n≤x+H

1

f(Q(n))
and

∑

x≤p≤x+H

1

f(Q(p))
,

where H = H(x) satisfies certain growth conditions and p runs over prime
numbers. Let D be the discriminant of Q; for each prime p dividing D,
we shall assume that there exists a positive integer β0 = β0(p) such that
τ(pβ) = τ(pβ+1) = . . . for each integer β ≥ β0.

1Research supported in part by a grant from NSERC.
2Research supported by the Applied Number Theory Research Group of the Hungar-

ian Academy of Science and by a grant from OTKA.
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From these estimates will follow good estimates for the more classical
expressions

∑

x≤n≤x+H

1

f(n)
and

∑

x≤p≤x+H

1

f(p + 1)
.

§2. Main results

Theorem 1. Let f be defined by (2). Let ε < 1 be a fixed positive number
and let H = H(x) be an increasing function satisfying xε ≤ H ≤ x1−ε for all
x ≥ x0 for a certain x0 > 0. Moreover, let Q be as in Section 1. Then, given
any positive integer r, there exist computable constants e1 > 0, e2, . . . , er

such that

∑

x≤n≤x+H

1

f(Q(n))
= H

r∑

j=1

ej

logj x
+ O

(
H

logr+1 x

)
.

As usual, we define the logarithmic integral as follows

li(x) =
∫ x

2

du

log u
.

Theorem 2. Let f be defined by (2). Let ε < 1 be a fixed positive number

and let H = H(x) be an increasing function satisfying x
7
12

+ε ≤ H ≤ x1−ε

for all x ≥ x0 for a certain x0 > 0. Moreover, let Q be as in Section
1. Then, given any positive integer r, there exist computable constants
f1 > 0, f2, . . . , fr such that

∑

x≤p≤x+H

1

f(Q(p))
= (li(x + H)− li(x))

r∑

j=1

fj

logj x
+ O

(
H

logr+2 x

)
.

The following results are then consequences of the proofs of the above
theorems.

Theorem 3. Let f and A be as in (2). Let ε < 1 be a fixed positive number
and let H = H(x) be an increasing function satisfying xε ≤ H ≤ x1−ε for
all x ≥ x0 for a certain x0 > 0. Then, given any positive integer r, there
exist computable constants b1 > 0, b2, . . . , br independent of A, such that

∑

x≤n≤x+H

1

f(n)
= H

r∑

j=1

bj

(A log x)j
+ O

(
H

logr+1 x

)
.
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Corollary. Let g be either one of the following multiplicative functions

g(n) = σk(n) :=
∑

d|n
dk, g(n) = ϕ(n) (Euler function) , g(n) = τ (e)(n),

where τ (e)(n) = τ (e)(pα1
1 pα2

2 . . . pαs
s ) := τ(α1)τ(α2) . . . τ(αs) stands for the

number of exponential divisors of n, namely those divisors d = pβ1
1 . . . pβs

s

of n such that βi|αi for i = 1, 2, . . . , r. Let H = H(x) be as in Theorem
1. Then, given any positive integer r, there exist computable constants
bj = bj(g), 1 ≤ j ≤ r, such that

∑

x≤n≤x+H

1

log g(n)
= H

r∑

j=1

bj

logj x
+ O

(
H

logr+1 x

)
.

Theorem 4. Let f , A, ε and H = H(x) be as in Theorem 2. Then, given
any positive integer r, there exist computable constants d1 > 0, d2, . . . , dr

independent of A, such that

∑

x≤p≤x+H

1

f(p + 1)
= (li(x + H)− li(x))

r∑

j=1

dj

(A log x)j
+ O

(
H

logr+2 x

)
.

§3. Preliminary results

Lemma 1. Let t be as in Section 1. Then

|t(n)| ¿ (log n)β

log log n
(n ≥ 3),(3)

where β = max(1− ξ, 1/4).

Proof. First, consider the case where 0 < ξ ≤ 3/4. Then, let t(1) be the
additive function defined on prime powers pα by

t(1)(pα) =
c

pξ
.

One can easily establish that

max
3≤n≤x

t(1)(n) ¿ (log x)1−ξ

log log x
,

which clearly implies (3). On the other hand, if ξ > 3/4, then we have
|t(pα)| ≤ c

pξ < c
p3/4 , so that the argument for the first case may be used

again, in which case (3) follows once more.
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Lemma 2. Let Q ∈ Z[x] all the roots of which are simple. Let ρ(m) be
the number of solutions of Q(n) ≡ 0 (mod m). Let D be the discriminant
of Q. Then for each prime number p such that (p,D) = 1, we have that
ρ(pβ) = ρ(p) for each positive integer β.

Proof. It is known that, for some positive integer x, D = u(x)Q(x) +
v(x)Q′(x) for some polynomials u, v ∈ Z[x]. Now, given β ≥ 1, let x1, . . . , xt

(mod pβ) be the solutions of Q(x) ≡ 0 (mod pβ). If Q(y) ≡ 0 (mod pβ+1),
then y = xi + tpβ (mod pβ+1) for some t ∈ {0, 1, . . . , p − 1}, so that
Q(xi + tpβ) ≡ Q(xi) + tpβQ′(xi) (mod pβ+1). Therefore, by p|Q(xi) and
p 6 |Q′(xi), we obtain that exactly one t is appropriate, which means that
ρ(pβ+1) = ρ(pβ), thus completing the proof of Lemma 2.

Let π(x, k, `) denote the number of primes p ≤ x such that p ≡ ` (mod k).

Theorem A. Let E be an arbitrary positive number and let H = H(x) be
as in Theorem 2. If (k, `) = 1, then uniformly for k ≤ logE x,

π(x + H, k, `)− π(x, k, `) =
li(x + H)− li(x)

ϕ(k)

(
1 + O

(
exp{−c1

√
log x}

))

for some positive constant c1.

Proof. This follows directly from the Siegel-Walfisz Theorem (see Prachar
[4], Chap. IX, Theorem 3.1) according to which, uniformly for k ≤ logE x,

ψ(x + H, k, `)− ψ(x, k, `) =
H

ϕ(k)

(
1 + O

(
exp{−c1

√
log x}

))
,

where ψ(x, k, `) :=
∑
n≤x

n≡` (mod k)

Λ(n), with Λ standing for the von Mangoldt

function.

Remark. The exponent 7
12

tied to the conditions on H(x) (see statement
of Theorem 2) comes from a result of Huxley [2].

§4. The proof of Theorem 1

We may clearly assume that r + 1 is even.
Let x > 0 be a large number.
Let k be the degree of the polynomial Q and let E be its leading coef-

ficient. Let J = [x, x + H], Y = Y (x) = logη x, where η is a large number
to be chosen later. Let also tY be the additive function defined on prime
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powers pα by

tY (pα) =
{

t(pα) if pα ≤ Y ,
0 otherwise

and set
κY (n) = t(n)− tY (n).

Finally, let ρ(m) be the number of solutions of Q(n) ≡ 0 (mod m) and set

f1(Q(n)) = A log Q(x) + t(Q(n)), f2(Q(n)) = A log Q(x) + tY (Q(n)).

Since
Q(x + j)

Q(x)
= 1 + O

(
j

x

)
for 1 ≤ j ≤ H, it follows that

∑

n∈J

∣∣∣∣∣
1

f(Q(n))
− 1

f1(Q(n))

∣∣∣∣∣ ¿
1

log2 x

∑

n∈J
log

∣∣∣∣∣
Q(n)

Q(x)

∣∣∣∣∣ ¿
H2

x log2 x
.(4)

Moreover,
∑

n∈J

∣∣∣∣∣
1

f1(Q(n))
− 1

f2(Q(n))

∣∣∣∣∣ ¿
T

log2 x
,(5)

where
T :=

∑

n∈J
|κY (Q(n))| .

In order to estimate T , we first observe that it follows from (1) that

|κY (Q(n))| ≤ ∑
pα‖Q(n)

pα>Y

|t(pα)| = ∑
pα‖Q(n)
Y <pα≤H

|t(pα)|+ ∑
pα‖Q(n)
pα>H

|t(pα)|

= κ
(1)
Y (Q(n)) + κ

(2)
Y (Q(n)),

say. Furthermore,

|κ(2)
Y (Q(n))| ≤ ∑

pα‖Q(n)

p≤
√

H, pα>H

c

pξ
+

∑
p|Q(n)√
H<p≤H

c

pξ
+

c

Hξ

∑
p|Q(n)
p>H

1(6)

= K1(Q(n)) + K2(Q(n)) + K3(Q(n)),

say. Now let
Tj :=

∑

n∈J
κ

(j)
Y (Q(n)) (j = 1, 2).

On the one hand,

T1 ¿ H
∑

p≥Y

1

p1+ξ
+ H

∑

p2>Y

1

p · p1+ξ
+ H

∑
pα≥Y
α≥3

1

pα−1

1

p1+ξ
(7)

¿ H

Y ξ
+

H√
Y

.
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On the other hand, it follows from (6) that

T2 ≤ M1 + M2 + M3,(8)

where M` =
∑

n∈J K`(Q(n)) for ` = 1, 2, 3.
In order to estimate M1, observe that the conditions pα‖Q(n), p <√

H, pα > H imply that there is a divisor pβ of pα for which
√

H ≤ pβ < H
with β ≥ 2. Consequently,

M1 ¿ H
∑

pβ>
√

H

1

pβ
¿ H3/4,(9)

say. Similarly, and by using Lemma 2, we infer that

M2 ¿ H

Hξ/2

∑
√

H<p<H

ρ(p)

p
¿ H1−ξ/2 log log H,(10)

and that, since
∑

p|Q(n), p>H 1 is bounded,

M3 ¿ H1−ξ.(11)

Collecting (9), (10) and (11) in (8), it follows that

T2 ¿ H3/4 + H1−ξ/2.(12)

Substituting (7) and (12) into (5), we obtain that

∑

n∈J

∣∣∣∣∣
1

f1(Q(n))
− 1

f2(Q(n))

∣∣∣∣∣ ¿
H

logξη+2 x
+

H

log
η
2
+2

,(13)

provided 0 < ξ < 1, which has indeed been assumed.
Then, letting S(x,H) :=

∑
x≤n≤x+H 1/f(Q(n)) and

S∗(x,H) :=
∑

n∈J

1

f2(Q(n))
,(14)

it follows from (4) and (13) that

S(x,H)− S∗(x,H) = O

(
H

logr+1 x

)
,

provided η = η(r, ξ, ε) is chosen large enough. This means that in order to
complete the proof of Theorem 1, it is sufficient to prove that

S∗(x,H) = H
r∑

j=1

ej

logj x
+ O

(
H

logr+1 x

)
.(15)
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First observe that it follows from Lemma 1 that

|tY (Q(n))| < A

2
log Q(x) (n ∈ J ),

so that

1

f2(Q(n))
=

1

A log Q(x) + tY (Q(n))
(16)

=
1

A log Q(x)

{
1− tY (Q(n))

A log Q(x)
+

(
tY (Q(n))

A log Q(x)

)2

+ . . .

+(−1)r

(
tY (Q(n))

A log Q(x)

)r

+ O

( |tY (Q(n))|r+1

logr+1 Q(x)

) }
.

Now let
Rj(J ) :=

∑

n∈J
tjY (Q(n)),

so that from (14) and (16), we have

S∗(x,H) =
r∑

j=0

(−1)j Rj(J )

(A log Q(x))j+1
+ O

(
Rr+1(J )

logr+2 x

)
.(17)

We shall now estimate each Rj(J ) with good accuracy. Indeed,

Rj(J ) =
j∑

`=1

∑

k1+...+k`=j

j!

k1! . . . k`!

∑

p
α1
1 <...<p

α`
`
≤Y

t(pα1
1 )k1 . . . t(pα`

` )k`∆,(18)

where p1, . . . , p` are any collection of distinct primes and α1, . . . , α` are
positive integers such that pα1

1 < . . . < pα`
` ≤ Y and

∆ = ∆(pα1
1 , . . . , pα`

` ) := #{n ∈ J : p
αj

j ‖Q(n), j = 1, . . . , `}.

One easily sees that ∆ may be written as

∆ = H
∑

δ|p1...p`

µ(δ)

δ

ρ(pα1
1 . . . pα`

` δ)

pα1
1 . . . pα`

`

+ O


 ∑

δ|p1...p`

ρ(pα1
1 . . . pα`

` δ)


(19)

Clearly the contribution of the error term in (19) to the right hand side of
(18) is Oj(1).

Now writing

Σ∗(Y |k1, . . . , k`) =
∑

p
α1
1 <...<p

α`
`
≤Y

t(pα1
1 )k1 . . . t(pα`

` )k`
∑

δ|p1...p`

µ(δ)ρ(pα1
1 . . . pα`

` δ)

δpα1
1 . . . pα`

`

,
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it follows from (18) and (19) that

Rj(J ) = H
j∑

`=1

∑

k1+...+k`=j

j!

k1! . . . k`!
Σ∗(Y |k1, . . . , k`) + Oj(1)(20)

= HDj(Y ) + Oj(1),

say. We shall now manage to replace Dj(Y ) by

Dj :=
j∑

`=1

∑

k1+...+k`=j

j!

k1! . . . k`!
Σ∗(∞|k1, . . . , k`),

while carefully monitoring the error term thus created by this substitution,
that is by showing that

|Σ∗(∞|k1, . . . , k`)− Σ∗(Y |k1, . . . , k`)| ¿ 1√
Y

+
1

Y ξ
,(21)

thus enabling us, using (20), to replace (17) by

S∗(x, H) = H
r∑

j=0

(−1)j Dj

(A log Q(x))j+1
+ O

(
H

logr+2 x

)
,(22)

provided η is chosen sufficiently large. Then, since

A log Q(x) = A log(Exk + O(xk−1)) = Ak log x + A log E + O
(

1

x

)
,

it follows that

1

(A log Q(x))j+1
=

r+1∑

ν=j+1

uν,j

logν x
+ O

(
1

logr+2 x

)
,(23)

with suitable constants uν,j. Using (23) in (22), (15) follows.
Hence, it remains to prove (21). Indeed, using (1), it is clear that

∑

p
α`
`

>Y

t(pα`
` )k`

pα`
`

¿ 1√
Y

+
1

Y ξ
(24)

and that
∑

p
α1
1 <...<p

α`−1
`−1

`−1∏

j=1

t(p
αj

j )kj

p
αj

j

= O(1).(25)

Since (21) clearly follows from (24) and (25), the proof of Theorem 1 is
complete.
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§5. The proof of Theorem 2

The proof is very similar to that of Theorem 1. As in that proof, we
may clearly assume that r + 1 is even. Using the notation introduced in
Section 4 and repeating the same argument, we obtain that

∑

p∈J

∣∣∣∣∣
1

f(Q(p))
− 1

f2(Q(p))

∣∣∣∣∣ ≤ ∑

p∈J

∣∣∣∣∣
1

f(Q(p))
− 1

f1(Q(p))

∣∣∣∣∣(26)

+
∑

p∈J

∣∣∣∣∣
1

f1(Q(p))
− 1

f2(Q(p))

∣∣∣∣∣

¿ H2

x log2 x
+

T

log2 x
¿ H

logr+2 x
,

provided η is large enough. Then, proceeding as we did to obtain (16) and
(17), we get that

∑

p∈J

1

f2(Q(p))
=

r∑

j=0

(−1)j Sj(J )

(A log Q(x))j+1
+ O

(
Sr+1(J )

logr+2 x

)
,(27)

where
Sj(J ) =

∑

p∈J
tjY (Q(p)).

Then

Sj(J ) =
j∑

`=1

∑

k1+...+k`=j

j!

k1! . . . k`!

∑

p
α1
1 <...<p

α`
`
≤Y

t(pα1
1 )k1 . . . t(pα`

` )k`∆∗,(28)

where again p1, . . . , p` are any collection of distinct primes and α1, . . . , α`

are positive integers such that pα1
1 < . . . < pα`

` ≤ Y and

∆∗ = ∆∗(pα1
1 , . . . , pα`

` ) := #{p ∈ J : p
αj

j ‖Q(p), j = 1, . . . , `}.
Then, letting ρ∗(m) be the number of residue classes s (mod m) such that
Q(s) ≡ 0 (mod m) and (s,m) = 1, and calling upon Theorem A, we
obtain that

∆∗(pα1
1 , . . . , pα`

` ) = (li(x + H)− li(x))
∑

δ|p1...p`

µ(δ)

δ

ρ∗(pα1
1 . . . pα`

` δ)

ϕ(pα1
1 . . . pα`

` )
(29)

+O

(
H

log x
exp{−c1

√
log x} 1

pα1
1 . . . pα`

`

)
.

Then, observing that the contribution of the error term in (29) to the sum

in (28) is at most O

(
H

log x
exp{−c1

√
log x}

)
, and continuing the proof as

we did in Section 4, we find that

Sj(J ) = (li(x + H)− li(x))Kj + O

(
H

logr+3 x

)
,(30)
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where

Kj :=
j∑

`=1

∑

k1+...+k`=j

j!

k1! . . . k`!

∑

p
α1
1 <...<p

α`
`

t(pα1
1 )k1 . . . t(pα`

` )k`

× ∑

δ|p1...p`

µ(δ)

δ

ρ∗(pα1
1 . . . pα`

` δ)

ϕ(pα1
1 . . . pα`

` )
.

Then substituting (30) in (27), and taking into account (26), the proof of
Theorem 2 is complete.
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paper.
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