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Abstract

Given integers £ > 2 and £ > 3, let S/, stand for the set of those positive integers

n which can be written as n = p’f +p]§ +... —i—plg, where p1, pa,...,pe are distinct prime
factors of n. We study the properties of the sets S}i,e and we show in particular that,

given any odd ¢ > 3, # U Sk = +oo.
k=2
1 Introduction

In [, we studied those numbers with at least two distinct prime factors which can be
expressed as the sum of a fixed power k > 2 of their prime factors. For instance, given an
integer £ > 2, and letting

Sy ={n:wn)>2and n= Zpk}a

pln
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where w(n) stands for the number of distinct prime factors of n, one can check that the
following 8 numbers belong to Ss:
378 = 2.3 7=24+3+7,
2548 = 22.72.13 =28+ 73 + 133,
2836295 = 5-7-11-53-139=5%+ 73+ 113 + 533 + 139%,
4473671462 = 2-13-179-593-1621 = 2% + 13% + 179° 4+ 5933 + 16217,
23040925705 = 5-7-167-1453-2713 = 5% 4+ 73 + 167% + 1453% + 2713%,
13579716377989 = 19-157-173-1103 - 23857 = 19° 4+ 1573 + 173% + 11033 + 238573,
21467102506955 = 5-7%-313-1439- 27791 = 5% + 73 + 3133 + 1439% + 277913
119429556 097859 = 7-53-937-6983 49199 = 73 + 53% + 937° + 6983 + 491993,

In particular, we showed that 378 and 2548 are the only numbers in S3 with exactly three
distinct prime factors.

We did not find any number belonging to Sy for £ = 2 or k£ > 4, although each of these
sets may very well be infinite.

In this paper, we examine the sets
Sy i={n:w(n) 22andnzz*pk} (k=2,3,...),
pln

where the star next to the sum indicates that it runs over some subset of primes dividing n.
For instance, 870 € S5, because

870 =2-3.5-.29 =22 4 52 4+ 292,

Clearly, for each k > 2, we have S; 2 S Moreover, given integers k > 2 and ¢ > 3, let Sy,
stand for the set of those positive integers n which can be written as n = p§ +p5 + ... + p},
where pq, po, ..., p¢ are distinct prime factors of n, so that for each integer k > 2,

o0
Sy = Sis
=3
We study the properties of the sets S; , and we show in particular that, given any odd £ > 3,

o0
the set U Sp., is infinite. We treat separately the cases £ = 3 and ¢ > 5, the latter case

k=2
being our main result.

In what follows, the letter p, with or without subscripts, always denotes a prime number.

2 Preliminary results

We shall first consider the set S;. Note that if n € S5, then P(n), the largest prime divisor
of n, must be part of the partial sum of primes which allows n to belong to S;. Indeed,
assume the contrary, namely that, for some primes p; < ps < ... < p,,

n:p‘l"l...pf’":pi—l—...#—pi €55,
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where 11 < iy < ... <1y <r—1, with r > 3. Then

Pi--Proaproape < < lp;, < iy,

so that py...p.—op. < rp,—1 < rp,, which implies that p;...p,_o < r, which is impossible
for » > 3.

While by a parity argument one can easily see that each element of Sy (for any k > 2)
must have an odd number of prime factors, one can observe that elements of S} can on
the contrary be written as a sum of an even number of prime powers, as can be seen with
298995972 € S (see below).

We can show that if Schinzel’s Hypothesis is true (see Schinzel [f]), then the set S5 is
infinite. We shall even prove more.

Theorem 1. If Schinzel’s Hypothesis is true, then #5533 = +o0.

Proof. Assume that k is an even integer such that r = k? — 9k + 21 and p = k? — 7k + 13
are both primes, then n = 2rp(r + k) € S3 ;. Indeed, in this case, one can see that

n =2rp(r +k) =23 4+ 3 43, (1)

since both sides of ([) are equal to 2k5 — 48k° + 492k* — 2752k3 + 8844k* — 15456k + 11466.
Now Schinzel’s Hypothesis guarantees that there exist infinitely many even k’s such that the
corresponding numbers r and p are both primes. |

Note that the first such values of k are k = 2, 6, 10, 82 and 94. These yield the following
four elements of 3, (observing that & = 2 and k = 6 provide the same number, namely
n = 378):

378 = 2.3 7= 43347,
109306 = 2-31-41-43 =23 + 31° 4 433,
450843455098 = 26007 - 6089 - 6163 = 2% 4+ 6007° + 6163,
1063669417210 = 2-8011 - 8105 - 8191 = 2% + 8011% + 8191°.

Not all elements of S; are generated in this way. For instance, the following numbers also
belong to S5:

23391460 = 22-5-23-211-241 = 2% + 211° + 2413,
173871316 = 2%.223-421-463 = 23 + 4213 + 463,
126548475909264420 = 22.3-5-11-83-101 - 45569 - 501931
= 2%+ 5% +83% + 45569° + 5019317,

as well as all those elements of S3 mentioned in Section 1.

Theorem 2. # U Ska = +00.
k=2



Proof. This follows immediately from the fact that for each element n € Sj 3, one can find a

corresponding element n’ € SZ(2r+1) g forr=1,2,.... Indeed, if n € 5, then it means that

n = pf + p§ + pf

for some distinct primes divisors py,pa, p3 of n. In particular, it means that p,|(pf + p¥)
for each permutation (a, b, c) of the integers 1, 2 and 3. We claim that, given any positive

integer r, the number

(2r+1) (2r+1) (2r+1)

n' = p} + P + Pl

(2r+1) + plcf(2r+1)

belongs to S}y,.1)5- Indeed, we only need to show that pa|(pf ) for each

permutation (a, b, c) of the integers 1, 2 and 3. But this follows from the fact that (pf + p*)
divides (pf(%ﬂ) + plé(%ﬂ)); but since p, divides (pf +p¥), we have that p, divides (p];@rH) +

plg(2r+1)) and therefore that n' € Sk@rt1)3- Since 378 € 535, the proof is complete. O

Remark. It clearly follows from Theorems 1 and 2 that #.S55,.1)3 = +oo for any r > 1.

3 Proof of the main result

Theorem 3. Given any odd integer £ > 5,
# | Spp = +oo.
k=2

This is an immediate consequence of the following two lemmas.

Lemma 3.1. Lett = 2s > 2 be an even integer and pq, . ..,p; be primes such that
(i) p; =3 (mod 4) foralli=1,...,t.
(i1) ged(pi,pj —1) =1 for alli,j in {1,...,t}.

(iii) ged(pi — 1,p; — 1) =2 for all i # j in {1,...,t}.

Assume furthermore that ay, ..., a; are integers and nq, ...,n; are odd positive integers such
that

() ged(2n; + 1,p; — 1) =1 foralli=1,... t.
(v) pi | Z;le;”—kaz” foralli=1,...t.

(vi) s =1/2 of the t numbers (&) fori=1,...,t are equal to 1 and the other s are equal

to —1.
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Then there exist infinitely many primes p such that S5_, 1 contains at least one element.
—



Proof. Let a be such that
a=2n;+1 (mod (p; —1)/2), a=3 (mod4), a=a; (mod p;) (2)

for all © = 1,...,t. The fact that the above integer a exists is a consequence of the Chinese

Remainder Theorem and conditions (i)-(iii) above. Since n; is odd, (p; — 1)/2 is also odd

and a = 3 (mod 4), we conclude that the congruence a = 2n; +1 (mod (p; — 1)/2) implies

a=2n;+1 (mod 2(p; — 1)).
t
i(pi — 1 : . .

Now let M = 4H % Note that the number a is coprime to M by conditions
i=1

(i)-(iv). Thus, by Dirichlet’s Theorem on primes in arithmetic progressions, it follows that

there exist infinitely many prime numbers p such that p = a (mod M). It is clear that these
primes satisfy the same congruences (P]) as a does. Let p be such a prime and set

"—ZP(” D2y oD

Note that since p = 2n; + 1 (mod 2(p; — 1)), we get that (p — 1)/2 = n; (mod p; — 1).
Therefore by Fermat’s Little Theorem and condition (v) we get

t
n= Zp;” +pti = Z "+a=0 (mod p;)
j=1

for alli = 1,...,t. Finally, conditions (i), (v) and the Quadratic Reciprocity Law show that

exactly half of them are 1 and the other half are —1. Thus, half of the numbers pl(p 72 are
congruent to 1 modulo p and the other half are congruent to —1 modulo p which shows that

n is a multiple of p. Hence, n is a multiple of p; for i = 1,...,t and of p as well, which
implies that n € S L O
Lemma 3.2. If s > 2 then there exist primes p; and integers a;, n; fort =1,...,t satisfying

the conditions of Lemma [F_].

Proof. Observe that ¢ — 1 > 3. Choose primes py,...,p;—1 such that p; = 11 (mod 12) for
alli=1,...,t—1, ged(pi,pj —1) = 1 forall 4,5 in {1,...,t — 1}, ged(p; — 1,p; — 1) = 2
forall i # jin {1,...,t — 1} and finally p; 4+ -+ + p;_1 is coprime to p; ...p;—1. Note that
N = py+---+p;_1 is an odd number. Such primes can be easily constructed starting with say
p1 = 11 and recursively defining ps,...,p;_1 as primes in suitable arithmetic progressions.
Take n; =1 forv=1,...,t. Let q1,...,q be all the primes dividing N. Pick some integers

ai,...,a;—1; such that s of the numbers are —1 and the other s — 1 are 1. Now

bi
choose a prime p; such that p, = 11 (mod 12), p; is coprime to p; — 1 for i = 1,...,t — 1,
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Pt
congruences to be fulfilled, we note that it is enough to choose p, = 1 (mod ¢,) if ¢, = 1
(mod 4) and p; = —1 (mod ¢q,) if ¢, = 3 (mod 4), where v = 1,...,¢. Notice that this
choice is consistent with the fact that p;, = 11 (mod 12) if it happens that one of the g, is 3.
So far, the primes py, ..., p; satisfy conditions (i)—(iii) of Lemma B.1]. Finally, put a; = —N.

pr=—a;— N (mod p;) fori=1,...,t—1, and( )zlforallizl,...,f. For these last

¢ ou

—a u . .

Note that (—t) = H (q_) = 1. Here, «, is the exact power of ¢, in —a;. Hence,
Pt w1 \ Pt

_ai> are 1 and the others are —1 and since all primes p; are
Di

congruent to 3 modulo 4 the same remains true if one replaces —a; by a;. Thus, condition
(vi) of Lemma B.]] holds. Now one checks immediately that (v) holds with n; = 1 for all

1=1,...,t, because for all i =1,...,t — 1 we have

exactly s of the numbers (

t
STt =N+p+a (modp)=0 (modp,),
j=1

while

¢
Zp?j +a=N+p —N=0 (modp,),
j=1

and (iv) is obvious because 2n; +1 =3 and p; — 1 = 10 (mod 12) is not a multiple of 3 for
i=1,... .1 O

Remark. The above argument does not work for s = 1. Indeed, in this case t — 1 = 1,
therefore p; + - - - + p;_1 = p1 and this is not coprime to p;.

4 Computational results and further remarks

To conduct a search for elements of Sy, one can proceed as follows. If n € S; ,, then there
exists a positive number () and primes py, pa, ..., p, such that

n=Qpi...peape=pi+...+p} +0f,

so that a necessary condition for n to be in Sy, is that p|(p} + ...+ pj_;). (Note that some
of the p;’s may also divide Q.)
For instance, in order to find n € Sy 3, we examine the prime factors p of r* + ¢~ as
k4 gF + ph
rqp

2 < r < q run through the primes up to a given x, and we then check if () :=
is an integer. If this is so, then the integer n = Qrgp belongs to Sy 5.



Proceeding in this manner (with ¢ = 3,4), we found the following elements of S;:
870 = 2-3-5-29 =224 52 4+ 29%
188355 3-5-29-433 = 52 + 297 + 4332,
298995972 22.3-11-131-17291 = 3% + 11* + 131% + 172912,
1152597606 = 2-3-5741 - 33461 = 2% + 57412 + 334612,
1879906755 = 3-5-2897 - 43261 = 5% + 28972 + 432612,
5209105541772 = 22-3-11-17291 - 2282281 = 3% + 11% + 172912 + 22822812

Although we could not find any elements of Sy, we did find some elements of S}, but
they are quite large. Here are six of them:

107827277891825604 = 22-3-7-31-67-18121 34105993 = 3* + 31* + 67* + 181214,
48698490414981559698 = 2-3%.7-13-17-157 - 83537 - 14816023 = 2* + 17* + 835374,

3137163227263018301981160710533087044
=22.32.7.11-191-283 - 7541 - 1330865843 - 2086223663996743
= 3"+ 7+ 191" + 1330865843*,
129500871006614668230506335477000185618
=2.3%.7.13%.31-241 - 15331 - 21613 - 524149 - 1389403 - 3373402577
= 2% + 241* + 3373402577*,
225611412654969160905328479254197935523312771590
=2.3%.5.7-13%.37-41-109 - 113 - 127 - 151 - 541 - 911 - 5443
-3198662197 - 689192061269
=5+ 7+ 113* + 127 + 911* + 689192061269,
17492998726637106830622386354099071096 746866616980
=2%.5.7-23.31-97-103-373- 1193 - 8689 - 2045107145539 - 2218209705651794191
=24 4103 +373* 4+ 1193* + 2045107145539%.
Note that these numbers provide elements of S} 3, Si,, S5 5 and Sjg.
The smallest elements of S5, S5, ..., S}, are the following:
870 = 2-3-5-29 =224 52 4 297
378 = 2.3 7=282433478
107827277891825604 = 22.3.7-31-67-18121 34105993 = 3* 4 31* + 67* 4 18121*
178101 = 32.7-11-257=3"+7° +11°
594839010 = 2-3-5-17-29-37-1087 = 26 + 5 4 296
275223438741 = 3-23-43-92761523 = 37 + 237 4 437
26584448904 822018 = 2-3-7-17-19-113-912733109 = 28 + 17° 4+ 113®
40373802 = 2-3%.7-35603 =2 +3%+7°
420707243 066850 = 2-3%.52.29.32238102917 = 20 4 510 4 2910,



Below is a table of the smallest element n € S; , for £ = 3,4,5,6,7 (with a convenient k):
n
378 =2-3-7T=23 433473
298995972 = 22 -3 - 11 - 131 - 17291 = 3% + 112 + 1312 + 172912
2836295 =5-7-11-53-139 =53 + 73 + 113 + 533 + 1393
(a 48 digit number) = 5% + 7% 4+ 113* 4 127* 4 911* + 689192061269*
(a 145 digit number) = 24 + 31 4+ 514 + 1114 4 29 4 1491 4 19809551197
Theorem 3 provides a way to construct infinitely many elements of S, given any fixed
positive odd integer £. However, in practice, the elements obtained are very large. Indeed,
take the case £ = 5. With the notation of Lemma 1, we have ¢t = 4; one can then choose
{p1,p2,p3,pa} = {11,47,59,227}. As suggested in Lemma 2, let n;, = 1 for i = 1,2,3,4.
An appropriate set of integers a;’s is given by {a1, as, a3, as} = {8,32,10,110}, which gives
Q;

{ (—> 1=1,2,3, 4} ={-1,1,—1,1}. Looking for a solution a of the set of congruences
pi

N O U WS

a=3 (mod Z:1) (i=1,234)
a=3 (mod4)
a=a; (modp;) (i=1,2,3,4)

4
i((pi — 1 .
we obtain a = 4619585064 883. With M = 4H I% = 10437648 923 020, we notice
i=1

that indeed ged(a, M) = 1. As the smallest p;ime number p = a (mod M), we find p =
10M + a = 108996 074 295083. This means that the smallest integer n € Sy 5 constructed
with our algorithm is given by

4
p—1 —1
n=>Y p* +p7,
i=1
which is quite a large integer since

p—

p—1 1.q0l4 1014
n~pz o~ (102107 ~ 107107,
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