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Abstract

Given integers k ≥ 2 and ℓ ≥ 3, let S∗
k,ℓ stand for the set of those positive integers

n which can be written as n = pk
1 +pk

2 + . . .+pk
ℓ , where p1, p2, . . . , pℓ are distinct prime

factors of n. We study the properties of the sets S∗
k,ℓ and we show in particular that,

given any odd ℓ ≥ 3, #

∞
⋃

k=2

S∗
k,ℓ = +∞.

1 Introduction

In [1], we studied those numbers with at least two distinct prime factors which can be
expressed as the sum of a fixed power k ≥ 2 of their prime factors. For instance, given an
integer k ≥ 2, and letting

Sk := {n : ω(n) ≥ 2 and n =
∑

p|n

pk},
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where ω(n) stands for the number of distinct prime factors of n, one can check that the
following 8 numbers belong to S3:

378 = 2 · 33 · 7 = 23 + 33 + 73,

2548 = 22 · 72 · 13 = 23 + 73 + 133,

2 836 295 = 5 · 7 · 11 · 53 · 139 = 53 + 73 + 113 + 533 + 1393,

4 473 671 462 = 2 · 13 · 179 · 593 · 1621 = 23 + 133 + 1793 + 5933 + 16213,

23 040 925 705 = 5 · 7 · 167 · 1453 · 2713 = 53 + 73 + 1673 + 14533 + 27133,

13 579 716 377 989 = 19 · 157 · 173 · 1103 · 23857 = 193 + 1573 + 1733 + 11033 + 238573,

21 467 102 506 955 = 5 · 73 · 313 · 1439 · 27791 = 53 + 73 + 3133 + 14393 + 277913

119 429 556 097 859 = 7 · 53 · 937 · 6983 · 49199 = 73 + 533 + 9373 + 69833 + 491993.

In particular, we showed that 378 and 2548 are the only numbers in S3 with exactly three
distinct prime factors.

We did not find any number belonging to Sk for k = 2 or k ≥ 4, although each of these
sets may very well be infinite.

In this paper, we examine the sets

S∗
k := {n : ω(n) ≥ 2 and n =

∑

p|n

∗
pk} (k = 2, 3, . . .),

where the star next to the sum indicates that it runs over some subset of primes dividing n.
For instance, 870 ∈ S∗

2 , because

870 = 2 · 3 · 5 · 29 = 22 + 52 + 292.

Clearly, for each k ≥ 2, we have S∗
k ⊇ Sk. Moreover, given integers k ≥ 2 and ℓ ≥ 3, let S∗

k,ℓ

stand for the set of those positive integers n which can be written as n = pk
1 + pk

2 + . . . + pk
ℓ ,

where p1, p2, . . . , pℓ are distinct prime factors of n, so that for each integer k ≥ 2,

S∗
k =

∞
⋃

ℓ=3

S∗
k,ℓ.

We study the properties of the sets S∗
k,ℓ and we show in particular that, given any odd ℓ ≥ 3,

the set
∞
⋃

k=2

S∗
k,ℓ is infinite. We treat separately the cases ℓ = 3 and ℓ ≥ 5, the latter case

being our main result.
In what follows, the letter p, with or without subscripts, always denotes a prime number.

2 Preliminary results

We shall first consider the set S∗
2 . Note that if n ∈ S∗

2 , then P (n), the largest prime divisor
of n, must be part of the partial sum of primes which allows n to belong to S∗

2 . Indeed,
assume the contrary, namely that, for some primes p1 < p2 < . . . < pr,

n = pα1

1 . . . pαr

r = p2
i1

+ . . . + p2
iℓ

∈ S∗
2 ,
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where i1 < i2 < . . . < iℓ ≤ r − 1, with r ≥ 3. Then

p1 . . . pr−2pr−1pr ≤ n < ℓp2
iℓ
≤ rp2

r−1,

so that p1 . . . pr−2pr < rpr−1 < rpr, which implies that p1 . . . pr−2 < r, which is impossible
for r ≥ 3.

While by a parity argument one can easily see that each element of Sk (for any k ≥ 2)
must have an odd number of prime factors, one can observe that elements of S∗

k can on
the contrary be written as a sum of an even number of prime powers, as can be seen with
298995972 ∈ S∗

2 (see below).
We can show that if Schinzel’s Hypothesis is true (see Schinzel [2]), then the set S∗

3 is
infinite. We shall even prove more.

Theorem 1. If Schinzel’s Hypothesis is true, then #S∗
3,3 = +∞.

Proof. Assume that k is an even integer such that r = k2 − 9k + 21 and p = k2 − 7k + 13
are both primes, then n = 2rp(r + k) ∈ S∗

3,3. Indeed, in this case, one can see that

n = 2rp(r + k) = 23 + r3 + p3, (1)

since both sides of (1) are equal to 2k6 − 48k5 + 492k4 − 2752k3 + 8844k2 − 15456k + 11466.
Now Schinzel’s Hypothesis guarantees that there exist infinitely many even k’s such that the
corresponding numbers r and p are both primes.

Note that the first such values of k are k = 2, 6, 10, 82 and 94. These yield the following
four elements of S∗

3,3 (observing that k = 2 and k = 6 provide the same number, namely
n = 378):

378 = 2 · 33 · 7 = 23 + 33 + 73,

109306 = 2 · 31 · 41 · 43 = 23 + 313 + 433,

450843455098 = 2 · 6007 · 6089 · 6163 = 23 + 60073 + 61633,

1063669417210 = 2 · 8011 · 8105 · 8191 = 23 + 80113 + 81913.

Not all elements of S∗
3 are generated in this way. For instance, the following numbers also

belong to S∗
3 :

23391460 = 22 · 5 · 23 · 211 · 241 = 23 + 2113 + 2413,

173871316 = 22 · 223 · 421 · 463 = 23 + 4213 + 4633,

126548475909264420 = 22 · 3 · 5 · 11 · 83 · 101 · 45569 · 501931

= 23 + 53 + 833 + 455693 + 5019313,

as well as all those elements of S3 mentioned in Section 1.

Theorem 2. #
∞
⋃

k=2

S∗
k,3 = +∞.
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Proof. This follows immediately from the fact that for each element n ∈ S∗
k,3, one can find a

corresponding element n′ ∈ S∗
k(2r+1),3 for r = 1, 2, . . .. Indeed, if n ∈ S∗

k,3, then it means that

n = pk
1 + pk

2 + pk
3

for some distinct primes divisors p1, p2, p3 of n. In particular, it means that pa|(p
k
b + pk

c )
for each permutation (a, b, c) of the integers 1, 2 and 3. We claim that, given any positive
integer r, the number

n′ := p
k(2r+1)
1 + p

k(2r+1)
2 + p

k(2r+1)
3

belongs to S∗
k(2r+1),3. Indeed, we only need to show that pa|(p

k(2r+1)
b + p

k(2r+1)
c ) for each

permutation (a, b, c) of the integers 1, 2 and 3. But this follows from the fact that (pk
b + pk

c )

divides (p
k(2r+1)
b + p

k(2r+1)
c ); but since pa divides (pk

b + pk
c ), we have that pa divides (p

k(2r+1)
b +

p
k(2r+1)
c ) and therefore that n′ ∈ S∗

k(2r+1),3. Since 378 ∈ S∗
3,3, the proof is complete.

Remark. It clearly follows from Theorems 1 and 2 that #S∗
3(2r+1),3 = +∞ for any r ≥ 1.

3 Proof of the main result

Theorem 3. Given any odd integer ℓ ≥ 5,

#
∞
⋃

k=2

S∗
k,ℓ = +∞.

This is an immediate consequence of the following two lemmas.

Lemma 3.1. Let t = 2s ≥ 2 be an even integer and p1, . . . , pt be primes such that

(i) pi ≡ 3 (mod 4) for all i = 1, . . . , t.

(ii) gcd(pi, pj − 1) = 1 for all i, j in {1, . . . , t}.

(iii) gcd(pi − 1, pj − 1) = 2 for all i 6= j in {1, . . . , t}.

Assume furthermore that a1, . . . , at are integers and n1, . . . , nt are odd positive integers such
that

(iv) gcd(2ni + 1, pi − 1) = 1 for all i = 1, . . . , t.

(v) pi |
∑t

j=1 pni

j + ani

i for all i = 1, . . . , t.

(vi) s = t/2 of the t numbers

(

ai

pi

)

for i = 1, . . . , t are equal to 1 and the other s are equal

to −1.

Then there exist infinitely many primes p such that S∗
p−1

2
,t+1

contains at least one element.
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Proof. Let a be such that

a ≡ 2ni + 1 (mod (pi − 1)/2), a ≡ 3 (mod 4), a ≡ ai (mod pi) (2)

for all i = 1, . . . , t. The fact that the above integer a exists is a consequence of the Chinese
Remainder Theorem and conditions (i)-(iii) above. Since ni is odd, (pi − 1)/2 is also odd
and a ≡ 3 (mod 4), we conclude that the congruence a ≡ 2ni + 1 (mod (pi − 1)/2) implies
a ≡ 2ni + 1 (mod 2(pi − 1)).

Now let M = 4
t

∏

i=1

pi(pi − 1)

2
. Note that the number a is coprime to M by conditions

(i)-(iv). Thus, by Dirichlet’s Theorem on primes in arithmetic progressions, it follows that
there exist infinitely many prime numbers p such that p ≡ a (mod M). It is clear that these
primes satisfy the same congruences (2) as a does. Let p be such a prime and set

n =
t

∑

i=1

p
(p−1)/2
i + p(p−1)/2.

Note that since p ≡ 2ni + 1 (mod 2(pi − 1)), we get that (p − 1)/2 ≡ ni (mod pi − 1).
Therefore by Fermat’s Little Theorem and condition (v) we get

n ≡
t

∑

j=1

pni

j + pni ≡
t

∑

j=1

pni

j + ani

i ≡ 0 (mod pi)

for all i = 1, . . . , t. Finally, conditions (i), (v) and the Quadratic Reciprocity Law show that
from the t = 2s numbers

(

pi

p

)

= −

(

p

pi

)

= −

(

ai

pi

)

,

exactly half of them are 1 and the other half are −1. Thus, half of the numbers p
(p−1)/2
i are

congruent to 1 modulo p and the other half are congruent to −1 modulo p which shows that
n is a multiple of p. Hence, n is a multiple of pi for i = 1, . . . , t and of p as well, which
implies that n ∈ S∗

p−1

2
,t+1

.

Lemma 3.2. If s ≥ 2 then there exist primes pi and integers ai, ni for i = 1, . . . , t satisfying
the conditions of Lemma 3.1.

Proof. Observe that t − 1 ≥ 3. Choose primes p1, . . . , pt−1 such that pi ≡ 11 (mod 12) for
all i = 1, . . . , t − 1, gcd(pi, pj − 1) = 1 for all i, j in {1, . . . , t − 1}, gcd(pi − 1, pj − 1) = 2
for all i 6= j in {1, . . . , t − 1} and finally p1 + · · · + pt−1 is coprime to p1 . . . pt−1. Note that
N = p1+· · ·+pt−1 is an odd number. Such primes can be easily constructed starting with say
p1 = 11 and recursively defining p2, . . . , pt−1 as primes in suitable arithmetic progressions.
Take ni = 1 for i = 1, . . . , t. Let q1, . . . , qℓ be all the primes dividing N . Pick some integers

a1, . . . , at−1 such that s of the numbers

(

−ai

pi

)

are −1 and the other s − 1 are 1. Now

choose a prime pt such that pt ≡ 11 (mod 12), pt is coprime to pi − 1 for i = 1, . . . , t − 1,
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pt ≡ −ai −N (mod pi) for i = 1, . . . , t− 1, and

(

qi

pt

)

= 1 for all i = 1, . . . , ℓ. For these last

congruences to be fulfilled, we note that it is enough to choose pt ≡ 1 (mod qu) if qu ≡ 1
(mod 4) and pt ≡ −1 (mod qu) if qu ≡ 3 (mod 4), where u = 1, . . . , ℓ. Notice that this
choice is consistent with the fact that pt ≡ 11 (mod 12) if it happens that one of the qu is 3.
So far, the primes p1, . . . , pt satisfy conditions (i)–(iii) of Lemma 3.1. Finally, put at = −N .

Note that

(

−at

pt

)

=
ℓ

∏

u=1

(

qu

pt

)αu

= 1. Here, αu is the exact power of qu in −at. Hence,

exactly s of the numbers

(

−ai

pi

)

are 1 and the others are −1 and since all primes pi are

congruent to 3 modulo 4 the same remains true if one replaces −ai by ai. Thus, condition
(vi) of Lemma 3.1 holds. Now one checks immediately that (v) holds with ni = 1 for all
i = 1, . . . , t, because for all i = 1, . . . , t − 1 we have

t
∑

j=1

p
nj

j + ani

i ≡ N + pt + ai (mod pi) ≡ 0 (mod pi),

while
t

∑

j=1

p
nj

j + at = N + pt − N ≡ 0 (mod pt),

and (iv) is obvious because 2ni + 1 = 3 and pi − 1 ≡ 10 (mod 12) is not a multiple of 3 for
i = 1, . . . , t.

Remark. The above argument does not work for s = 1. Indeed, in this case t − 1 = 1,
therefore p1 + · · · + pt−1 = p1 and this is not coprime to p1.

4 Computational results and further remarks

To conduct a search for elements of S∗
k , one can proceed as follows. If n ∈ S∗

k,ℓ, then there
exists a positive number Q and primes p1, p2, . . . , pℓ such that

n = Qp1 . . . pℓ−1pℓ = pk
1 + . . . + pk

ℓ−1 + pk
ℓ ,

so that a necessary condition for n to be in S∗
k,ℓ is that pℓ|(p

k
1 + . . . + pk

ℓ−1). (Note that some
of the pi’s may also divide Q.)

For instance, in order to find n ∈ S∗
k,3, we examine the prime factors p of rk + qk as

2 ≤ r < q run through the primes up to a given x, and we then check if Q :=
rk + qk + pk

rqp
is an integer. If this is so, then the integer n = Qrqp belongs to S∗

k,3.
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Proceeding in this manner (with ℓ = 3, 4), we found the following elements of S∗
2 :

870 = 2 · 3 · 5 · 29 = 22 + 52 + 292,

188355 = 3 · 5 · 29 · 433 = 52 + 292 + 4332,

298995972 = 22 · 3 · 11 · 131 · 17291 = 32 + 112 + 1312 + 172912,

1152597606 = 2 · 3 · 5741 · 33461 = 22 + 57412 + 334612,

1879906755 = 3 · 5 · 2897 · 43261 = 52 + 28972 + 432612,

5209105541772 = 22 · 3 · 11 · 17291 · 2282281 = 32 + 112 + 172912 + 22822812.

Although we could not find any elements of S4, we did find some elements of S∗
4 , but

they are quite large. Here are six of them:

107827277891825604 = 22 · 3 · 7 · 31 · 67 · 18121 · 34105993 = 34 + 314 + 674 + 181214,

48698490414981559698 = 2 · 34 · 7 · 13 · 17 · 157 · 83537 · 14816023 = 24 + 174 + 835374,

3137163227263018301981160710533087044

= 22 · 32 · 7 · 11 · 191 · 283 · 7541 · 1330865843 · 2086223663996743

= 34 + 74 + 1914 + 13308658434,

129500871006614668230506335477000185618

= 2 · 32 · 7 · 132 · 31 · 241 · 15331 · 21613 · 524149 · 1389403 · 3373402577

= 24 + 2414 + 33734025774,

225611412654969160905328479254197935523312771590

= 2 · 32 · 5 · 7 · 132 · 37 · 41 · 109 · 113 · 127 · 151 · 541 · 911 · 5443

·3198662197 · 689192061269

= 54 + 74 + 1134 + 1274 + 9114 + 6891920612694,

17492998726637106830622386354099071096746866616980

= 22 · 5 · 7 · 23 · 31 · 97 · 103 · 373 · 1193 · 8689 · 2045107145539 · 2218209705651794191

= 24 + 1034 + 3734 + 11934 + 20451071455394.

Note that these numbers provide elements of S∗
4,3, S∗

4,4, S∗
4,5 and S∗

4,6.
The smallest elements of S∗

2 , S∗
3 , . . . , S∗

10 are the following:

870 = 2 · 3 · 5 · 29 = 22 + 52 + 292

378 = 2 · 33 · 7 = 23 + 33 + 73

107 827 277 891 825 604 = 22 · 3 · 7 · 31 · 67 · 18121 · 34105993 = 34 + 314 + 674 + 181214

178 101 = 32 · 7 · 11 · 257 = 35 + 75 + 115

594 839 010 = 2 · 3 · 5 · 17 · 29 · 37 · 1087 = 26 + 56 + 296

275 223 438 741 = 3 · 23 · 43 · 92761523 = 37 + 237 + 437

26 584 448 904 822 018 = 2 · 3 · 7 · 17 · 19 · 113 · 912733109 = 28 + 178 + 1138

40 373 802 = 2 · 34 · 7 · 35603 = 29 + 39 + 79

420 707 243 066 850 = 2 · 32 · 52 · 29 · 32238102917 = 210 + 510 + 2910.
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Below is a table of the smallest element n ∈ S∗
k,ℓ for ℓ = 3, 4, 5, 6, 7 (with a convenient k):

ℓ n
3 378 = 2 · 33 · 7 = 23 + 33 + 73

4 298995972 = 22 · 3 · 11 · 131 · 17291 = 32 + 112 + 1312 + 172912

5 2 836 295 = 5 · 7 · 11 · 53 · 139 = 53 + 73 + 113 + 533 + 1393

6 (a 48 digit number) = 54 + 74 + 1134 + 1274 + 9114 + 6891920612694

7 (a 145 digit number) = 214 + 314 + 514 + 1114 + 2914 + 14914 + 1980955119714

Theorem 3 provides a way to construct infinitely many elements of S∗
k,ℓ given any fixed

positive odd integer ℓ. However, in practice, the elements obtained are very large. Indeed,
take the case k = 5. With the notation of Lemma 1, we have t = 4; one can then choose
{p1, p2, p3, p4} = {11, 47, 59, 227}. As suggested in Lemma 2, let ni = 1 for i = 1, 2, 3, 4.
An appropriate set of integers ai’s is given by {a1, a2, a3, a4} = {8, 32, 10, 110}, which gives
{(

ai

pi

)

: i = 1, 2, 3, 4

}

= {−1, 1,−1, 1}. Looking for a solution a of the set of congruences







a ≡ 3 (mod pi−1
2

) (i = 1, 2, 3, 4)
a ≡ 3 (mod 4)
a ≡ ai (mod pi) (i = 1, 2, 3, 4)

,

we obtain a = 4 619 585 064 883. With M = 4
4

∏

i=1

pi(pi − 1)

2
= 10 437 648 923 020, we notice

that indeed gcd(a,M) = 1. As the smallest prime number p ≡ a (mod M), we find p =
10M + a = 108 996 074 295 083. This means that the smallest integer n ∈ S∗

k,5 constructed
with our algorithm is given by

n =
4

∑

i=1

p
p−1

2

i + p
p−1

2 ,

which is quite a large integer since

n ≈ p
p−1

2 ≈ (1014)
1

2
·1014

≈ 107·1014

.
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