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On the index of composition of integers from various sets
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2
and M. V. Subbarao

3

Abstract. Given an integer n ≥ 2, let λ(n) := (log n)/(log γ(n)), where γ(n) =∏
p|n p, stand for the index of composition of n, with λ(1) = 1. We study the

distribution function of (λ(n) − 1) log n as n runs through particular sets of
integers, such as the shifted primes, the values of a given irreducible cubic
polynomial and the shifted powerful numbers.
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1. Introduction. Recently, De Koninck and Doyon [2] studied the global and
local behaviour of the index of composition of an integer, namely the function

λ(n) :=
log n

log γ(n)
, where γ(n) stands for the product of the distinct primes dividing

n (for convenience, λ(1) = γ(1) = 1). In a sense, λ(n) measures the level of com-
positeness of n. More recently, De Koninck and Kátai [3] extended the study of
this function by establishing estimates for

∑
x≤n≤x+√

x

λ(n),
∑

x≤n≤x+√
x

1/λ(n) and∑
x≤p≤x+x2/3

λ(p+ 1).

In this paper, we study the distribution function of η(n) := (λ(n) − 1) log n as
n runs through particular sets of integers, such as the shifted primes, the values
of a given irreducible cubic polynomial with positive leading coefficient and the
shifted powerful numbers.
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2Research supported by the Applied Number Theory Research Group of the Hungarian Academy
of Science and by a grant from OTKA.
3† Professor M.V. Subbarao passed away on February 15, 2006.
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2. Notations and preliminary results. Let N and Z stand respectively for the set
of positive integers and the set of all integers. In what follows, the letters p and
q (with or without subscript) always stand for prime numbers, while c and C
stand for absolute positive constants, not necessarily the same at each occurrence.
Moreover, given any integer n ≥ 2, let P (n) stand for the largest prime factor of
n. As usual, φ stands for Euler’s function and µ for the Möbius function. We let
λ∗ stand for the Liouville function defined by λ∗(n) = (−1)Ω(n), where Ω(n) is the
number of prime factors of n counted with their multiplicities. We shall also write
ω(n) for the number of distinct prime factors of n, and the logarithmic integral of

x as li(x) :=
∫ x

2

dt

log t
.

A positive integer n is said to be powerful if p2|n whenever the prime number
p divides n. Let B be the set of powerful numbers. For each K ∈ B, we set

AK := {n = K ·m : gcd(K,m) = 1, µ2(m) = 1} and

AK(x) := #{n ≤ x : n ∈ AK}.

One can prove that, given any K ∈ B,

AK(x) = α(K)x+O

(√
x

K
ρ(K)

)
(x → ∞),(1)

where

α(K) =
6

π2K

∏
p|K

(
1 +

1
p

)−1

and ρ(K) =
∏
p|K

(
1 +

1
√
p

)

and where the constant implicit in O(. . . ) is absolute, that is does not depend on
K.

Indeed, in order to show (1), one may proceed as follows. First, it is well known
that

A1(x) =
∑
n≤x

|µ(n)| =
6
π2x+O(

√
x).(2)

On the other hand, since

∞∑
n=1

(n,K)=1

|µ(n)|
ns

=
ζ(s)
ζ(2s)

∏
p|K

1
1 + 1/ps

,

it follows that

AK(x) =
∑
v∈DK

λ∗(v)A1

( x

Kv

)
,(3)
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where DK is the set of all those positive integers all of whose prime factors divide
K. Now, using (2) in (3), we obtain that

AK(x) =
∑

v≤x/K
v∈DK

λ∗(v) · 6
π2

x

Kv
+O

(√
x

K

∑
v∈DK

1√
v

)

=
6
π2

x

K

∑
v∈DK

λ∗(v)
v

+O


 x

K

∑
v≥x/K

1
v


+O

(√
x

K

∑
v∈DK

1√
v

)

= α(K)x+O

(√
x

K
ρ(K)

)
,

thereby establishing (1).

Now, for each powerful number K > 1, set

κ(K) = log
(

K

γ(K)

)
,

letting κ(1) = 0. Then, given any n ∈ AK , it is clear that

η(n) = (λ(n) − 1) log n =
κ(K)

1 − κ(K)
log n

.(4)

Lemma 1. If K,L ∈ B and κ(K) = κ(L), then K = L.

Proof. By hypothesis, we have K/γ(K) = L/γ(L). Hence, given a prime power
pβ‖K (with β ≥ 2), we have pβ−1‖K/γ(K), so that pβ−1‖L/γ(L), which means
that pβ‖L. Since this is true for any prime power, it follows that K = L.

Let us now reorder the elements of B. We enumerate them as K1,K2, . . . in
such a way that κ(K1) < κ(K2) < . . . . In this manner, we clearly have that
κ(Ki) → ∞ as i → ∞.

Let ξ be the random variable taking the values κ(Ki) with probability α(Ki),
that is P (ξ = κ(Ki)) = α(Ki). Let F (y) be the distribution function of ξ. Then
it is clear that F (u) = F (v) if κ(Ki) < u < v < κ(Ki+1) and also that F is
continuous for all real y �∈ {κ(K1), κ(K2), . . . }. �

3. The distribution function of η(n) as n runs through the set positive integers.

Theorem 1. For each point of continuity y of F ,

lim
x→∞

1
x

#{n ≤ x : η(n) < y} = F (y).

Proof. Let i be a fixed positive integer and let y ∈ (κ(Ki), κ(Ki+1)). Our goal is
to estimate the size of the set of positive integers n ≤ x such that η(n) < y. It
follows from (4) that there exists an absolute constant c such that, if n ∈ AK ,

κ(K) < η(n) < κ(K) + c
κ2(K)
log n

.
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Hence, if η(n) < y, its powerful partK must satisfy κ(K) ∈ {κ(K1), . . . , κ(Ki)},
so that we may write that

{n : η(n) < y} ⊆
i⋃

j=1

AKj .

Now, for a fixed Kj , let us consider the integers n ∈ AKj
. Since κ(Kj) < y and

κ2(Kj)
log n

→ 0 provided n ∈ AKj
and n → ∞, it follows that for every n ∈ AKj with

the exception of at most finitely many of them, we have that η(n) < y, thereby
completing the proof of Theorem 1. �

4. The case of shifted primes. We now consider the case of the shifted primes
p− 1.

Before we go any further, let us mention two important results concerning the
counting function for the number of primes in an arithmetic progression, namely
the function

π(x;D, 
) := #{p ≤ x : p ≡ 
 (mod D)}.

First, we shall be using the fact that it follows from the Siegel-Walfisz Theorem
(see Walfisz [8]) that, for some positive constant c1,

π(x;Kδ2, 1) =
li(x)

φ(Kδ2)

(
1 +O

(
e−c1

√
log x

))
(5)

uniformly for all δ for which δ2K ≤ (log x)c, where the constant implicit in the
error term is absolute. Also, we will be using the Brun-Titchmarsh inequality (see
for instance Crandall and Pomerance [1, Theorem 1.4.7]), that is

π(x;D, 
) ≤ C
li(x)
φ(D)

.(6)

Now, for a fixed K ∈ B, let

SK := {p : p− 1 = Km, gcd(K,m) = 1, µ2(m) = 1} and

SK(x) := #{p ≤ x : p ∈ SK}.

We shall now estimate the size of SK(x). To do so, we first observe that

#{p ≤ x : there exists a prime q > (log x)1/3

such that q2|p− 1} � li(x)
(log x)1/3

.(7)
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To see that (7) holds, observe that, using (6), we obtain that∑
p≤x

p≡1 (mod q2)
q>(log x)1/3

1 ≤
∑

q>(log x)1/3

π(x; q2, 1) �
∑

q>(log x)1/3

1
φ(q2)

li(x)

= li(x)
∑

q>(log x)1/3

1
q(q − 1)

� li(x)
∑

q>(log x)1/3

1
q2

< li(x)
∫ ∞

(log x)1/3

dt

t2
� li(x)

(log x)1/3
,

which clearly establishes (7).

Let Py :=
∏
p<y p. Choose y = log x

3 and consider K ∈ B with P (K) < y and
K < (log x)c for some constant c > 0. Then, in view of (7), we have

SK(x) =
∑
δ|Py

µ(δ)π(x;Kδ2, 1) +O

(
li(x)

(log x)1/3

)
.(8)

But for δ|Py and since by Chebychev’s inequality, Py ≤ e1.05y = x0.35, it
follows that Kδ2 < KP 2

y < Cx0.75 for some constant C > 0. Therefore, combining
estimates (8), (5) and (6), we get that

SK(x) = li(x)
∑
δ|Py

µ(δ)
φ(Kδ2)

+O


li(x)e−c1

√
log x

∑
δ|Py

1
φ(Kδ2)


(9)

+O


li(x)

∑
δ|Py

δ>(log x)c

1
φ(Kδ2)




= li(x)Ey(K) +O
(
li(x)e−c1

√
log xUK(x)

)
+O (li(x)VK(x)) ,

say. Now, since

1
φ(Kδ2)

≤ 1
φ(K)

· 1
φ(δ2)

and
∑
δ

1
φ(δ2)

= O(1),

it follows that

UK(x) � 1
φ(K)

.(10)

Moreover, since∑
δ>(log x)c

1
φ(δ2)

=
∑

δ>(log x)c

1
δφ(δ)

�
∑

δ>(log x)c

log log δ
δ2

� log log log x
(log x)c

,
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we have

VK(x) = O

(
log log log x

(log x)c

)
.(11)

On the other hand,

Ey(K) =
1

φ(K)

∏
p|K

(
1 − 1

p2

) ∏
(p,K)=1

p<(log x)1/3

(
1 − 1

p(p− 1)

)
,

so that setting

E(K) :=
1

φ(K)

∏
p|K

(
1 − 1

p2

) ∏
(p,K)=1

(
1 − 1

p(p− 1)

)
,

it is clear that

Ey(K) = (1 + o(1))E(K) as y = y(x) → ∞.(12)

Gathering estimates (10), (11) and (12) in (9), we obtain

SK(x)
li(x)

= E(K) + o(1) (x → ∞).

We may thus conclude that (λ(p−1)−1) log(p−1) has a distribution function.
Hence, letting G(y) be the distribution function of the random variable ξ defined
by P (ξ = κ(K)) = E(K), we have thus established

Theorem 2. For each point of continuity y of G,

lim
x→∞

1
li(x)

#{p ≤ x : (λ(p− 1) − 1) log(p− 1) < y} = G(y).

Remark. Repeating the argument used for F , one easily obtains that G is contin-
uous at each real number y if and only if y �∈ {κ(K) : K ∈ B}.

5. The case of an irreducible cubic polynomial. Let f(n) be an irreducible cubic
polynomial with coefficients in Z with a positive leading coefficient. C. Hooley [5,
Chapter 4] proved that

#{n ≤ x : there exists a prime q >
1
6

log x with q2|f(n)} � x√
log x

.(13)

Let ρ(
) be the number of (incongruent) roots of the congruence f(ν) ≡ 0
(mod 
). Now, given an arbitrary constant c > 0, let

ξ1 =
1
6

log x, K ∈ B, K < ξc1, P (K) < ξ1.

Moreover, let

VK(x) := #{n ≤ x : f(n) = Km, gcd(K,m) = 1, µ2(m) = 1}.
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By using the Eratosthenian sieve (see for instance Halberstam and Richert
[4, Chapter 1]), we have

VK(x) =
∑
δ1|K

δ2|
Pξ1

γ(K)

µ(δ1)µ(δ2)#{n ≤ x : f(n) ≡ 0 (mod Kδ1δ22)}.

Therefore,

VK(x) =
x

K

∏
p<ξ1

(p,K)=1

(
1 − ρ(p2)

p2

)
·

∏
pα‖K

(
1 − ρ(pα+1)

pα+1

)
+O

(
x

log2 x

)
+O(TK(x)),(14)

say, where in view of (13), ∑
K<(log x)c

TK(x) � x√
log x

.(15)

In what follows, we shall use a classical result of T. Nagell [7, Chapter III],
from which it follows that ρ(
) ≤ c · 2ω(�). In particular, this allows us to write
that

1 ≥
∏
p≥ξ1

(
1 − ρ(p2)

p2

)
≥ exp


−2

∑
p≥ξ1

ρ(p2)
p2


 ≥ exp{− c

ξ1
} = 1 −O

(
1
ξ1

)
.

Thus, setting D =
∏
p

(
1 − ρ(p2)

p2

)
, we have that

∏
p<ξ1

(p,K)=1

(
1 − ρ(p2)

p2

) ∏
pα‖K

(
1 − ρ(pα+1)

pα+1

)
= D

(
1 +O

(
1
ξ1

)) ∏
pα‖K

(
1 − ρ(pα+1)

pα+1

)
(
1 − ρ(p2)

p2

) ,

so that in light of (15), (14) may be written as

VK(x) = xξ(K) +O

(
x√
log x

)
,

where

ξ(K) :=
D

K

∏
pα‖K

(
1 − ρ(pα+1)

pα+1

)
(
1 − ρ(p2)

p2

) .

Letting Ff (y) be the distribution function of the random variable ξf defined by
P (ξf = κ(K)) = ξ(K), we can deduce, using the same approach as in the earlier
two theorems, the following result.
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Theorem 3. Given an irreducible cubic polynomial f with positive leading coeffi-
cient, then, provided y �= κ(K) for all K ∈ B,

lim
x→∞

1
x

#{n ≤ x : (λ(f(n)) − 1) log f(n) < y} = Ff (y).

Remark. Letting f be as in the statement of Theorem 3, one can show that

∑
n≤x

λ(f(n)) = x+
∑

K powerful

∑
n≤x

κ(K)
log f(n)

+O


 ∑
K powerful

∑
n≤x

κ2(K)
log2 f(n)




= x+ c2
x

log x
+O

(
x

log3/2 x

)
,

for some computable constant c2.

6. The case of shifted powerful numbers. Given a powerful number K, consider
the set

TK := {n ∈ B : n+ 1 = Kν, gcd(K, ν) = 1, µ2(ν) = 1}.

It is well known that each powerful number n can be written uniquely in the
form n = r3m2, where m ∈ N and r is a squarefree number. Setting B(r) := {n ∈
N : n = r3m2, m = 1, 2, 3, . . . }, we have

B =
∞⋃

r=1
µ2(r)=1

B(r).

Now, let T (r)
K := TK ∩ B(r), so that

T (r)
K = {n ∈ N : n = r3m2 and n+ 1 = Kν, gcd(K, ν) = 1, µ2(ν) = 1}.

Furthermore, we introduce the counting functions

TK(x) := {n ≤ x : n ∈ TK} and T (r)
K (x) := {n ≤ x : n ∈ T (r)

K }.

With good estimates of TK(x) and T (r)
K (x), at least in the range K < (log x)c

(for an arbitrary constant c > 0), P (K) <
√

log x, r < (log x)1/4, we shall be able
to establish that

lim
x→∞

1
B(x)

#{n ≤ x : n ∈ B, (λ(n+ 1) − 1) log n < y}

exists, where B(x) := #{n ≤ x : n ∈ B}.

To do so, let 1 ≤ a ≤ (log x)c, where c > 0 is a given constant. Set fa(m) :=
am2 + 1 and let ρa(ν) be the number of solutions of fa(m) ≡ 0 (mod ν). It is
known that ρa is a multiplicative function and that, for each α ∈ N,

ρa(pα) =

{
1 + (−a

p ) if (p, 2a) = 1,
0 if p|a,
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and that if a is odd,

(1) ρa(2) = 1,

(2) ρa(22) =

{
2 if 4|a+ 1,
0 if 4 � |a+ 1,

(3) if α ≥ 3, then ρa(2α) = 4 · εa(α), where

εa(α) =

{
1 if y2 ≡ −a (mod 2α) is solvable,
0 otherwise.

If r0 = r0(x) a function slowly tending to +∞ with x, then

lim
x→∞

1
B(x)

#{n = m2r3 ≤ x : r ≥ r0} = 0.

Let K ∈ B be fixed. Let 1 ≤ a ≤ r30, x
1/4 ≤ z ≤ x4 and SK,a(z) be the number

of positive integers m ≤ z for which fa(m) = Kν, where (K, ν) = 1 and where
either ν is squarefree or if p2|ν, then p > log x. By using the Eratosthenian sieve
(see Halberstam and Richert [4, Chapter 1]), one can obtain that

SK,a(z) =
∑
δ1,δ2

µ(δ1)µ(δ2)#{m ≤ z : fa(m) ≡ 0 (mod Kδ1δ22)},

where, in this sum, δ1 runs over the squarefree divisors of K, while δ2 runs over
those squarefree numbers which are coprime to Ka, and for which the inequality
P (δ2) ≤ log x holds. Therefore

SK,a(z) = z
∑

Kδ1δ22≤z

ρa(Kδ1δ22)µ(δ1)µ(δ2)
Kδ1δ22

+O


 ∑
Kδ1δ22≤az2

ρa(Kδ1δ22)


 .(16)

The error term in (16) can easily be seen to be O(
√
z), due essentially to the

fact that P (δ2) ≤ log x. On the other hand, the summation in the main term on
the right hand side of (16) may also be taken to run over those Kδ1δ22 > z since∣∣∣∣∣∣

∑
Kδ1δ22>z

ρa(Kδ1δ22)µ(δ1)µ(δ2)
Kδ1δ22

∣∣∣∣∣∣ ≤
∑

Kδ1δ22>z

ρa(Kδ1)ρa(δ22)
Kδ1δ22

� 1
z1/4 ,

say. Hence, writing K = 2δK1 with K1 odd, we have

SK,a(z)
z

=
1 + o(1)
K1

∏
pα‖K1
(p,a)=1

(
1 − ρa(p)

p

)

∏
(p,2K1a)=1

(
1 − ρa(p)

p2

)
· δ(K, a) (z → ∞),(17)
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where

δ(K, a) =




0 if gcd(K, a) > 1,
1 if a is even and K is odd,
1
2δ

(
ρa(2δ) − 1

2ρa(2
δ+1)

)
if a is odd and K is even,

1 − ρa(22)
22 if a is odd and K is odd.

It is clear that

TK(x) =
∑
r≤r0

(K,r)=1

µ2(r)T (r)
K (x) + o(B(x))(18)

and furthermore that

T (r)
K (x) = SK,r3

( √
x

r3/2

)
+O(∆r),(19)

where ∆r stands for the number of positive integers n ≤ x, n ∈ T (r)
K such that

p2|n + 1 for some prime p > log x. The main difficulty in obtaining a “closed
formula” for TK(x) is to estimate the size of

∑
r≤r0 O(∆r).

If we set

D(x, Y ) := #{n ≤ x : n ∈ K for which there exists p2|n+ 1, p > Y },
it is clear that ∑

r≤r0
O(∆r) � D(x, log x).(20)

We shall actually prove that, for some constant C > 0,

D(x,
√

log x) ≤ C

√
x

(log x)1/3
= o(B(x)),(21)

which together with (18), (19) and (20) will clearly be enough to show that

TK(x) =
∑
r≤r0

(K,r)=1

µ2(r)SK,r3
( √

x

r3/2

)
+ o (B(x)) ,(22)

in light of the well known estimate

B(x) = d
√
x+O(x1/3) with d =

ζ(3/2)
ζ(3)

≈ 2.17(23)

(see for instance Ivić and Shiu [6]).

To prove (21), for a given constant c3 > 0, we let r < (log x)c3 and count those
positive integers n = r3m2 ≤ x for which p2|r3m2 + 1. If p2 ≤ x/r3, then no more
than 2

√
x

r3/2p2
such m’s exist. So, assume that m0 is the smallest positive integer m

for which p|r3m2+1. Then, all the otherm’s can be written asm = m0+tp for some
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positive integer t. Let us search for those integers t for which r3(m0 + tp)2 +1 ≡ 0
(mod p2). In this case, we have

(r3m2
0 + 1) + 2m0tr

3p+ t2p2r3 ≡ 0 (mod p2),
r3m2

0 + 1
p

+ 2m0tr
3 ≡ 0 (mod p).

But since (m0, p) = 1 and (2r3, p) = 1, one obtains the value of t (mod p).

Since m0 + tp <
√
x

r3/2 , no more than one such t may occur. Consequently,

for r < (log x)c3 and p >
√
x

r3/2 , at most one such m exists under the conditions
r3m2 + 1 ≤ x and p2|r3m2 + 1.

Therefore, given a large number W ,

D(x,
√

log x) ≤
∑

r3m2≤x
r>W

1 +
∑
r≤W

π(
√
x) + 2

∑
r<W

√
x

r3/2

∑
√

log x≤p≤
√

x

r3/2

1
p2

≤
√
x
∑
f>W

1
r3/2

+Wπ(
√
x) + 2

√
x√

log x

∑
r<W

1
r3/2

≤ c4

√
x√
W

+ c5
W

√
x

log x
+ 2

√
x√

log x

≤ c6

√
x

(log x)1/3
,

by choosing W = (log x)2/3, which completes the proof of (21).

Now, set

σ(K, r) :=
1
K1

∏
p|K1

(
1 − ρr(p)

p

) ∏
(p,2K1r)=1

(
1 − ρr(p)

p2

)
· δ(K, r3).

Using (17), we obtain that

SK,r3

( √
x

r3/2

)
=

√
x

r3/2
σ(K, r) + o(

√
x).(24)

It follows from (23) and (24) that

1
B(x)

SK,r3

( √
x

r3/2

)
=

1
dr3/2

σ(K, r) + o(1) (x → ∞).(25)

Therefore, setting

∆(K) :=
∑

(K,r)=1

µ2(r)
σ(K, r)
r3/2

,

it follows from (22) and (25) that

TK(x) = (1 + o(1))∆(K)
√
x (x → ∞).
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Hence, letting H(y) be the distribution function of the random variable ξ
defined by P (ξ = κ(K)) = ∆(K)/d, we can deduce using the same approach
as in the earlier theorems the following result.

Theorem 4. For each point of continuity y of H,

lim
x→∞

1
d
√
x

#{n ≤ x : n ∈ B, η(n+ 1) < y} = H(y).

7. Further remarks.

Lemma 2. Let F ∈ Z[x], F (x) = f1(x) · · · fr(x) be a product of irreducible polyno-
mials such that gcd(fi(x), fj(x)) = 1 for every i �= j.

(a) If deg fj ≤ 3 (j = 1, . . . , r), then for every ξ1 > 0 there exists ξ2 > 0 such
that

{n ≤ x : q2|F (n) for some prime q > (log x)ξ1} ≤ cx

(log x)ξ2
.

(b) If deg fj ≤ 2 (j = 1, . . . , r), then

#{p ≤ x : q2|F (p) for some prime q > (log x)ξ1} ≤ c li(x)
(log x)ξ2

.

Proof. In the case r = 1, this can be proved by essentially repeating the argument
found in Chapter 4 of Hooley [5]. Indeed, let Di,j be the resultant of (fi(x), fj(x)).
It is known that q2|fi(n)fj(n) with q � |Di,j implies that either q2|fi(n) or q2|fj(n).
By this observation, Lemma 2 is proved.

Given a function F satisfying the conditions of Lemma 2, then using Lemma 2
and a routine application of the Eratosthenian sieve (see Halberstam and Richert
[4, Chapter 1]), one can show that

lim
x→∞

1
x

#{n ≤ x : F (n) ∈ AK} = AK ,

lim
x→∞

1
π(x)

#{p ≤ x : F (p) ∈ AK} = BK ,

for some constants AK and BK such that∑
K∈B

AK = 1 and
∑
K∈B

BK = 1.

Letting θ and ψ be random variables such that

P (θ = κ(K)) = AK , P (ψ = κ(K)) = BK

and letting Hθ and Hψ be their corresponding distribution functions, then we have
the following result.
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Theorem 5. Under the conditions of Lemma 2,

lim
x→∞

1
x

#{n ≤ x : η(F (n)) < y} = Hθ(y),

lim
x→∞

1
π(x)

#{p ≤ x : η(F (p)) < y} = Hψ(y),

provided y �= κ(K) for all K ∈ B.
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7P4, Canada
e-mail: jmdk@mat.ulaval.ca
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