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Édition du 29 décembre 2006

Abstract

Let H(n) =
σ(φ(n))
φ(σ(n))

, where φ(n) is Euler’s function and σ(n)

stands for the sum of the positive divisors of n. We obtain the maxi-
mal and minimal orders of H(n) as well as its average order, and we
also prove two density theorems. In particular, we answer a question
raised by Golomb.
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§1. Introduction

Let φ be Euler’s function and let σ be the sum of the divisors function.
The composition of the functions σ and φ has been the object of several
studies; see for instance Ma̧kowski and Schinzel [9], Pomerance [11], Sándor
[12], Ford [2], Luca and Pomerance [8]. In 1993, Golomb [3] investigated the
difference σ(φ(n)) − φ(σ(n)) showing that it is both positive and negative
infinitely often, and asked what is the proportion of each.

In this paper, we answer this question of Golomb and more, by studying
the behavior of the quotient

H(n) :=
σ(φ(n))

φ(σ(n))
.

In particular, we obtain the maximal and minimal orders of H(n), its average
order, and we also prove two density theorems.

Given any positive real number x we write log x for the maximum be-
tween the natural logarithm of x and 1. If k is a positive integer, we write
logk x for the k-th iteration of the function log x. Throughout this paper, p,
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q and r stand for prime numbers, while γ stands for Euler’s constant. We
also use π(x) for the number of primes up to x and ω(n) for the number of
distinct prime factors of n.

Acknowledgments. The first author was supported in part by a grant
from NSERC. The second author was supported in part by Grants SEP-
CONACyT 46755, PAPIIT IN104505 and a Guggenheim Fellowship. The
authors wish to thank the referee for helpful remarks and suggestions which
improved the quality of this paper.

§2. Main results

Theorem 1. The maximal order of H(n) is e2γ log2
2 n, that is

lim sup
n→∞

H(n)

log2
2 n

= e2γ.

Theorem 2. There exists a positive constant δ such that the minimal order
of H(n) is δ/ log2 n, that is

lim inf
n→∞ H(n) log2 n = δ.

Moreover δ ∈ [(1/40)e−γ, 2e−γ].

Theorem 3. As x →∞,

1

x

∑

n≤x

H(n) = c0 e2γ log2
3 x + O

(
log

3/2
3 x

)
,

where

c0 = lim
x→∞

1

x

∑

n≤x

φ(n)

σ(n)

=
∏
p

(
1− 3

p(p + 1)
+

1

p2(p + 1)
+

(p− 1)3

p2

∞∑

i=3

1

pi − 1

)
≈ 0.4578.
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Theorem 4. For each number u, 0 ≤ u ≤ 1, the asymptotic density of the
set of numbers n with

H(n) > ue2γ log2
3 n

exists, and this density function is strictly decreasing, varies continuously
with u, and is 0 when u = 1.

In particular, Theorem 4 shows that σ(φ(n)) − φ(σ(n)) is positive for
most n, thus providing an answer to Golomb’s question.

Theorem 5. The set {H(1), H(2), H(3), . . .} is dense in [0, +∞).

§3. Preliminary results

Theorem A (Heath-Brown). Let k and a be coprime positive integers.
Then there exists a prime number p ≡ a (mod k) which satisfies p =
O(k11/2).

Proof. See Heath-Brown [6].

Remark. It has been shown by Alford, Granville and Pomerance [1] that
for most values of k, one can replace the constant 11/2 by 12/5 + ε for any
fixed ε > 0. It can also be shown that if GRH holds, then the constant 11/2
can be replaced by 2 + ε for any fixed ε > 0.

Theorem B. (Pomerance) There exists a constant κ > 0 such that, for
all positive integers n,

σ(φ(n))

n
> κ.

Proof. See Pomerance [11].

Remark. This statement relates to a long standing conjecture of Ma̧kowski

and Schinzel [9], which asserts that
σ(φ(n))

n
≥ 1

2
. Recently, Ford [2] has

shown that κ ≥ 1

39.4
. Note also that the conjectured minimum 1

2
is attained

when n is a product of the first Fermat primes, such as n = 2, 6, 30, 510,
131070 and 8589934590.
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Lemma 1. (Mertens’ Theorem) The estimate

∏

p≤x

(
1− 1

p

)
=

e−γ

log x

(
1 + O

(
1

log x

))

holds for large values of x.

Proof. This result is due to Mertens [10].

Lemma 2. lim inf
n→∞

φ(n) log2 n

n
= e−γ.

Proof. This result, which follows essentially from Mertens’ Theorem, was
first obtained by Landau [7].

Lemma 3. lim sup
n→∞

σ(n)

n log2 n
= eγ.

Proof. This result also follows from Mertens’ Theorem and was first ob-
tained by Gronwall [4].

Lemma 4. There exists a positive constant c1 such that for large real
numbers x, both φ(n) and σ(n) are divisible by all prime powers pa <
c1 log2 x/ log3 x for all positive integers n < x with O(x/ log2

3 x) exceptions.

Proof. The above result for the case of the function φ(n) is Lemma 2 in
[8]. To prove the result for the function σ(n), let m be an arbitrary positive
integer and write

S(x,m) =
∑

log2 x≤q≤x
m|(q+1)

1

q
.

From the Siegel-Walfisz Theorem (see Theorem 5, Chapter II.8 in Tenen-
baum [13]) and partial summation, it follows that there exist positive num-
bers c1 and x0 such that the inequality

S(x, m) ≥ c1 log2 x

φ(m)

holds for x > x0 and all m ≤ log x. Let g(x) = c1 log2 x/ log3 x. Using
Brun’s sieve, it follows that the set Nm of numbers n ≤ x which have no
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prime factor q > log2 x congruent to −1 modulo m satisfies

#Nm < c2x
∏

log2 x<q<log x
m|(q+1)

(
1− 1

q

)
≤ c2x exp(−S(x,m)),

for some positive constant c2. Assuming now x0 is chosen large enough so
that log x > g(x) for all x > x0, we get that if m = pa < g(x), then

#Npa <
c2x

exp(S(x, pa))
<

c2x

exp(log3 x)
=

c2x

log2 x
.

Summing up the above inequalities over all the O(g(x)/ log g(x)) prime pow-
ers pa < g(x), we get that

∑

pa<g(x)

#Npa ¿ xg(x)

log2 x log g(x)
¿ x

log2
3 x

.

Finally, letM be the set of all positive integers n ≤ x such that n is divisible
by the square of a prime q ≥ log2 x. Then

#M≤ ∑

q≥log2 x

x

q2
¿ x

log2 x log3 x
¿ x

log2
3 x

,

where we used the fact that

∑
p>z

1

p2
¿ 1

z log z
.(1)

Note now that if n ≤ x is such that pa does not divide σ(n) for some
pa < g(x), then either n is in M or n is in

⋃

pa<g(x)

Npa ,

and by the above estimates both these sets are of cardinality O(x/ log2
3 x),

thereby completing the proof of Lemma 4.

Lemma 5. Let x be a positive real number. Setting

hφ(n) =
∑

p|φ(n)
p>log2 x

1

p
and hσ(n) =

∑
p|σ(n)

p>log2 x

1

p
,
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then ∑

n≤x

hφ(n) ¿ x

log3 x
and

∑

n≤x

hσ(n) ¿ x

log3 x
.(2)

Proof. Clearly we have

∑
n≤x

p|φ(n)

1 ≤ x

p2
+

∑
q≤x

p|q−1

x

q
¿ x

p2
+

x log2 x

p
¿ x log2 x

p
.

It now follows that

∑

n≤x

hφ(n) =
∑

p≤x

1

p

∑
n≤x

p|φ(n)

1 ¿ x log2 x
∑

p>log2 x

1

p2
¿ x

log3 x
,

where we used (1) with z := log2 x, thus establishing the first assertion in
(2). We use a similar argument to establish the second assertion in (2).
First of all, note that since ω(n) < log x holds for all n ≤ x provided x is
large enough, it follows that

hσ(n) ≤ ∑

i≤log x

1

pi

¿ log3 x,

where we used pi to denote the i-th prime number. Let N1 be the set of
all positive integers n ≤ x such that there exists a prime q > log2

3 x whose
square divides n. Then, using (1),

#N1 ≤
∑

q>log2
3 x

x

q2
¿ x

log2
3 x log4 x

.

Hence, ∑

n∈N1

hσ(n) ¿ #N1 log3 x ¿ x

log3 x log4 x
.(3)

Now let N2 be the set of those n ≤ x which are not in N1 and which are
divisible by a prime power qa, with a = bc3 log4 xc+ 2, where c3 := 2/ log 2.
For a fixed prime number q, the number of such numbers n is ≤ x/qa, and
therefore

#N2 ≤
∑

q≥2

x

qa
≤ x

2a
+ x

∫ ∞

2

dt

ta
¿ x

2a
¿ x

log2
3 x

,
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which implies that

∑

n∈N2

hσ(n) ¿ #N2 log3 x ¿ x

log3 x
.(4)

Finally, let N3 be the set of positive integers n ≤ x which do not belong to
either N1 or N2. If n ∈ N3 and qαq ||n with αq > 1, then q < log2

3 x and
αq ¿ log4 x, so that qαq ≤ exp(O(log2

4 x)). Hence σ(qαq) < exp(O(log2
4 x)).

In particular, for large x, we have that σ(qαq) < log2 x. Hence, if n ∈ N3

and p > log2 x is a prime dividing σ(n), it follows that there exists a prime
factor q||n of n such that p|(q + 1). Now the same argument used for the
function hφ tells us that if p > log2 x is a fixed prime, then

∑
p|σ(n)
n∈N3

1 ¿ ∑
q≤x

p|q+1

x

q
¿ x log2 x

p
.

Therefore

∑

n∈N3

hσ(n) ≤ ∑

p>log2 x

1

p

∑
p|σ(n)
n∈N3

1 ¿ ∑

p≥log2 x

x log2 x

p2
¿ x

log3 x
.(5)

The second estimate (2) then follows from estimates (3), (4) and (5), and
the proof of Lemma 5 is complete.

Lemma 6. As x →∞,

∑

n≤x

φ(n)

σ(n)
= c0x + O(x3/4),

where c0 is the constant appearing in the statement of Theorem 3.

Proof. Given any number s with <(s) > 1 and letting ζ(s) stand for the
Riemann Zeta Function, we have

∞∑

n=1

φ(n)/σ(n)

ns
=

∏
p


1 +

p−1
p+1

ps
+

p(p−1)
p2+p+1

p2s
+

p2(p−1)
p3+p2+p+1

p3s
+ . . .




= ζ(s)
∏
p

(
1− 1

ps

) ∏
p


1 +

p−1
p+1

ps
+

p(p−1)
p2+p+1

p2s
+

p2(p−1)
p3+p2+p+1

p3s
+ . . .



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= ζ(s)
∏
p


1 +

p−1
p+1

− 1

ps
+

p(p−1)
p2+p+1

− p−1
p+1

p2s
+

p2(p−1)
p3+p2+p+1

− p(p−1)
p2+p+1

p3s
+ . . .




= ζ(s)R(s),

say. Expanding the product R(s) into a Dirichlet series, say

R(s) =
∞∑

n=1

an

ns
,

then it converges absolutely in the half-plane <(s) ≥ 3
4
. Setting bn =

φ(n)/σ(n), we have bn =
∑

d|n
ad, and therefore

∑

n≤x

bn =
∑

n≤x

∑

d|n
ad =

∑

n≤x

ad

[
x

d

]
= x

∑

d≤x

ad

d
+ O


∑

d≤x

|ad|



= R(1)x + O


x

∑

d>x

|ad|
d


 + O


∑

d≤x

|ad|

 .

Since ∑

d≤x

|ad| =
∑

d≤x

|ad|
d3/4

d3/4 = O(x3/4)

and ∑

d>x

|ad|
d

=
∑

d>x

|ad|
d3/4

1

d1/4
≤ x−1/4

∑

d>x

|ad|
d3/4

= O
(
x−1/4

)
,

it follows that ∑

n≤x

φ(n)

σ(n)
= R(1)x + O(x3/4),

which completes the proof of Lemma 6, since R(1) = c0.

Lemma 7. There exists a constant c4 such that the set of positive integers
n ≤ x such that ω(φ(n)) > c4 log3

2 x contains at most O(x/ log2
2 x) elements.

The same holds when the φ function is replaced by the σ function.

Proof. First let D1 be the set of all n ≤ x such that k = ω(n) > 3e log2 x.
A well-known result of Hardy and Ramanujan (see [5]) asserts that

#{n ≤ x : ω(n) = k} ¿ x

log x
· 1

(k − 1)!
· (log2 x + O(1))k−1 ,
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an inequality which together with Stirling’s formula implies that

#{n ≤ x : ω(n) = k} ¿ x

log x
·
(

e log2 x + O(1)

k − 1

)k−1

<
x

log x
· 1

2k−1

since k − 1 > 3e log log x− 1 and x is assumed to be large. Thus,

#D1 = #{n ≤ x : ω(n) > 3e log2 x} ¿ x

log x

∑

k

1

2k
¿ x

log x
¿ x

log2
2 x

.

Assume now that D2 is the set of all n ≤ x which are divisible by the square
of a prime p > log2

2 x. Then

#D2 ≤
∑

p>log2
2 x

x

p2
¿ x

log2
2 x

.

Let D3 be the set of those n ≤ x which are divisible by a prime number p
such that ω(p− 1) ≥ b := be2 log2 xc. Then

#D3 ≤ ∑
p≤x

ω(p−1)≥b

x

p
≤ x

∑

k≥b

1

k!


 ∑

qa≤x

1

qa




k

¿ x
∑

k≥b

(
e log2 x + O(1)

k

)k

¿ x
∑

k≥b

1

2k
¿ x

2b
¿ x

log x
¿ x

log2
2 x

,

where we used the facts that e > 2 and 2e2
> e. Let D4 be the set of those

n ≤ x which are divisible by a prime number p such that ω(p + 1) ≥ b. The
same argument as above shows that

#D4 ¿ x

log2
2 x

.

Let D5 be the set of those n ≤ x which do not belong to D1 ∪D2 ∪D3 ∪D4

and such that there exists a prime power pa|n, where a = bc3 log3 xc, where
c3 = 2

log 2
. By an argument similar to the one used in the proof of Lemma

5, we get that

#D5 ≤ x
∑

p≥2

1

pa
¿ x

2a
+ x

∫ ∞

2

dt

ta
¿ x

2a
¿ x

log2
2 x

.

Thus, D = ∪5
i=1Di contains O(x/ log2

2 x) elements, as claimed.
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§4. The maximal order of H(n)

We will show that for n sufficiently large,

H(n) ≤ (1 + o(1)) e2γ log2
2 n.(6)

Then clearly the proof of Theorem 1 will follow if we can also show the
following result.

Claim. There exists an infinite sequence of integers n for which
H(n) is bounded below by (1 + o(1)) e2γ log2

2 n.

To prove (6), first observe that it follows from Lemma 2 that

σ(φ(n)) ≤ (1 + o(1))eγφ(n) log2 φ(n) ≤ (1 + o(1))eγ n log2 n.(7)

On the other hand, it follows from Lemma 1 that

φ(n) ≥ (1 + o(1))
e−γn

log2 n
,

so that

φ(σ(n)) ≥ (1 + o(1))
e−γσ(n)

log2 σ(n)
≥ (1 + o(1))e−γ n

log2 n
.(8)

Combining (7) and (8), we obtain (6).

Hence, in order to complete the proof of Theorem 1, it remains to prove
our Claim. So let x be a large integer, and let P and Q be the smallest
primes such that

P ≡ 1 (mod M(x)) and Q ≡ −1 (mod M(x)),

where M(x) = LCM[1, 2, . . . , x], and set

n = P Q.

From the Prime Number Theorem, it is clear that

M(x) = e(1+o(1))x < e2x,
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say. Hence, from Theorem A, it follows that

P ¿ e11x, Q ¿ e11x, so that n = PQ ¿ e22x.

Thus, n < e23x holds for large x. For this particular integer n, we have,
since φ(n) = (P − 1)(Q− 1),

σ(φ(n))

φ(n)
=

∏

pαp‖(P−1)(Q−1)

(
1 +

1

p
+

1

p2
+ . . . +

1

pαp

)

≥ ∏

pαp‖(P−1)

(
1 +

1

p
+

1

p2
+ . . . +

1

pαp

)

≥ ∏

pβp≤x

(
1 +

1

p
+

1

p2
+ . . . +

1

pβp

)
,

where each exponent βp is the unique positive integer satisfying pβp ≤ x <
pβp+1. Therefore,

σ(φ(n))

φ(n)
≥ ∏

p≤x

(
1 +

1

p− 1

) ∏

pβp≤x

(
1 + O

(
1

pβp+1

))
.(9)

However,

∏

pβp≤x

(
1 + O

(
1

pβp+1

))
= exp



O


 ∑

pβp≤x

1

pβp+1






 = exp

{
O

(
π(x)

x

)}

= 1 + O

(
1

log x

)
.

Using this in (9), we obtain that, by Lemma 1,

σ(φ(n))

φ(n)
≥ (1 + o(1))

∏

p≤x

p

p− 1
= (1 + o(1))eγ log x.(10)

On the other hand, σ(n) = (P + 1)(Q + 1), so that

φ(σ(n))

σ(n)
=

∏

p|(P+1)(Q+1)

(
1− 1

p

)
≤ ∏

p|(P+1)

(
1− 1

p

)
(11)

≤ ∏

p|M(x)

(
1− 1

p

)
=

∏

p≤x

(
1− 1

p

)
= (1 + o(1))

e−γ

log x
,
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where we used Lemma 1.
Gathering (10) and (11), we get that

H(n) · σ(n)

φ(n)
≥ (1 + o(1))e2γ log2 x.(12)

Since by our choice of n, we have exp{(1+o(1))x} < n < exp{23x}, it follows
that (1 + o(1))x < log n < 23x and therefore that log2 n = log x + O(1),
which means that (12) can be replaced by

H(n) · σ(n)

φ(n)
≥ (1 + o(1))e2γ log2

2 n.(13)

Observing now that, for large x (that is, large P and Q),

σ(n)

φ(n)
=

(P + 1)(Q + 1)

(P − 1)(Q− 1)
= 1 + o(1),

we conclude that our Claim follows immediately from (13), since then by
varying x one obtains infinitely many such integers n. The proof of Theorem
1 is thus complete.

§5. The minimal order of H(n)

It follows from Theorem B and Lemma 3 that, for n sufficiently large,

σ(φ(n))

n
> κ and

n

σ(n)
≥ (1 + o(1))e−γ

log2 n
.

Combining these with the trivial inequality
σ(n)

φ(σ(n))
≥ 1, we immediately

get that

H(n) log2 n =
σ(φ(n))

n
· σ(n)

φ(σ(n))
· n

σ(n)
· log2 n ≥ e−γκ.(14)

To complete the proof of Theorem 2, we shall use an argument developed
by Ma̧kowski and Schinzel in [9].
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Let x be large and let N(x) =
∏

p<x p. Moreover let q be the smallest
prime number exceeding x log x, and choose n = N(x)q−1, so that

φ(n) = N(x)q−2φ(N(x)) =
∏
p<x

pαp ,

where αp = q − 2 + γp and γp ≥ 0 is such that pγp ||φ(N(x)). We then have

σ(φ(n)) =
∏
p<x

σ(pαp) =
∏
p<x

pαp+1 − 1

p− 1

and
σ(φ(n))

φ(n)
=

∏
p<x

pαp+1 − 1

pαp(p− 1)
= (1 + o(1))eγ log x,(15)

by Lemma 1.

On the other hand, again by Lemma 1,

φ(n)

n
=

∏
p<x

(
1− 1

p

)
= (1 + o(1))

e−γ

log x
.(16)

Combining (15) and (16), we obtain that

σ(φ(n))

n
=

σ(φ(n))

φ(n)
· φ(n)

n
= 1 + o(1)).(17)

We now examine the expression

σ(n) =
∏
p<x

pq − 1

p− 1
.(18)

Fix a prime p < x and set

pq − 1

p− 1
= rβ1

1 rβ2
2 . . . rβt

t ,

where, for each i = 1, 2, . . . , t, ri = ri(p) is a prime and βi = βi(p) a positive
integer. We then have pq ≡ 1 (mod ri) for each positive integer i ≤ t,
and by Fermat’s Little Theorem it follows easily that ri ≡ 1 (mod q) (for
if not, then from pq ≡ 1 (mod ri) it would follow that p ≡ 1 (mod ri),
which would lead to the conclusion that (pq − 1)/(p − 1) and p − 1 have
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a common factor ri > 1, which is impossible because (pq − 1)/(p − 1) is
congruent modulo p− 1 to the prime q > p− 1). Hence

xq > pq >
pq − 1

p− 1
> qt,

which, since q > x log x, implies that

t <
q log x

log q
< q.(19)

From this it follows that

φ(pq−1
p−1

)
pq−1
p−1

=
t∏

i=1

(
1− 1

ri

)
≥ exp

{
−2

t∑

i=1

1

ri

}
,(20)

where we used the fact that the inequality 1 − z > e−2z holds for all z in
the interval (0, 1/4). Since it follows from (19) that there are at most q such
primes ri in the arithmetic progression 1 mod q, we have that

t∑

i=1

1

ri

≤ 1

q · 1 +
1

q · 2 + . . . +
1

q · q <
2 log q

q
,

which, combined with (20), yields

φ(pq−1
p−1

)
pq−1
p−1

≥ exp

{
−4 log q

q

}
.

It follows from this that

1 ≥ φ(σ(n))

σ(n)
≥ ∏

r| pq−1
p−1

for some p<x

(
1− 1

r

)
≥ exp

{
−4

π(x) log q

q

}
= 1 + o(1),

since we have chosen q > x log x and since π(x) ¿ x/ log x. We have thus
established that

φ(σ(n))

σ(n)
= 1 + o(1).
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It now follows by Lemma 1 that

φ(σ(n))

n
=

φ(σ(n))

σ(n)
· σ(n)

n
= (1 + o(1))

∏
p<x

(
1 +

1

p
+ . . . +

1

pq−1

)
(21)

= (1 + o(1))
∏
p<x

{(
1 +

1

p− 1

) (
1 + O

(
1

pq

))}

= (1 + o(1))eγ(log x) exp


O


∑

p<x

1

pq







= (1 + o(1))eγ(log x) exp

(
O

(
π(x)

2x log x

))
= (1 + o(1))eγ log x.

Combining (17) and (21), we get

H(n) =
σ(φ(n))

n
· n

φ(σ(n))
= (1 + o(1))

e−γ

log x
.(22)

It remains to estimate the size of n. Recall that, by our choice of n and q,
we have

n =


∏

p<x

p




q−1

= exp{(1 + o(1))xq} = exp{(1 + o(1))x2 log x},

so that (1 + o(1))x2 log x = log n, from which we easily obtain that

x = (1 + o(1))

√
2 log n

log2 n
,

which yields

log x =
1

2
(1 + o(1)) log2 n.

Substituting this in (22), we obtain that

H(n) = (1 + o(1))
e−γ

1
2
log2 n

,

from which we may conclude that there exist infinitely many integers n such
that

H(n) log2 n = (1 + o(1))2e−γ.
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Combining this last result with (14) and taking into account the remark
following the statement of Theorem B concerning the improved lower bound
for κ, the proof of Theorem 2 is complete.

§6. The mean value of H(n)

We use the method developed in [8]. Let M0(x) be the least common
multiple of all prime powers pa < g(x), where g(x) = c1 log2 x/ log3 x and
c1 is the constant mentioned in Lemma 4. Moreover, let A = A(x) = {n :√

x < n ≤ x and M0(n)|gcd(φ(n), σ(n))}. Then

σ(φ(n))

φ(n)
≥ eγ log3 x

(
1 + O

(
1

log3 x

))
(n ∈ A).(23)

(This follows from inequality (37) in [8].) Using the same method and then
applying Lemma 1, we get

φ(σ(n))

σ(n)
≤ φ(M0(n))

M0(n)
=

∏

p<g(x)

(
1− 1

p

)
≤ e−γ

log3 x

(
1 + O

(
1

log3 x

))
(n ∈ A).

(24)
Combining (23) and (24) yields

H(n) ≥ φ(n)

σ(n)

eγ log3 x

e−γ/ log3 x

(
1 + O

(
1

log3 x

))
=

φ(n)

σ(n)
e2γ log2

3 x

(
1 + O

(
1

log3 x

))

(25)
for n ∈ A.

It follows from this that

∑

n≤x

H(n) ≥ ∑
n≤x
n∈A

H(n) ≥ e2γ log2
3 x

(
1 + O

(
1

log3 x

)) ∑
n≤x
n∈A

φ(n)

σ(n)
.(26)

Now using Lemma 4 to estimate the size of [1, x]\A and using the fact that
φ(n) ≤ σ(n) holds for all n, we get by Lemma 6

∑
n≤x
n∈A

φ(n)

σ(n)
≥ ∑

n≤x

φ(n)

σ(n)
− (x−#A) =

∑

n≤x

φ(n)

σ(n)
+ O

(
x

log2
3 x

)

= c0 x + O

(
x

log2
3 x

)
.
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Combining this with (26), it follows that

∑

n≤x

H(n) ≥ c0 e2γx log2
3 x + O (x log3 x) .(27)

It remains to obtain the corresponding upper bound for
∑

n≤x H(n).
To do so, we first observe that we only need to consider those integers
n ∈ [

√
x, x], since it follows from Theorem 1 that

∑

n≤√x

H(n) = O
(√

x log2
2 x

)
.(28)

Consider now the set

B = B(x) =



n :

√
x < n ≤ x, hφ(n) <

1√
log3 x

, hσ(n) <
1√

log3 x



 ,

and given a positive integer n ∈ B, write φ(n) = n1 · n2, where

n1 =
∏

pαp‖φ(n)
p≤log2 x

pαp and n2 =
∏

pαp‖φ(n)
p>log2 x

pαp ,

so that, using Lemma 1,

σ(φ(n))

φ(n)
=

∏

p|n1

(
1 +

1

p
+ . . . +

1

pαp

)
· ∏

p|n2

(
1 +

1

p
+ . . . +

1

pαp

)
(29)

≤ (eγ log3 x + O(1)) · exp(O(hφ(n)))

= (eγ log3 x + O(1)) · exp



O


 1√

log3 x








= eγ log3 x + O
(√

log3 x
)

(n ∈ B).

On the other hand, given n ∈ B and writing σ(n) = m1 ·m2, where

m1 =
∏

pαp‖σ(n)
p≤log2 x

pαp and m2 =
∏

pαp‖σ(n)
p>log2 x

pαp ,

17



we get, by a similar argument,

φ(σ(n))

σ(n)
=

φ(m1)

m1

· φ(m2)

m2

(30)

≥ e−γ

log3 x

(
1 + O

(
1

log3 x

))
·

1 + O


 1√

log3 x







=
e−γ

log3 x


1 + O


 1√

log3 x





 (n ∈ B).

Gathering (29) and (30), we obtain

H(n) ≤ φ(n)

σ(n)
e2γ log2

3 x


1 + O


 1√

log3 x





 (n ∈ B),(31)

from which it follows that

∑
n≤x
n∈B

H(n) ≤ e2γ log2
3 x


1 + O


 1√

log3 x





 ∑

n≤x
n∈B

φ(n)

σ(n)
(32)

≤ e2γc0x log2
3 x + O(x log

3/2
3 x).

It remains to consider the contribution of those integers n ∈ [
√

x, x] which
do not belong to the set B. The set of these numbers is contained in Cφ∪Cσ,
where, given f ∈ {φ, σ}, we write Cf for the set of those numbers n ∈ [

√
x, x]

such that hf (n) ≥ 1/
√

log3 x. Lemma 5 shows that

x

log3 x
À ∑

n∈Cf

hf (n) ≥ #Cf√
log3 x

,

so that
#Cf ¿ x/

√
log3 x for f = φ and f = σ.(33)

We now call upon Lemma 7. Let D be the set mentioned in the proof of
that lemma. Since by Theorem 1, H(n) ¿ log2

2 n, it follows that

∑

n∈D
H(n) = O(x).(34)

18



We now let E be the set of those n ≤ x which are not in D. It is easy to
see that if n ∈ E , then both inequalities ω(φ(n)) < c4 log2

2 x and ω(σ(n)) <
c4 log2

2 x hold for large x, where c4 can be chosen to be any constant > 4e3.
Indeed, since ω(n) < 3e log2 x, it follows that if ω(φ(n)) > 4e3 log2 x, then
there must exist a prime p|n such that ω(p− 1) > e2 log2 x, for if not, that
is, if ω(p− 1) ≤ e2 log2 x holds for all prime factors p of n, then

ω(φ(n)) ≤ ω(n)(1 +
∑

p|n
ω(p− 1)) ≤ 3e(1 + e2 log2 x) log2 x < 4e3 log2

2 x.

However, the inequality ω(p − 1) > e2 log2 x cannot hold for some prime
divisor p of n because n is not in D3. Write n = n′ · n′′, where

n′ =
∏

pαp ||n
αp>1

pαp and n′′ =
∏

p||n
p.

Since n 6∈ D, the same argument as above shows that ω(σ(n′′)) ¿ log2
2 x.

Finally, note that

n′ < exp(O((log3 x)π(log2
2 x)) = exp(O(log2

2 x)),

so that
σ(n′) < exp(O(log2

2 x)),

which shows that ω(σ(n′)) = o(log2
2 x). Thus, if n ∈ E , then ω(φ(n)) and

ω(σ(n)) are both O(log2
2 x). In particular, for large x, we have that

max{hφ(n), hσ(n)} ≤ ∑

log2 x<p<log3
2 x

1

p
¿ 1.

Hence, writing φ(n) = n1 ·n2 and σ(m) = m1 ·m2 as previously, we get that
for n ∈ E ,

σ(φ(n))

φ(n)
=

∏

pαp ||n1

(
1 +

1

p
+ . . . +

1

pαp

) ∏

pαp ||n2

(
1 +

1

p
+ . . . +

1

pαp

)

≤ ∏

p≤log2 x

(
1 +

1

p− 1

)
exp(O(hφ(n)) ¿ log3 x

19



and

φ(σ(n))

σ(n)
=

∏

p||m1

(
1− 1

p

) ∏

p||m2

(
1− 1

p

)

≥ ∏

p≤log2 x

(
1− 1

p

)
exp(−hσ(n)) À log3 x,

from which we may conclude that H(n) ¿ log2
3 x holds for all n ∈ E . Finally,

recall that by (33), the set of those n ∈ Cφ ∪ Cσ is of cardinality at most

O(x/
√

log3 x), and therefore that

∑

n∈(Cφ∪Cσ)∩E
H(n) ≤ maxn∈E{H(n)} ·#(Cφ ∪ Cσ) ¿ x log

3/2
3 x,

which together with (28), (32) and (34) shows that

∑

n≤x

H(n) ≤ e2γc0x log2
3 x + O(x log

3/2
3 x).(35)

Combining (27) and (35) completes the proof of Theorem 3.

§7. The first density theorem for H(n)

Here, we follow essentially an argument used in [8]. In view of (25) and
(31), it follows that both inequalities

H(n) ≥ (1 + o(1))
φ(n)

σ(n)
e2γ log2

3 n

H(n) ≤ (1 + o(1))
φ(n)

σ(n)
e2γ log2

3 n

hold on a set of density 1. Therefore, it follows that on a set of density 1,

H(n) = (1 + o(1))e2γ log2
3 n

φ(n)

σ(n)
.

Since φ(n)/σ(n) has a continuous distribution function (see Exercices 2 and
3 of Chapter III.2 in Tenenbaum [13]), the proof of Theorem 4 is complete.
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§8. The second density theorem for H(n)

Fix δ ∈ (0,∞) and let x be a very large positive real number. We shall
now construct a finite set of primes R such that each of its element is larger
than than xx2

and with the property that

∏

r∈R

(
1 +

1

r

)
∈

(
eγδ log x

2
− 1,

eγδ log x

2
+ 1

)
.

To construct this set R, let r1 < r2 < . . . be all the primes > xx2
and let k

be the largest positive integer such that

k∏

i=1

(
1 +

1

ri

)
≤ eγδ log x

2
.

Observe that by the maximality of k and the fact that

rk+1 ≥ r1 > xx2

>
eγδ log x

2

holds for all x sufficiently large, we get that

k+1∏

i=1

(
1 +

1

ri

)
∈

(
eγδ log x

2
,
eγδ log x

2
+ 1

)
.

Hence, we can take R = {ri : i = 1, . . . , k + 1}. Note that since

k+1∏

i=1

(
1 +

1

ri

)
= exp(log2 rk+1 − log2 r1 + o(1)) > exp(log2 rk+1 − 3 log x),

it follows that the inequality rk+1 < ex4
holds for large x, for if not, then

rk ≥ ex4
/2, in which case

k∏

i=1

(
1 +

1

ri

)
> exp(log2 rk− log2 r1 + o(1)) > exp(log x) = x >

eγδ log x

2
+ 1

which contradicts the definition of k.
We now let y be a parameter that depends on x and such that z :=

log2 y > rk+1. This inequality is fulfilled if we choose log2 y > ex4
, which in
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turn holds if log3 y > x4. Then let P be the set of all primes p ≤ y such
that p ≡ 13 (mod 72), p ≡ 1 + ri (mod r2

i ) for all i = 1, . . . , k + 1, and
both p − 1 and p + 1 are coprime to all primes r ≤ z which are ≥ 5 and
which do not belong to R. Observe that the above conditions certainly put
p in an arithmetic progression a (mod b), where

b = 72
k+1∏

i=1

r2
i ,

and a ≡ 13 (mod 72) and a ≡ 1 + ri (mod r2
i ) for i = 1, . . . , k + 1.

Now let
T :=

∏
5≤r≤z
r 6∈R

r,

and, for each d|T , let

A(d) := {ad (mod bd) : d|a2
d − 1 and ad ≡ a (mod b)},

so that #A(d) = 2ω(d).
By the principle of inclusion and exclusion, the cardinality of the set of

primes P is none other than

∑

d|T
µ(d)

∑

ad∈A(d)

π(y; ad, bd),

where, as usual, π(y; s, t) stands for the number of primes p ≤ y satisfying
p ≡ s (mod t). Observing that bT ¿ ∏

r≤z r2 ≤ e2(1+o(1))z < e3z < y1/3,
we get, by the Bombieri-Vinogradov Theorem, that

P =
π(y)

φ(b)

∏
5≤r≤z
r 6∈R

(
1− 2

r − 1

)
+ O

(
2π(z)y

log10 y

)
.

Since
2π(z) = exp(O(log2 y/ log3 y)) = (log y)o(1),

while
φ(b) ¿ ∏

r≤z

r2 < exp(3 log2 y) = log3 y,
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and since

∏

r≤z

(
1− 2

r − 1

)
À exp



−

∑

r≤z

2

r − 1



 À exp {−2 log log z} =

1

log2 z
≥ 1

log y
,

it follows that

P =
π(y)

φ(b)

∏
5≤r≤z
r 6∈R

(
1− 2

r − 1

)
+ O

(
y

log9 y

)
À π(y)

log4 y
À y

log5 y
.

Finally, let P ′ be the subset of those primes p ∈ P such that neither of
ω(p − 1) or ω(p + 1) is larger than e2 log2 y. From the estimates due to
Hardy and Ramanujan (see [5] and the proof of Theorem 3), we know that

#{n ≤ y : ω(n) > e2 log2 y} ¿ y

log y

∑

k>e2 log2 y

1

(k − 1)!
(log2 y + O(1))k

¿ y

log y

∑

k>e2 log2 y

(
e log2 y + O(1)

k

)k

¿ y

log y
· 1

2e2 log2 y
= o

(
y

log5 y

)
,

because e2 log 2 + 1 > 5. Thus,

#P ′ À y

log5 y
.

In particular, P ′ is non empty for large y. Select P in P ′ and let n =
N(x)P , where N(x) =

∏
p<x p. Then, φ(n) = 12φ(N(x)) · (P − 1)/12,

σ(n) = 2σ(N(x)) · (P + 1)/2, and (P − 1)/12 is coprime to 4φ(N(x)), while
(P +1)/2 is coprime to 2σ(N(x)). The arguments from the proof of Theorem
2 now immediately show that

σ(φ(n))

φ(n)
=

σ(12N(x))

12N(x)
· σ((P − 1)/12)

(P − 1)/12

= eγ log x

(
1 + O

(
1

log x

)) ∏

r∈R

(
1 +

1

r

) ∏
rαr ‖P−1

r>z

(
1 +

1

r
+ . . . +

1

rαr

)

= eγ log2 x

(
1 + O

(
1

log x

))
· eγδ log x

2
· exp


O




∑
r|(P−1)

r>z

1

r





 .
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Noting that P − 1 has no more that e2 log2 y prime factors, it follows easily
that

∑
r|(P−1)

r>z

1

r
≤ ∑

log2 y<r<log2 y log2
3 y

1

r
¿ log

(
log3 y + 2 log4 y

log3 y

)

¿ log4 y

log3 y
¿ log x

x4
¿ 1

log x
.

This means that

σ(φ(n))

φ(n)
=

eγδ

2
log2 x

(
1 + O

(
1

log x

))
.

By similar arguments, we get that

φ(n)

n
=

∏

r≤x

(
1− 1

r

)
· P − 1

P
=

e−γ

log x

(
1 + O

(
1

log x

))
.

It follows that

σ(φ(n))

n
=

eγδ

2
log x

(
1 + O

(
1

log x

))
.(36)

As we obtained (17) in the proof of Theorem 2, we also get, handling the
case P + 1 as we did in the case P − 1,

φ(σ(n))

σ(n)
=

1

2

φ(σ(N(x)))

σ(N(x))
· φ((P + 1)/2)

(P + 1)/2
(37)

=
1

2

(
1 + O

(
1

log x

))
· ∏

r|(P+1)
r>z

(
1− 1

r

)

=
1

2

(
1 + O

(
1

log x

))
.

Finally,

σ(n)

n
=

σ(N(x))

N(x)
· P + 1

P
= eγ log x

(
1 + O

(
1

log x

))
.(38)
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Gathering (37) and (38) yields

φ(σ(n))

n
=

eγ log x

2

(
1 + O

(
1

log x

))
.(39)

Combining (36) and (39), we obtain

H(n) =
eγδ log x

2
· 2

eγ log x

(
1 + O

(
1

log x

))
= δ

(
1 + O

(
1

log x

))
.

Since x is arbitrary, we get that δ is a cluster point of {H(n)}n≥1, as claimed.
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