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Abstract: Given a positive integer n, let d(n) (resp. σ(n)) stand for the number (resp. the
sum) of its positive divisors. Letting E(x) stand for the number of positive integers n ≤ x
such that gcd(nd(n), σ(n)) = 1, we show that there exists a positive constant c such that

E(x) = c(1 + o(1))

√
x

log x
, thus improving upon a result of Kanold.
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§1. Introduction

Given a positive integer n, let d(n) (resp. σ(n)) stand for the number (resp. the sum) of
its positive divisors. Letting E(x) stand for the number of positive integers n ≤ x such that
gcd(nd(n), σ(n)) = 1, then Kanold [2] has shown that there exist positive constants c1 < c2 and
a positive number x0 such that

c1 < E(x)/
√

x/ log x < c2 (x ≥ x0).(1)

Here we improve (1) by providing an asymptotic estimate for E(x). In fact, we prove the
following result.

Theorem. There exists a positive constant c such that

E(x) = c(1 + o(1))

√
x

log x
.
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§2. Preliminary results and notations

Throughout this paper, p, q and π always stand for prime numbers.
We first define the following sets:

E = {n : gcd(nd(n), σ(n)) = 1}
M = {m : m squarefree, p|m ⇒ p ≡ −1 (mod 3)}.

Lemma 1.

(i) If p is odd and p‖n, then n 6∈ E.

(ii) If p2‖n for some n ∈ E, then p ≡ −1 (mod 3).

(iii) If n = n1n2 ∈ E with (n1, n2) = 1, then n1 ∈ E and n2 ∈ E.

Proof. Part (i) follows from the fact that, writing n = pn1 with (p, n1) = 1, then both d(p) and
σ(p) are even.

To prove part (ii), observe that if p ≡ 1 (mod 3), then σ(p2) = 1 + p + p2 ≡ 0 (mod 3), in
which case, since d(p2) = 3, n 6∈ E.

Part (iii) is obvious.

Lemma 2. If m ∈M, then m2 ∈ E.
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Proof. Since m ∈ M, it can be written as m = p1p2 . . . pr, where p1 < p2 < . . . pr are primes
≡ −1 (mod 3). Therefore

d(m2) = 3r, while σ(m2) =
r∏

i=1

(1 + pj + p2
j) ≡ 1 (mod 3).(2)

Fix a positive integer j ≤ r and let p be a prime divisor of σ(p2
j). We shall prove that p ≡ 1

(mod 3). Since
p2

j + pj + 1 ≡ 0 (mod p),(3)

it is clear that p 6= 2. But then (3) is successively equivalent to

4p2
j + 4pj + 4 ≡ 0 (mod p),

(2pj + 1)2 + 3 ≡ 0 (mod p),

so that in particular

(−3

p

)
= 1, thus implying that

1 =

(−1

p

) (
3

p

)
= (−1)

p−1
2

(
p

3

)
(−1)

p−1
2 =

(
p

3

)
,

and therefore that p ≡ 1 (mod 3), as claimed.
We have thus established that (m,σ(m2)) = 1. Hence, in view of (2), the proof of Lemma 2

is complete.

Each integer n ∈ E can be written as

n = Km2 (m,K) = 1,(4)

where m =
∏

p2‖n
p≡−1 (mod 3)

p. Assume that m is the maximal divisor of n with this property. Then

the representation (4) is unique and moreover m ∈ M, K ∈ E. Then, let E∗ be the set of
those positive integers K for which there exists at least one positive integer m ∈ M such that
n = Km2 ∈ E, with K and m as in (4).

Remark 1. Assume that K ∈ E∗ and that πγ‖K for some prime π and some positive integer
γ. Then γ ≥ 3, except perhaps if π = 2 or 3, since E∗ ⊆ E.

§3. Proof of the Theorem

Taking into account Remark 1, it follows that there exists a positive constant d1 such that
∑

K≤Y0
K∈E∗

1 ≤ d1Y
1/3
0 (Y0 ≥ 1),(5)

and by a classical sieve argument, we obtain that, for some positive constant d2,

∑

m2≤x
m∈M

1 ≤ d2

√
x

log x
(x ≥ 2).(6)
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For each positive integer T , consider the function

FT (s) :=
∏

p6≡−1 (mod 3)
p6|T

(
1 +

1

ps

)
=

∏
p6≡−1 (mod 3)

p|T

(
1 +

1

ps

)−1

· F1(s),

where

F1(s) =
∑

m∈M

1

ms
=

∏

p≡−1 (mod 3)

(
1 +

1

ps

)
.

Defining

χ(n) =
{

1 if n ≡ 1 (mod 3),
−1 if n ≡ −1 (mod 3),

L(s, χ) =
∞∑

n=1

χ(n)

ns
,

we have that

log F1(s) =
∑

p≡−1 (mod 3)

1

ps
+

∑

p≡−1 (mod 3)

∞∑

ν=2

1

νpνs
(7)

=
1

2
log ζ(s)− 1

2
log L(s, χ) + u(s),

where u(s) is bounded in the domain σ > 1
2

+ ε, for any given ε > 0. Hence, it follows from (7)
that

F1(s) =

√√√√ ζ(s)

L(s, χ)
exp{u(s)},

from which one easily obtains (using for instance Theorem 10.1 from the book of Bateman and
Diamond [1]) that there exists some positive constant c1 such that

∑

m≤z1/2

m∈M

1 = c1

√
z

log z

(
1 + O

(
1√
log z

))
.

Now, let Y0 be an arbitrarily large but fixed number.
Let us set LK(x) := #{n ≤ x : n = Km2 ∈ E}, so that E(x) =

∑
K≤x LK(x). Write

E(x) =
∑

K≤Y0
K∈E∗

LK(x) +
∑

Y0<K≤x

K∈E∗

LK(x) = S1 + S2,(8)

say.
As we shall see, S1 provides the main contribution to E(x), while S2 is negligible. Indeed, we

have
S2 ≤

∑

Y0<K<x3/4

K∈E∗

LK(x) +
∑

x3/4≤K≤x
K∈E∗

LK(x) = S3 + S4,(9)

say. Using (5) and (6), in the range of the sum S3, we have LK(x) ¿
(

x

K

)1/2 1√
log x

, so that

S3 ¿
(

x

log x

)1/2

δ(Y0),(10)
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where δ(Y0) :=
∑

K>Y0
K∈E∗

1√
K

. Observe that, since
∑

K∈E∗ 1/K is convergent, we have that δ(Y0) → 0

as Y0 →∞. Hence, it follows from this observation and from (10) that, for some absolute positive
constant d3,

S3 ≤ d3δ(Y0)

√
x

log x
.(11)

On the other hand, in the range of the sum S4, LK(x) ¿
(

x

K

)1/2

, so that, using Remark 1,

S4 ¿ x1/2

x1/8
= x3/8.(12)

Collecting (11) and (12) in (9) and (8), we get that

|E(x)− S1| ≤ d3δ(Y0)

√
x

log x
+ O(x3/8).(13)

In order to estimate S1, we need to assess the size of LK(x) for K ≤ Y0, K ∈ E∗.
For each prime q ≡ 1 (mod 3), let `1(q) and `2(q) be the solutions of u2+u+1 ≡ 0 (mod q),

and assume that 0 < `1(q) < `2(q) < q. It is clear that (`i(q), q) = 1 (i = 1, 2). Consider the
following sets:

TK = {p : p|σ(K), p ≡ −1 (mod 3)},
SK = {q : q|Kd(K), q ≡ 1 (mod 3)}.

We shall now find necessary and sufficient conditions that will ensure that n = Km2 belongs
to E. First of all, since K ∈ E∗, (Kd(K), σ(K)) = 1. Assuming that n 6= K, that is that m > 1,
then (nd(n), σ(n)) = 1 holds if and only if 3 6 |σ(K), (m,σ(K)) = 1 and (σ(m2), Kd(K)) = 1,
since the relation (m2d(m2), σ(m2)) = 1 holds by Lemma 2.

Therefore, m ∈ M is a suitable integer (as a component of the integer n = Km2 in the
format given by (4)) if and only if

(a) m has no factor from the set TK ,

(b) (p,m) = 1 if p ≡ `1(q) (mod q) or p ≡ `2(q) (mod q) for some q ∈ SK .

Now letting

GK(s) :=
∑
m

Km2∈E

1

ms
,

we can therefore write this function in the form

GK(s) = AK(s) ·BK(s) · CK(s),

where

AK(s) =
∏

p≡−1 (mod 3)

(
1 +

1

ps

)
, BK(s) =

∏

p∈TK

(
1 +

1

ps

)−1

,(14)
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CK(s) =
∏

π 6∈TK
∃q∈SK,

π≡`1(q) (mod q)
π≡`2(q) (mod q)
π≡−1 (mod 3)

(
1 +

1

πs

)−1

(15)

There are two types of K ∈ E∗:

• Type 1: SK = ∅, i.e. each prime divisor of Kd(K) is 3 or ≡ −1 (mod 3). Then
CK(s) = 1, and the right hand side of BK(s) is a finite product, from which it follows that,
for some positive constant d4,

LK(x) = d4

√
x/K

log x

∏

p∈TK

(
1 +

1

p

)−1 (
1 + O

(
1

log x

))
.(16)

• Type 2: SK 6= ∅. Then there are infinitely many primes π in the product on the right
hand side of (15), and in fact we even have that there exists a positive number ηK such
that ∑

π≤y
π∈ product of (15)

1

π
≥ ηK log log y + OK(1).(17)

Therefore, by the Brun-Selberg sieve, we obtain that

∑
m≤x

Km2∈E

1 ¿ x
∏

p≡1 (mod 3)
π∈ product of (15)

π≤x

(
1− 1

p

)−1

¿ x

(log x)
1
2
+ηK

,(18)

where the constant implicit in ¿ may depend on K. Consequently, for those K of Type

2, we have that LK(x)/
√

x/ log x → 0 as x → ∞, and this relation holds uniformly for K

in the range [1, Y0].

Hence, we only need to consider those K of Type 1, which allows us to conclude, from (13) and
(16), that

E(x) = d4

√
x

log x

∑
K of Type 1

K≤Y0

1

K1/2

∏

p∈TK

(
1 +

1

p

)−1

+ O

(
δ(Y0)

√
x

log x

)
+ o

(√
x

log x

)
.(19)

Now let D(Y0) :=
∑

K of Type 1
K≤Y0

1

K1/2

∏

p∈TK

(
1 +

1

p

)−1

. It is obvious that limY0→∞ D(Y0) = D (< +∞)

exists.
We may then complete the proof of the Theorem by showing that, letting d5 = d4D,

E(x) = (1 + o(1))d5

√
x

log x
.(20)
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Indeed, from (19), we have

∣∣∣∣∣E(x)− d5

√
x

log x

∣∣∣∣∣ ≤ d4|D −D(Y0)|
√

x

log x
+ O

(
δ(Y0)

√
x

log x

)
+ o

(√
x

log x

)
,

thus implying that, for some positive constant d6,

∣∣∣∣∣∣
E(x)√

x
log x

− d5

∣∣∣∣∣∣
≤ d4|D −D(Y0)|+ d6δ(Y0) + o(1).

Thus, the relation

lim sup
x→∞

∣∣∣∣∣∣
E(x)√

x
log x

− d5

∣∣∣∣∣∣
≤ d4|D −D(Y0)|+ d6δ(Y0)

holds for every large number Y0, which means that it holds for Y0 → ∞. Hence, using the fact
that D(Y0) → D and that δ(Y0) → 0, it follows that

lim sup
x→∞

∣∣∣∣∣∣
E(x)√

x
log x

− d5

∣∣∣∣∣∣
= 0,

which proves (20), thus completing the proof of the Theorem.
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