DISTRIBUTION OF ARITHMETIC FUNCTIONS ON CERTAIN SUBSETS OF INTEGERS

J.M. DE KONINCK AND I. KÁTAI

ABSTRACT. Let d(n), respectively $\sigma(n)$, stand for the number, respectively the sum, of the positive divisors of n, and let φ be Euler's totient function. Also let $d_3(n)$ be the number of solutions of $a_1a_2a_3 = n$ in positive integers a_1, a_2, a_3 . We determine the order of the set of positive integers $n \leq x$ for which $(nd(n), \varphi(n))$ is a power of 2. We do the same for the set of positive integers $n \leq x$ for which $(nd_3(n), \varphi(n)) = 1$ and for the set of positive integers $n \leq x$ for which $U(n) := (nd_3(n), \sigma(n)) = 1$. We also show that $\sum_{p \leq x, \ U(p+a)=1} d(p+a)$ is of order $\operatorname{li}(x)/\log\log\log x$. Moreover, generalizing an approach used by Erdős to prove that $\#\{n \leq x : (n,\varphi(n))=1\} \sim \#\{n \leq x : p(n) > \log\log x\}$ (where p(n) stands for the smallest prime factor of n), we show that the same result holds when we add the condition $\omega(n) = r$ in each of these two sets, where $\omega(n)$ is the number of distinct prime divisors of n. Finally, we estimate the size of $\#\{n \leq x : (n, \varphi(n)) = 1, \ \omega(n) = r\}$ uniformly for $r = r(x) = (1 + o(1)) \log \log x$.

1. Introduction. Let φ stand for Euler's totient function, $\sigma(n)$ for the sum of the positive divisors of n and d(n) for the number of positive divisors of n. Moreover, for each integer $n \geq 2$, let p(n) stand for the smallest prime factor of n with p(1) = 1 and $\omega(n)$ for the number of distinct prime factors of n.

In 1958, Kanold [4] showed that, if $E(x) := \#\{n \leq x : (nd(n), \sigma(n)) = \}$ 1}, then there exist positive constants $C_1 < C_2$ and a positive number x_0 such that

(1)
$$C_1 < E(x)/\sqrt{x/\log x} < C_2, \quad x \ge x_0.$$

Copyright ©2007 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics subject classification. Primary 11N37, 11N25. Keywords and phrases. Euler function, sum of divisors, distribution of arithmetic functions.

Research of the first author supported in part by a grant from NSERC. Research of the second author supported by the Applied Number Theory Research Group of the Hungarian Academy of Science and by a grant from OTKA. Received by the editors on April 25, 2005.

Recently, we showed [2] that there exists a positive constant C such that

$$E(x) = C(1 + o(1))\sqrt{\frac{x}{\log x}}.$$

Also recently, Kátai and Subbarao [5] obtained various results regarding the function φ_k , that is, the k-fold iterate of φ ; they showed in particular that, for most integers $n \leq x$,

$$(n, arphi_k(n)) = \prod_{p^{lpha} \mid n \atop p < x_2^k} p^{lpha}$$

and that, for any given integer $a \neq 0$, for most primes $q \leq x$,

$$(q+a,\varphi_k(q+a)) = \prod_{p^{\alpha} \parallel q+a \atop p < x_2^k} p^{\alpha}.$$

Here and hereafter, $x_1 = \max(1, \log x)$ and $x_i = \max(1, \log x_{i-1})$ for each integer $i \geq 2$.

Consider the sets $A_x:=\{n\leq x:(n,\varphi(n))=1\}$ and $B_x:=\{n\leq x:p(n)>x_2\}$. In 1948, Erdős [3] proved that

(2)
$$\#A_x = (1 + o(1))e^{-\gamma}\frac{x}{x_3}, \quad x \to \infty,$$

where γ stands for Euler's constant, and somewhat surprisingly, that

(3)
$$\#A_x = (1 + o(1)) \#B_x, \quad x \to \infty.$$

In 2001, Begunts [1] improved (2) by showing that

$$#A_x = e^{-\gamma} \frac{x}{x_3} \left(1 + O\left(\frac{x_4}{x_3}\right) \right).$$

In this paper, we establish various results analogous to those mentioned above.

In particular, after observing that $(nd(n), \varphi(n)) = 1$ if and only if n = 1 or 2, we estimate the size of the set $\{n \leq x : (nd(n), \varphi(n)) = a \text{ power of } 2\}$.

Letting $d_3(n)$ stand for the number of solutions of $a_1a_2a_3=n$ in positive integers a_1,a_2,a_3 and setting $F(n):=(nd_3(n),\varphi(n))$ and $U(n):=(nd_3(n),\sigma(n))$, we estimate the size of the sets $\{n\leq x:F(n)=1\}$ and $\{n\leq x:U(n)=1\}$ and of the sum $\sum_{p\leq x,\ U(p+a)=1}d(p+a)$.

Then, by using the method of Erdős, we prove a result similar to (3) with the additional restriction that the integers n in A_x and B_x satisfy $\omega(n) = r$ with $r = r(x) = (1 + o(1))x_2$.

Finally, we show that $\#\{n \leq x : (n, \varphi(n)) = 1, \ \omega(n) = r\} \sim \prod_{p < x_2} (1 - (1/p)) \cdot \#\{n \leq x : \omega(n) = r\}$ uniformly for $r = r(x) = (1 + o(1))x_2$.

2. Main results. Observe that $E(n) := (nd(n), \varphi(n)) = 1$ if and only if n = 1 or 2. Indeed, assuming that $n \geq 3$ with E(n) = 1, it is clear that n must be squarefree; therefore, n must be divisible by an odd prime p, in which case $\varphi(p)$ is even and d(p) = 2, implying that 2|E(n), thus establishing our claim. On the other hand, it turns out that E(n) is quite often a power of 2, as is shown by the following result.

Theorem 1. $As x \to \infty$,

$$\#\{n \le x : (nd(n), \varphi(n)) = \text{a power of } 2\} = (1 + o(1))c_1 \frac{x}{x_3}, \ x \to \infty,$$

where
$$c_1 = e^{-\gamma} \left(1 + 2 \sum_{\ell=1}^{\infty} (1/2^{2^{\ell}}) \right)$$
.

Theorem 2. There exists a positive constant c_2 such that

$$\#\{n \le x : F(n) = 1\} = (1 + o(1))c_2 \frac{x}{\sqrt{x_1 x_3}}, \quad x \to \infty.$$

Theorem 3. There exists a positive constant c_3 such that

$$\#\{n \le x : U(n) = 1\} = (1 + o(1))c_3 \frac{x}{\sqrt{x_1 x_3}}, \quad x \to \infty.$$

Let χ be the Dirichlet character

$$\chi(n) = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{3}, \\ -1 & \text{if } n \equiv -1 \pmod{3}, \\ 0 & \text{if } 3|n. \end{cases}$$

Let

$$r(n) = \sum_{d|n} \chi(d) = \prod_{p^{\alpha}||n} (1 + \chi(p) + \dots + \chi(p^{\alpha})).$$

It is clear that for squarefree integers n, we have r(n) > 0 if and only if every prime factor of n is $\equiv 1 \pmod{3}$. Moreover if r(n) > 0 and n is squarefree, then r(n) = d(n). By using the Bombieri-Vinogradov theorem, one can deduce that, given any integer $a \neq 0$, there exists a positive constant c such that

$$\sum_{p \le x} r(p+a) = c(1+o(1))x, \quad x \to \infty.$$

Here, setting as usual li (x) := $\int_0^x (dt/\log t)$, we shall prove the following result.

Theorem 4. Given any nonzero integer a, there exists a positive constant c_4 such that

$$\sum_{\substack{p \le x \\ U(p+a)=1}} d(p+a) = (1+o(1))c_4 \frac{\mathrm{li}(x)}{x_3}, \quad x \to \infty.$$

For each positive integer r, let

$$A_x(r) := \{ n \le x : (n, \varphi(n)) = 1, \ \omega(n) = r \}$$

and

$$B_x(r) := \{ n \le x : p(n) > x_2, \ \omega(n) = r \}.$$

Theorem 5. Uniformly for $r = r(x) = (1 + o(1))x_2$, as $x \to \infty$,

(i)
$$\#A_x(r) = (1 + o(1)) \#B_x(r)$$
,

(ii)
$$\#B_x(r) = (1 + o(1)) \prod_{p < x_2} (1 - (1/p)) \cdot (x/x_1) (x_2^{r-1}/(r-1)!).$$

3. Further notations and preliminary results. Letting P(n) stand for the largest prime factor of n with P(1) = 1, we set as is customary

$$\Psi(x, y) := \#\{n \le x : P(n) \le y\}.$$

We shall be using the well-known estimate

(4)
$$\Psi(x,y) := \#\{n \le x : P(n) \le y\} \ll x \exp\left\{-\frac{\log x}{2\log y}\right\},$$

see, for instance, Tenenbaum [6].

Throughout this paper, the letters $p,\,q$ and π always stand for prime numbers. For each positive integer $r,\,$ let

$$\pi_r(x) := \#\{n \le x : \omega(n) = r\}.$$

Theorem A. If $x \to \infty$, $1 \le y \le x_1$, $(1 - \varepsilon_x)x_2 \le r \le (1 + \varepsilon_x)x_2$, where $\varepsilon_x \to 0$, then

$$\#\{n \le x : \omega(n) = r, \ p(n) > y\} = (1 + o(1)) \prod_{p < y} \left(1 - \frac{1}{p}\right) \cdot \pi_r(x).$$

Proof. This result can be proved by using the now classical Selberg-Delange method applied to the study of the function

$$F_y(s,z) = \prod_{p>y} \left(1 + \frac{z}{p^s} + \frac{z}{p^{2s}} + \cdots \right).$$

We shall therefore omit the details. \Box

Lemma 1. Let A be a positive constant, and let

$$\mathcal{F}_r(x, y, Q) := \{ n \le x : n = p_1 \cdots p_r, \ y < p_1 < \cdots < p_r, \ p_i \not\equiv 1 \pmod{Q} \},$$

where Q is an odd prime number less than x_2^A , and assume that $y < x_2^A$ and that $r = r(x) = (1 + o(1))x_2$. Then

$$\#\mathcal{F}_r(x,y,Q) \ll \frac{x \cdot x_2^{r-1}}{x_1 \cdot (r-1)!} \left(1 - \frac{1}{Q-1}\right)^r \left(1 - \frac{\log \log y}{x_2}\right)^{r-1}.$$

Proof. We may assume that $P(n) = p_r \ge x^{1/(2x_2)}$, since the contribution of those integers $n \in \mathcal{F}_r(x,y,Q)$ for which $P(n) < x^{1/(2x_2)}$ is smaller than

$$\Psi(x, x^{1/(2x_2)}) \ll x \exp\{-x_2\} = O(x/x_1),$$

where we used (4). From this observation and taking into account that $\log x \le 2 \log n$ for $\sqrt{x} \le n \le x$, it follows that

(5)
$$x_1 \cdot \# \mathcal{F}_r(x, y, Q) \ll x + \sqrt{x} \cdot x_1 + S^*,$$

where

$$S^* := \sum_{\substack{n = p_1 \cdots p_r \le x \\ p_1 > y, \ p_r \ge x^{1/(2x_2)} \\ p_i \not\equiv 1 \pmod{Q}}} \log n.$$

Now, using the Prime Number theorem for arithmetic progressions in the weak form

$$\sum_{p \leq x \atop p \neq 1 \pmod{Q}} \log p \ll \bigg(1 - \frac{1}{Q-1}\bigg) x,$$

we have

$$S^* \ll \sum_{\substack{\nu p \leq x \\ w(\nu) = r - 1 \\ p_i \mid \nu \Rightarrow p_i \neq 1 \pmod{Q}}} \log p$$

$$\ll \sum_{\substack{\nu \leq x/x^{1/(2x_2)} \\ p_i \mid \nu \Rightarrow p_i \neq 1 \pmod{Q}}} \sum_{\substack{y
$$\ll \left(1 - \frac{1}{Q - 1}\right) x \sum_{\substack{\nu \leq x \\ w(\nu) = r - 1 \\ p_i \mid \nu \Rightarrow p_i \neq 1 \pmod{Q}}} \frac{1}{\nu}$$

$$\ll \left(1 - \frac{1}{Q - 1}\right) \frac{x}{(r - 1)!} \left(\sum_{\substack{y < q < x \\ q \neq 1 \pmod{Q}}} \frac{1}{q}\right)^{r - 1}$$

$$\ll \frac{x}{(r - 1)!} \left(1 - \frac{1}{Q - 1}\right)^r (x_2 - \log \log y)^{r - 1},$$$$

which combined with (5) completes the proof of Lemma 1.

Corollary. Let $R_x(r|Q)$ be the set of those integers $n \leq x$ such that $(n, \varphi(n)) = 1$, $\omega(n) = r$ and p(n) = Q. Then

$$\sum_{Q < r/\log^2 r} \#R_x(r|Q) \ll \frac{x}{x_1} \frac{x_2^{r-1}}{(r-1)!} \exp\left\{-\frac{1}{2}\log^2 r\right\}.$$

Proof. If $n \leq x$, $(n, \varphi(n)) = 1$, $\omega(n) = r$ and p(n) = Q, then $n = Qm \leq x$, $m = p_1 \cdots p_{r-1}$, $Q < p_1 < \cdots < p_{r-1}$ and $p_i \not\equiv 1 \pmod{Q}$. Therefore, it follows from Lemma 1 that

$$\#R_x(r|Q) = \#\mathcal{F}_{r-1}\left(\frac{x}{Q}, Q, Q\right)$$

$$\ll \frac{x}{Qx_1} \frac{x_2^{r-2}}{(r-2)!} \left(1 - \frac{1}{Q-1}\right)^{r-1} \left(1 - \frac{\log\log Q}{x_2}\right)^{r-1}.$$

From this, it follows that

$$\sum_{Q < r/(\log r)^2} \#R_x(r|Q)$$

$$\ll \frac{x}{x_1} \frac{x_2^{r-1}}{(r-1)!} \sum_{Q < r/(\log r)^2} \frac{1}{Q} \exp\left\{\left(-\frac{r}{Q} - \frac{r \log \log Q}{x_2}\right)\right\}$$

$$\ll \frac{x}{x_1} \frac{x_2^{r-1}}{(r-1)!} \exp\left\{-\frac{1}{2} \log^2 r\right\},$$

thus completing the proof of the corollary.

4. The proof of Theorem 1. Let

$$\mathcal{E} := \{n : E(n) = \text{ power of } 2\}$$
 and $\mathcal{E}(x) := \{n \le x : n \in \mathcal{E}\}.$

In order to estimate the size of $\mathcal{E}(x)$, we shall examine the size of its subsets

$$\mathcal{E}_t(x) := \{2^t m < x : (m, 2) = 1, 2^t m \in \mathcal{E}\}, \quad t = 0, 1, 2, \dots$$

Let us first consider $\mathcal{E}_0(x)$. It is clear that $n \in \mathcal{E}_0(x)$ if and only if $(n, \varphi(n)) = 1$. Hence, by Erdős' estimate (2), it follows that

(6)
$$\#\mathcal{E}_0(x) = (1 + o(1))e^{-\gamma} \frac{x}{x_3}, \quad x \to \infty.$$

Let us now consider the case where $1 \leq t \leq x_3 - 1$. If $n = 2^t m \in \mathcal{E}_t(x)$, then $m \in \mathcal{E}_0(x/2^t)$ and $(d(2^t), \varphi(m)) = (t+1, \varphi(m))$ is a power of 2. We shall see that $\#\mathcal{E}_t(x)$ is negligible if t+1 is not a power of 2. Indeed, consider a fixed integer $t \leq x_3 - 1$ such that t+1 is not a power of 2; such a number t must have an odd prime divisor $q \leq x_3$, in which case $q \nmid \varphi(m)$. In this case, by a simple sieve argument, we have

$$S_q\left(\frac{x}{2^t}\right) := \#\left\{m \le \frac{x}{2^t} : p \mid m \text{ implies that } p \not\equiv 1 \pmod{q}\right\}$$

$$\ll \frac{x}{2^t} \prod_{m \in \mathbb{Z} \pmod{q}} \left(1 - \frac{1}{\pi}\right) \ll \frac{x}{2^t} \exp\left\{-\frac{1}{2} \frac{x_2}{q}\right\}$$

$$\ll \frac{x}{2^t} \exp\left\{-\frac{1}{2} \frac{x_2}{x_3}\right\}.$$

From this, it follows that

(7)
$$\sum_{q \le t} S_q\left(\frac{x}{2^t}\right) \ll \frac{xt}{2^t} \exp\left\{-\frac{1}{2}\frac{x_2}{x_3}\right\} \ll \frac{x}{2^t x_2^B},$$

where B is an arbitrarily large constant.

Now if t+1 is a power of 2, then $m \in \mathcal{E}_0(x/2^t)$, which implies that $n=2^t m \in \mathcal{E}_t(x)$. From this observation, it follows using (6) that

(8)
$$\#\mathcal{E}_t(x) = \#\mathcal{E}_o(x/2^t) = (1 + o(1))e^{-\gamma} \frac{x}{2^t \log \log \log (x/2^t)}$$
$$= (1 + o(1))e^{-\gamma} \frac{x}{2^t x_3}$$

uniformly for $t + 1 < x_3$.

It remains to consider the situation where $t \geq x_3$. But the contribution of these t's is small since

(9)
$$\sum_{t>x_3} \#\mathcal{E}_t(x) \ll \sum_{t>x_3} x/2^t \ll \frac{x}{x_2}.$$

In view of (6), (7), (8) and (9), we may conclude that

$$\#\mathcal{E}(x) = \#\mathcal{E}_{0}(x) + \sum_{\substack{t \leq x_{3} - 1 \\ t+1 \neq \text{power of 2}}} \#\mathcal{E}_{t}(x)
+ \sum_{\substack{t \leq x_{3} - 1 \\ t+1 = \text{power of 2}}} \#\mathcal{E}_{t}(x) + \sum_{t \geq x_{3}} \#\mathcal{E}_{t}(x)
= (1 + o(1))e^{-\gamma} \frac{x}{x_{3}} + O\left(\sum_{\substack{t \leq x_{3} - 1 \\ t+1 \neq \text{power of 2}}} \frac{x}{2^{t}x_{2}^{B}}\right)
+ \sum_{\substack{t \leq x_{3} - 1 \\ t+1 = \text{power of 2}}} (1 + o(1))e^{-\gamma} \frac{x}{x_{3}} \sum_{t+1 = 2^{\ell}} \frac{1}{2^{t}} + O\left(\frac{x}{x_{2}}\right)
= (1 + o(1))e^{-\gamma} \frac{x}{x_{3}} + (1 + o(1))2e^{-\gamma} \frac{x}{x_{3}} \sum_{\ell=1}^{\infty} \frac{1}{2^{2^{\ell}}} + O\left(\frac{x}{x_{2}}\right),$$

which completes the proof of Theorem 1.

5. The proofs of Theorems 2 and 3. Let $\mathcal{L}_x := \{n \leq x : F(n) = 1\}$ and

$$\mathcal{F}_x(y) := \{ n \le x : \mu^2(n) = 1, \ p \mid n \Longrightarrow p \equiv 1 \pmod{3}, \ p(n) > y \}.$$

Let $\varepsilon > 0$ be fixed, q a prime smaller than $x_2^{1-\varepsilon}$ and $\mathcal{L}_x(q) := \{n = q\nu \leq x : F(n) = 1\}.$

Given $n = q\nu \in \mathcal{L}_x(q)$, it is clear that $q\nu$ is squarefree, and since $d_3(p) = 3$, all primes $p \mid \nu$ must satisfy $p \equiv -1 \pmod{3}$ and $p \not\equiv 1 \pmod{q}$. Therefore,

$$\#\mathcal{L}_x(q) \ll \frac{x}{q} \prod_{\substack{\pi \leq -1 \pmod{3} \\ \pi \equiv -1 \pmod{3}}} \left(1 - \frac{1}{\pi}\right) \cdot \prod_{\substack{p \equiv 1 \pmod{3} \\ p \equiv 1 \pmod{q}}} \left(1 - \frac{1}{p}\right)$$
$$\ll \frac{x}{q\sqrt{x_1}} \exp\left\{-\frac{1}{3} \frac{x_2}{q}\right\},$$

so that

$$\sum_{q < x_2^{1-\varepsilon}} \# \mathcal{L}_q(x) \ll \frac{x}{\sqrt{x_1}} \frac{1}{x_2^B},$$

where B is an arbitrarily large constant.

It follows from this that

$$\mathcal{L}_x \subseteq \mathcal{F}_x(x_2^{1-\varepsilon}) \cup \text{ a set of size } \frac{x}{\sqrt{x_1}} \frac{1}{x_2^B}.$$

Hence, it is clear that

$$\mathcal{F}_x(x_2) \subseteq \mathcal{L}_x \cup \mathcal{T}$$

where

$$\mathcal{T} := \{ n \le x : p(n) \ge x_2, \ p \mid n \Longrightarrow p \equiv 1 \pmod{3}$$
 and there exists $q \mid n, \ p \mid n, \ p \equiv 1 \pmod{q} \}.$

Now

(10)
$$\#\mathcal{T} \leq \sum_{x_2 \leq q < x} \sum_{p \equiv 1 \pmod{q}} \#K_{p,q} = S_1 + S_2 + S_3,$$

where

$$\begin{split} K_{p,q} \\ := \#\{\nu \leq x/pq: \mu^2(\nu) = 1, \ p(\nu) > x_2, \ p \mid \nu \Longrightarrow p \equiv 1 \pmod{3}\} \end{split}$$

and

$$S_{1} = \sum_{\substack{x_{2} < q < x_{1} \\ p \equiv 1 \pmod{q}}} \sum_{\substack{p \le x/x_{1} \\ p \equiv 1 \pmod{q}}} K_{p,q},$$

$$S_{2} = \sum_{\substack{x_{2} < q < x_{1} \\ p \equiv 1 \pmod{q}}} \sum_{\substack{x/x_{1} < p \le x \\ p \equiv 1 \pmod{q}}} K_{p,q},$$

$$S_{3} = \sum_{\substack{q \ge x_{1} \\ p \equiv 1 \pmod{q}}} K_{p,q}.$$

For S_1 , using the inequality

$$K_{p,q} \ll \frac{x}{pq(\log(x/pq))^{1/2}\sqrt{x_3}},$$

we easily conclude that

(11)
$$S_{1} \ll \frac{x}{\sqrt{x_{1}x_{3}}} \sum_{x_{2} < q < x_{1}} \frac{1}{q} \sum_{p \leq x \pmod{q}} \frac{1}{p} \\ \ll \frac{xx_{2}}{\sqrt{x_{1}x_{3}}} \sum_{q > x_{2}} \frac{1}{q^{2}} \ll \frac{x}{\sqrt{x_{1}x_{3}}} \cdot \frac{1}{x_{3}}.$$

To estimate S_2 , we use the fact that $K_{p,q} \leq x/pq$, so that since

$$\sum_{x/x_1 \le p < x_2 \atop p \equiv 1 \pmod{q}} \frac{1}{p} = (1 + o(1)) \frac{1}{q} \int_{x/x_1}^x \frac{du}{u \log u} = \frac{1}{q} \int_{x_1 - x_2}^{x_1} \frac{dv}{v} \ll \frac{x_2}{qx_1},$$

it follows that

(12)
$$S_2 \ll \frac{xx_2}{x_1} \sum_{q > x_2} \frac{1}{q^2} \ll \frac{xx_2}{x_1 x_2 x_3} = \frac{x}{x_1 x_3}.$$

Finally, using again the fact that $K_{p,q} \leq x/pq$, it follows that

(13)
$$S_3 \ll \sum_{q \geq x_1} \frac{x}{q} \sum_{\substack{p \leq x \\ p \equiv 1 \pmod{q}}} \frac{1}{p} \ll xx_2 \sum_{q \geq x_1} \frac{1}{q^2} \ll \frac{x}{x_1}.$$

Gathering (11), (12) and (13), it follows from (10) that

(14)
$$\#\mathcal{T} \ll \frac{x}{\sqrt{x_1}} \cdot \frac{1}{x_3^{3/2}}.$$

Let us now estimate the size of the difference

$$\mathcal{D}_x := \mathcal{F}_x(x_2^{1-\varepsilon}) - \mathcal{F}_x(x_2).$$

If $n \in \mathcal{D}_x$, then n is squarefree and can be written as $n = q\nu$, where $p(n) = q \in [x_2^{1-\varepsilon}, x_2]$, and all prime factors of n are $\equiv 1 \pmod 3$. The number of these $\nu \leq x/q$ is less than

$$\frac{x}{q} \cdot \frac{1}{\sqrt{x_1 x_3}}$$
.

Since

$$\sum_{x_2^{1-\varepsilon} < q < x_2} \frac{1}{q} \ll \log \frac{1}{1-\varepsilon} \ll \varepsilon,$$

it follows that

(15)
$$\#\mathcal{D}_x \ll \frac{\varepsilon x}{\sqrt{x_1 x_3}}.$$

Combining (14) and (15), the proof of Theorem 2 is complete.

The proof of Theorem 3 can be obtained in a similar manner. Therefore we shall only give a sketch of it.

Assume that m > 1 is squarefree and that U(m) = 1. Then $d_3(m) = 3^{\omega(m)}$, so that $p \mid m$ implies that $3 \nmid p + 1 = \sigma(p)$, that is, $p \equiv 1 \pmod{3}$. Similarly, one can show that m cannot be a multiple

of 3. Then, as in the proof of Theorem 2, we can deduce that there exists a positive constant c_3 such that

(16)
$$\#\{m \le x : \mu^2(m) = 1, \ U(m) = 1\}$$

= $(1 + o(1))\#\{n \le x : p(n) > x_2, \ p \mid n \Longrightarrow p \equiv 2 \pmod{3}\}$
= $(1 + o(1))c_3\frac{x}{\sqrt{x_1x_3}}$.

Now, let $n \leq x$ with U(n) = 1. We can write n = km, where k is squarefull, m is squarefree and (k, m) = 1. We have $(kd_3(k) \cdot 3^{\omega(m)}, \sigma_3(k)\sigma(m)) = 1$. Thus, U(m) = 1, U(k) = 1, $3 \nmid \sigma_3(k)$ and $(kd_3(k), \sigma(m)) = 1$.

In light of (16), the proof of Theorem 3 will be complete if we can show that

(17)
$$\#\{n \le x : U(n) = 1\} = (1 + o(1))\#\{m \le x : \mu^2(m) = 1, U(m) = 1\}.$$

To do so, we first observe that we can drop all those integers $n = km \le x$ such that $k > x_1^2$, since their number is clearly $O(x/x_1)$. Letting $T = T_x$ be a function slowly tending to $+\infty$ with x, we then have

(18)
$$\sum_{\substack{T_x < k \le x_1^2 \\ k \text{ squarefull}}} \#\{n = km \le x : U(n) = 1\}$$

$$\le \sum_{\substack{T_x < k \le x_1^2 \\ k \text{ squarefull}}} \#\{m \le x/k : \mu^2(m) = 1, \ U(m) = 1\}$$

$$\ll \frac{x}{\sqrt{x_1 x_3}} \sum_{\substack{T_x < k \le x_1^2 \\ k \text{ squarefull}}} \frac{1}{k} = o(1) \frac{x}{\sqrt{x_1 x_3}}.$$

So let us assume that $2 \le k \le T_x$, U(k) = 1 and $T_x \ll x_5$, say. We shall obtain an upper bound for the number D(x) of positive integers $n = km \le x$ such that U(n) = 1 and $m \ge 2$. Then $3 \nmid \sigma(k)$ and $2 \nmid kd_3(k)$. Assume that there exists a prime $\pi \mid kd_3(k), \ \pi \ne 3$. Then, for this fixed number k, the corresponding integer $m \le x/k$ has to satisfy the four conditions $p \mid m, \pi \nmid p+1, p \not\equiv 1 \pmod{3}$ and

 $p(m) > x_2^{1-\varepsilon}$. But the number of these integers is less than

(19)
$$\frac{x}{k\sqrt{x_1x_3}} \prod_{\substack{x_2$$

Since $\pi \leq T_x \ll x_5$, this far right side of (19) is less than

$$\frac{x}{k\sqrt{x_1}} \cdot \frac{1}{x_2^B},$$

where B > 0 is an arbitrary constant.

Therefore it remains to consider the case when $kd_3(k)=3^{\beta}$ for some positive integer β , in which case $k=3^{\alpha}$ for some integer $\alpha\geq 2$. This implies that $d_3(3^{\alpha})=((\alpha+1)(\alpha+2))/2$ and therefore that $3^{\beta-\alpha}=((\alpha+1)(\alpha+2))/2$. But no integer $\alpha\geq 2$ exists with this condition.

We have thus established that

$$\begin{split} D(x) &= \sum_{\substack{2 \leq k \leq T_x \\ k \text{ squarefull}}} \#\{n = km \leq x : U(n) = 1, \ m \geq 2\} \\ &\ll \sum_{\substack{2 \leq k \leq T_x \\ k \text{ squarefull}}} \frac{x}{k\sqrt{x_1}} \frac{1}{x_2^B} = o\left(\frac{x}{\sqrt{x_1 x_3}}\right). \end{split}$$

Therefore, in view of (18), estimate (17) is proved. Hence, in light of (16) and (17), the proof of Theorem 3 is complete.

6. The proof of Theorem 4. Let \mathcal{L} be the set of squarefree numbers for which all the prime factors are $\equiv 1 \pmod{3}$, and let $\mathcal{L}(y)$ ($\subseteq \mathcal{L}$) be the set of those integers in \mathcal{L} with the additional condition that all their prime divisors are $\geq y$.

Now let k run over the squarefull numbers (including k=1) and assume that U(p+a)=1 with p+a=km, where $\mu^2(m)=1$ and (k,m)=1. Then $(kmd_3(k)\cdot 3^{\omega(m)},\sigma(k)\sigma(m))=1$, so that U(m)=1 and U(k)=1, and consequently $(3,\sigma(m))=1$, in which case $m\in\mathcal{L}$, $(kd_3(k),\sigma(m))=1$ and $(m,\sigma(k))=1$.

Let

$$E_k(x) := \sum_{\substack{p \leq x \\ U(p+a) = 1 \\ k \mid p+a, \ (p+a)/k \in \mathcal{L}}} d(p+a) \quad \text{and} \quad E(x) = \sum_{\substack{k \leq x \\ k \text{ squarefull}}} E_k(x).$$

Since $\sum_{n \leq y} d(n) < 3y \log y$ for each $y \geq 2$, we have

$$E_k(x) \le d(k) \sum_{\nu \le x/k} d(\nu) < 3 \frac{d(k)}{k} x x_1,$$

thus implying that

$$\sum_{\substack{k>x_1^A\\k \text{ squarefull}}} E_k(x) \ll xx_1 \sum_{\substack{k\geq x_1^A\\k \text{ squarefull}}} \frac{d(k)}{k} \ll \frac{xx_1x_2}{x_1^{A/2}}.$$

Consequently,

(20)
$$E(x) = \sum_{\substack{k \le x_1^A \\ k \text{ squarefull}}} E_k(x) + O\left(xx_2x_1^{1-A/2}\right).$$

Let us first consider the case k = 1.

For this, we set

$$S_1(x,y) := \sum_{p+a \in \mathcal{L}(y)} d(p+a).$$

Fix $\varepsilon > 0$. Our plan is to show that

$$(1 + o(1))S_1(x, x_2) \le E_1(x) \le (1 + o(1))S_1(x, x_2^{1-\varepsilon}), \quad x \to \infty,$$

and that

$$S_1(x, x_2^{1-\varepsilon}) = (1 + o(1))S_1(x, x_2), \quad x \to \infty.$$

and finally that, for some constant C_0 ,

$$S_1(x, x_2) = (1 + o(1))C_0 \frac{\operatorname{li}(x)}{x_3},$$

thereby completing the proof of Theorem 4.

We start by estimating the sum of d(p+a) for those $p+a \in \mathcal{L}$ for which the smallest prime divisor of p+a is smaller than $x_2^{1-\varepsilon}$, in which case we may write

$$p+a=q\pi_1\pi_2\cdots\pi_s$$
.

If U(p+a)=1, then clearly $q \nmid (\pi_i+1)$ for $j=1,\ldots,s$.

Now let $q \neq 3$, and let $\mathcal{L}_q \subseteq \mathcal{L}$ be the set of those integers n for which $\pi \mid n$ implies that $\pi + 1 \not\equiv 0 \pmod{q}$. Moreover, let $\mathcal{L}_q(y) = \mathcal{L}(y) \cap \mathcal{L}_q$.

Set

$$T_1^{(q)}(x):=\sum_{{p\leq xtop (p+a/q)\in \mathcal{L}_q(q)}}d(p+a).$$

We may obtain an upper bound for $T_1^{(q)}(x)$ by counting the number of couples (u,v) for which

$$p+a=quv, \quad u < v, \qquad uv \leq rac{x+a}{q}, \quad u,v \in \mathcal{L}_q(q).$$

By classical sieve theory, this quantity is less than

(21)
$$R_{q} := \sum_{\substack{u < \sqrt{x} \\ u \in \mathcal{L}_{q}(q)}} \frac{\operatorname{li}(x)}{q\varphi(u)} \prod_{\pi \in \mathcal{T}_{q}} \left(1 - \frac{1}{\pi}\right),$$

where

$$\mathcal{T}_q := \{ \pi \leq q \text{ or } \pi \equiv -1 \pmod{3} \text{ or } \pi \equiv -1 \pmod{q} \}.$$

Thus,

$$(22) \qquad \prod_{\pi \in \mathcal{T}_q} \left(1 - \frac{1}{\pi}\right) \ll \left(\frac{\log q}{x_1}\right)^{(1/2) + (1/2(q-1))} \cdot \frac{1}{\log q}$$

and

$$\sum_{\substack{u < \sqrt{x} \\ u \in \mathcal{L}_q(q)}} \frac{1}{\varphi(u)} \leq \prod_{\substack{q < \pi < \sqrt{x} \\ \pi \equiv 1 \pmod{3} \\ \pi+1 \not\equiv 0 \pmod{q}}} \left(1 + \frac{1}{\pi}\right) \ll \exp\left\{\sum_{\substack{q < \pi < \sqrt{x} \\ \pi \equiv 1 \pmod{3} \\ \pi+1 \not\equiv 0 \pmod{q}}} \frac{1}{\pi}\right\}$$

$$= \exp\left\{\left(\frac{1}{2} - \frac{1}{2(q-1)}\right) (x_2 - \log\log q)\right\}$$

$$= (\log q)^{-1/2 + (1/2(q-1))} \cdot x_1^{1/2 - (1/2(q-1))}.$$

Using (22) and (23) in (21), we get that

$$T_1^{(q)}(x) \ll R_q \ll \frac{\operatorname{li}(x)}{q \log q} (\log q)^{1/(q-1)} \cdot \frac{1}{x_1^{1/(q-1)}},$$

so that

$$\sum_{q < x_2^{1-\varepsilon}} T_1^{(q)}(x) \ll \sum_{q < x_2^{1-\varepsilon}} \frac{\operatorname{li}(x)}{q \log q} \exp\left\{-\frac{x_2}{q-1}\right\} \ll \operatorname{li}(x) \cdot \exp(-x_2^{1-\varepsilon}),$$

from which it follows that

(24)
$$E_1(x) \le S_1(x, x_2^{1-\varepsilon}) + O\left(\text{li}(x) \cdot \exp\{-x_2^{1-\varepsilon}\}\right).$$

Now we estimate the sum of d(p+a) over all those primes p for which $p+a \in \mathcal{L}(x_2)$ and $U(p+a) \neq 1$. If p is such a prime, then there exist prime divisors π_1, π_2 of p+a such that $\pi_2 \equiv 1 \pmod{\pi_1}$. For fixed π_1, π_2 , the contribution is less than (25)

$$\#\{p+a=\pi_1\pi_2uv: u\leq v,\ (u,v)=1,\ uv< x/(\pi_1\pi_2),\ u,v\in\mathcal{L}(x_2)\}.$$

Since

$$\sum_{\pi_1 > x_1^B} \sum_{\pi_2 \equiv 1 \pmod{\pi_1}} \sum_{\pi_1 \pi_2 \mid p+a} d(p+a) \ll \sum_{\pi_1} \sum_{\pi_2} \sum_{\nu \le (x/\pi_1 \pi_2)} d(\nu)$$

$$\ll \sum_{\pi_1} \sum_{\pi_2} \frac{xx_1}{\pi_1 \pi_2} \ll xx_1 x_2 \sum_{\pi_1} \frac{1}{\pi_1^2} \ll xx_1^{1-B/2},$$

we may assume that $\pi_1 \leq x_1^B$. Using this fact, we shall now estimate from above the expression (25) separating the set into two subsets, namely

C1. those elements for which $\pi_1 \leq x_1^B$, $\pi_2 \equiv 1 \pmod{\pi_1}$ and $\pi_2 > x^{2/3}$;

C2. those elements for which $\pi_1 \leq x_1^B$, $\pi_2 \equiv 1 \pmod{\pi_1}$ and $\pi_2 < x^{2/3}$.

We start with case C1 and set $\alpha := \pi_1 uv$. The number of solutions of the equation $p + a = \alpha \pi_2$ in primes $p \leq x$ and $\pi_2 \equiv 1 \pmod{\pi_1}$ is less than

$$\frac{x/\log^2 x}{\pi_1 \varphi(\alpha)} \ll \frac{x}{x_1^2 \pi_1^2 \varphi(uv)}.$$

Summing up over u, v, the total number of solutions is therefore

$$\begin{pmatrix}
\frac{x}{x_1^2} \sum_{\pi > x_2} \frac{1}{\pi^2} \sum_{\substack{n \le x \\ n \in \mathcal{L}(x_2)}} \frac{d(n)}{\varphi(n)} \ll \frac{x}{x_1^2 x_3} \prod_{\substack{x_2 < \pi < x \\ \pi \equiv 1 \pmod{3}}} \left(1 + \frac{2}{\pi}\right)$$

$$\ll \frac{x}{x_1^2 x_3} \exp \left\{ 2 \sum_{\substack{x_2 < \pi < x \\ \pi \equiv 1 \pmod{3}}} \frac{1}{\pi} \right\} \ll \frac{x}{x_1^2 x_3} \exp\{x_2 - x_4\} = \frac{x}{x_1 x_3^2}.$$

To consider case C2, we fix π_1, π_2 and $u \ (\leq \sqrt{x/(\pi_1 \pi_2)})$. By using standard sieve theory, the number of solutions of $p + a = \pi_1 \pi_2 uv \leq x$ in p and $v \in \mathcal{L}(x_2)$ is less than

$$\frac{x/x_1}{\pi_1 \pi_2 \varphi(u)} \prod_{\substack{x_2 < \pi < x \\ \pi \equiv -1 \pmod{3}}} \left(1 - \frac{1}{\pi}\right) = \frac{x}{x_1 \pi_1 \pi_2} \left(\frac{x_1}{x_3}\right)^{-1/2} \frac{1}{\varphi(u)}.$$

Summing up this last expression on u, it becomes

$$\ll Q(\pi_1, \pi_2) := \frac{x}{x_1 \pi_1 \pi_2} \left(\frac{x_1}{x_3}\right)^{-1/2} \sum_{u \le \sqrt{\frac{x}{\pi_1 \pi_2}}} \frac{1}{\varphi(u)}$$

$$\ll \frac{x}{x_1 \pi_1 \pi_2} \left(\frac{x_1}{x_3}\right)^{-1/2} \prod_{\substack{x_2 \pi < x \\ \pi \equiv 1 \pmod{3}}} \left(1 + \frac{1}{p-1}\right)$$

$$\ll \frac{x}{x_1 \pi_1 \pi_2} \left(\frac{x_1}{x_3}\right)^{-1/2} \left(\frac{x_1}{x_3}\right)^{1/2} = \frac{x}{x_1 \pi_1 \pi_2}.$$

Since

$$\sum_{\pi_1 > x_2} \frac{1}{\pi_1} \sum_{\pi_2 \equiv 1 \pmod{\pi_1}} \frac{1}{\pi_2} \ll x_2 \sum_{\pi_1 > x_2} \frac{1}{\pi_1^2} \ll \frac{1}{x_3},$$

it follows that

(27)
$$\sum_{\pi_1 > x_2 \, \pi_2 \equiv 1 \pmod{\pi_1}} Q(\pi_1, \pi_2) \ll \frac{x}{x_1 x_3}.$$

Gathering the bounds (26) and (27) obtained from cases C1 and C2, we have thus proved that

(28)
$$E_1(x) \ge S_1(x, x_2) - O\left(\frac{x}{x_1 x_3}\right).$$

In order to take advantage of estimates (24) and (28), let us now count $S_1(x, y)$ for $y = x_2^{1-\varepsilon}$ and $y = x_2$.

By using a method of Hooley and the Bombieri-Vinogradov theorem, one can show that, for some positive constant C_0 ,

$$S_1(x,y) = (1+o(1))C_0 \frac{\text{li}(x)}{\log y}, \quad x \to \infty.$$

Therefore,

$$S_1(x,x_2^{1-arepsilon}) - S_1(x,x_2) = C_0 \, rac{\mathrm{li}\,(x)}{x_3} \left(rac{1}{1-arepsilon} - 1
ight) + o\left(rac{\mathrm{li}\,(x)}{x_3}
ight).$$

By replacing ε by a function $\varepsilon(x)$ which tends to 0 very slowly as $x \to \infty$, we may conclude from (24) and (28) that

(29)
$$E_1(x) = (1 + o(1))C_0 \frac{\operatorname{li}(x)}{x_3}, \quad x \to \infty.$$

As we shall now see,

(30)
$$\sum_{\substack{1 < k \le x_1^A \\ k \text{ squarefull}}} E_k(x) = o\left(\frac{\text{li }(x)}{x_3}\right),$$

which in light of (20) and (29) will complete the proof of Theorem 4.

We shall first consider the case of squarefull k > 1.

First observe that, since $d_3(\pi^{\alpha}) = ((\alpha + 1)(\alpha + 2))/2$, it follows that if $2|d_3(\pi^{\alpha})$ for some prime power $\pi^{\alpha}||k$, then $U(p+a) \neq 1$ unless $\phi(m)$ is odd, which only occurs for m = 1. Whence, one can obtain U(p+a) = 1 only when p + a = k.

Since $\alpha \geq 2$, it follows that $((\alpha + 1)(\alpha + 2))/2$ is odd only if $\alpha \equiv 0 \pmod{4}$.

If $d_3(\pi^{\alpha})$ is not divisible by any prime other than 3, then

$$\frac{(\alpha+1)(\alpha+2)}{2} = 3^{\delta}$$

for some integer $\delta \geq 1$, an equation whose only solution is $\alpha = 1$, $\delta = 1$. But this is impossible since k is squarefull.

So let q(k) be the smallest prime divisor of $kd_3(k)$. For each squarefull number k > 1, we shall consider separately the two cases:

D1.
$$q(k) \le x_2^{1-\varepsilon};$$

D2.
$$q(k) > x_2^{1-\epsilon}$$
.

In case D1, we have

$$E_k(x) \ll \#\{p \le x : p + a = kuv, u < v, u, v \in \mathcal{L}_{q(k)}\}.$$

Using basic sieve theory, we obtain that

$$E_k(x) \ll \frac{1}{k} \sum_{\substack{u \le \sqrt{x/k} \\ u \in \mathcal{L}_{q(k)}}} \frac{\operatorname{li}(x)}{\varphi(u)} \prod_{\substack{\pi+1 \not\equiv 0 \pmod{q(k)} \\ \text{or } \pi \equiv -1 \pmod{3}}} \left(1 - \frac{1}{\pi}\right)$$

$$\ll \frac{\operatorname{li}(x)}{k} \cdot x_1^{1/2 - (1/2(q(k) - 1))} \cdot \frac{1}{x_1^{1/2 + (1/2(q(k) - 1))}}$$

$$\ll \frac{\operatorname{li}(x)}{k} \exp\left\{-\frac{x_2}{q(k) - 1}\right\} \ll \frac{\operatorname{li}(x)}{k} \exp\left\{-x_2^{\varepsilon}\right\}.$$

It follows from this that, in case D1, we have

(31)
$$\sum_{\substack{1 < k \le x_1^A \\ k \text{ squarefull} \\ q(k) \le x_2^{1-\varepsilon}}} E_k(x) = o\left(\frac{\operatorname{li}(x)}{x_3}\right).$$

We now move to case D2. Given a squarefull number k>1, let $\pi^{\alpha}\|k$ (with $\alpha\geq 2$). In this case, we have $\pi>x_2^{1-\varepsilon}$, $(\alpha+2)/2>x_2^{1-\varepsilon}$ and therefore $k\geq \pi^{\alpha}>\exp\{x_2^{1-\varepsilon}\}$. For such squarefull k>1, we have that

(32)
$$E_{k}(x) \ll \#\left\{p+1 = kuv, \ u < v, \ uv \in \mathcal{L}, \ uv < \frac{x}{k}\right\}$$
$$\ll \frac{\operatorname{li}(x)}{\varphi(k)} \sum_{u < \sqrt{\frac{x}{k}}} \frac{1}{\varphi(u)} \prod_{\pi \equiv -1 \pmod{3}} \left(1 + \frac{1}{\pi}\right)$$
$$\ll \frac{\operatorname{li}(x)}{\varphi(k)}.$$

Since we clearly have

$$\sum_{\substack{\exp\{x_2^{1-\varepsilon}\} < k \le x_1^A \\ k \text{ squarefull}}} \frac{1}{\varphi(k)} = o\left(\frac{1}{x_3}\right),$$

it follows from (32) that

(33)
$$\sum_{\substack{1 < k \le x_1^A \\ k \text{ squarefull} \\ q(k) > x_2^{1-\varepsilon}}} E_k(x) = o\left(\frac{\text{li }(x)}{x_3}\right).$$

Gathering (31) and (33), then (30) follows, thus completing the proof of Theorem 4. \Box

7. The proof of Theorem 5. We start by proving that, for most $n \in B_x(r)$, we have $(n, \varphi(n)) = 1$.

In order to do so, first observe that the number of non squarefree numbers belonging to $B_x(r)$ is negligible. Assume now that $n \in B_x(r)$, $\mu^2(n) = 1$ and $n \notin A_x(r)$. Then clearly there exist two prime numbers $p_1 < p_2$ with $p_2 \equiv 1 \pmod{p_1}$ such that $n = p_1 p_2 \nu$, with $\nu \in B_{x/(p_1 p_2)}(r-2)$.

We shall now consider the three possible cases:

- (i) $p_1 > x_1$;
- (ii) $p_1 \le x_1$ and $p_2 > x^{2/3}$;

(iii) $p_1 \le x_1$ and $p_2 \le x^{2/3}$.

Then

(34)
$$\sum_{n \in B_{x}(r) \backslash A_{x}(r) \atop \text{Case (i)}} \mu^{2}(n) \ll \sum_{x_{1} < p_{1} < x} \sum_{\substack{p_{2} < x \\ p_{2} \equiv 1 \pmod{p_{1}}}} \frac{x}{p_{1}p_{2}} \\ \ll \sum_{p_{1} > x_{1}} \frac{xx_{2}}{p_{1}^{2}} \ll \frac{xx_{2}}{x_{1}x_{2}} = \frac{x}{x_{1}}.$$

When considering those integers n satisfying case (ii), we may assume that $\nu \leq x^{0.35}$, say. Then, for fixed p_1 , the number of p_2 's satisfying $p_2 \leq x/(p_1\nu)$, $p_2 \equiv 1 \pmod{p_1}$, the number of squarefree $n = p_1p_2\nu \leq x$ is no larger than

$$\frac{x}{x_1 p_1^2} \sum_{\substack{\omega(\nu) = r - 2 \\ p(\nu) > x_2}} \frac{\mu^2(\nu)}{\varphi(\nu)} \ll \frac{x}{x_1 p_1^2} \frac{1}{(r-3)!} \left(\sum_{x_2 < q < x} \frac{1}{q-1} \right)^{r-3}.$$

Summing up this last quantity over $p_1 \leq x_1$, we may conclude that

(35)
$$\sum_{\substack{n \in B_x(r) \setminus A_x(r) \\ \text{Case (ii)}}} \mu^2(n) \ll \frac{x}{x_1} \frac{1}{(r-3)!} (x_2 - x_4)^{r-3} \sum_{x_2 < p_1 \le x_1} \frac{1}{p_1^2}$$
$$\ll \frac{x}{x_1 x_2 x_3} \frac{1}{(r-3)!} (x_2 - x_4)^{r-3}.$$

In case (iii), we have $\nu \leq x/(p_1p_2)$ with $x/(p_1p_2) > x^{0.3}$, say. Then using a result similar to Lemma 1 but where we drop the condition $p_i \not\equiv 1 \pmod{Q}$, and choosing $y = x_2$ and taking r-2 instead of r, we get that

$$\sum_{n \in B_x(r) \backslash A_x(r) \atop \text{Case (iii)}} \mu^2(n) \ll \frac{x}{x_1} \sum_{x_2 < p_1 \le x_1} \frac{1}{p_1} \sum_{\substack{p_1 < p_2 \le x^2/3 \\ p_2 \equiv 1 \pmod{p_1}}} \frac{1}{p_2} \frac{1}{(r-3)!} (x_2 - x_4)^{r-3} \\
\ll \frac{x}{x_1} \frac{x_2^{r-3}}{(r-3)!} \left(1 - \frac{x_4}{x_2}\right)^{r-3} \sum_{x_2 < p_1 \le x_1} \frac{1}{p_1^2} \ll \frac{x}{x_1 x_2 x_3} \frac{x_2^{r-3}}{(r-3)!} \left(1 - \frac{x_4}{x_2}\right)^{r-3}.$$

Let $\varepsilon > 0$ be a small constant. We shall prove that

(37)
$$\#\{n \le x : \omega(n) = r, \ p(n) \le x_2^{1-\varepsilon}, \ (n, \varphi(n)) = 1\} = o(\#B_x(r)).$$

First we drop all the integers $n \leq x$ for which $P(n) \leq \exp\{x_1/x_3^2\} := Y$. In light of (4), the quantity of these numbers n is less than $\Psi(x,Y) \ll x \exp\{-1/2(\log x/\log Y)\} \ll x \exp\{-x_3^2/2\}$, a quantity which is so small that we can indeed drop this category of integers $n \leq x$. Hence, we only need to consider those integers $n \leq x$ such that $\omega(n) = r$, $p(n) = q \leq x_2^{1-\varepsilon}$, $(n, \varphi(n)) = 1$ and P(n) > Y. Writing these numbers n as $n = qp_1 \cdots p_{r-1}$ with $p_{r-1} > Y$, then, using a classical Hardy and Ramanujan approach, we get that the number of these integers $n \leq x$, for a fixed prime q, is less than

$$\frac{c_5 x}{q x_1(r-2)!} \left\{ \sum_{\substack{q$$

for some positive constants c_5 and c_6 . Summing up over $q \leq x_2^{1-\varepsilon}$, (37) follows.

Finally, it follows from Theorem A that

$$\#\{n \le x : \omega(n) = r, \ p(n) > x_2^{1-\varepsilon}\}
- \#\{n \le x : \omega(n) = r, \ p(n) > x_2\}
= O\left((\varepsilon + o(1)) \frac{x}{x_1} \frac{x_2^{r-1}}{(r-1)!} \prod_{p \le x_2} \left(1 - \frac{1}{p}\right)\right).$$

Hence, in light of (34), (35), (36) and (37), the proof of Theorem 5 is complete.

REFERENCES

- 1. A.V. Begunts, On an asymptotic formula for $F_1(x)$, Vestnik Moskov. Univ. 5 (2001), 57–59, 71–72; Moscow Univ. Math. Bull. 56 (2001), 37–39 (in English).
- 2. J.M. De Koninck and I. Kátai, *Improving upon a result of Kanold*, Int. J. Math. Anal., to appear.
- 3. P. Erdős, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948), 75–78.
- 4. H.J. Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl II, Math. Annal. 134 (1958), 225–231.

- 5. I. Kátai and M.V. Subbarao, Some further remarks on the iterates of the ϕ and σ functions, Ann. Univ. Sci. Budapest. Rolando Eötvös Nominatae Sectio Computatorica, to appear.
- **6.** G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1995.

Dép. de mathématiques et de statistique, Université Laval, Québec, Québec G1K 7P4, Canada **Email address: jmdk@mat.ulaval.ca**

Computer Algebra Department, Eötvös Loránd University, 1117 Budapest, Pázmány Péter Sétány I/C, Hungary

Email address: katai@compalg.inf.elte.hu