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DISTRIBUTION OF ARITHMETIC FUNCTIONS
ON CERTAIN SUBSETS OF INTEGERS

J.M. DE KONINCK AND L. KATAI

ABSTRACT. Let d(n), respectively o(n), stand for the
number, respectively the sum, of the positive divisors of n,
and let ¢ be Euler’s totient function. Also let dz(n) be
the number of solutions of ajazaz = n in positive integers
a1,a2,a3. We determine the order of the set of positive
integers n < z for which (nd(n),p(n)) is a power of 2.
We do the same for the set of positive integers n < z for
which (nds(n),p(n)) = 1 and for the set of positive integers
n < z for which U(n) := (nd3(n),o(n)) = 1. We also show
that Zpgz, Upta)=1 d(p + a) is of order li(z)/logloglogx.
Moreover, generalizing an approach used by Erdds to prove
that #{n < z: (n,¢o(n)) =1} ~ #{n < z : p(n) > loglogz}
(where p(n) stands for the smallest prime factor of n), we
show that the same result holds when we add the condition
w(n) = r in each of these two sets, where w(n) is the number
of distinct prime divisors of n. Finally, we estimate the
size of #{n < z : (n,p(n)) = 1, w(n) = r} uniformly for
r=r(z) = (1+ o(1))loglogz.

1. Introduction. Let ¢ stand for Euler’s totient function, o(n) for
the sum of the positive divisors of n and d(n) for the number of positive
divisors of n. Moreover, for each integer n > 2, let p(n) stand for the
smallest prime factor of n with p(1) = 1 and w(n) for the number of
distinct prime factors of n.

In 1958, Kanold [4] showed that, if E(z) := #{n < z: (nd(n),o(n)) =
1}, then there exist positive constants Cy < Cs and a positive number
o such that

(1) Ci1 < E(z)/\/z/logz < Ca, x> xp.
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Recently, we showed [2] that there exists a positive constant C such

that
E(z) = C(1+ o(1)), /10;'

Also recently, Katai and Subbarao [5] obtained various results regard-
ing the function pg, that is, the k-fold iterate of ¢; they showed in
particular that, for most integers n < x,

(mor(m) = [ »°
p|n

P<z§

and that, for any given integer a # 0, for most primes g < ,

(@+aeu(g+a) = ] »*

r%llata
k
P<a:2

Here and hereafter, z; = max(1,logz) and z; = max(1,logz; 1) for
each integer ¢ > 2.

Consider the sets A, :={n <z : (n,¢(n)) =1} and By :={n < z:
p(n) > z2}. In 1948, Erdés [3] proved that

2) #4, = (1+0(1)e "2, 2 — oo,
x3

where v stands for Euler’s constant, and somewhat surprisingly, that
(3) #A, = (1+0(1)#B,;, z— 0.

In 2001, Begunts [1] improved (2) by showing that

#A, =T (1 +0 <ﬂ>> .
I3 I3

In this paper, we establish various results analogous to those men-
tioned above.

In particular, after observing that (nd(n),p(n)) = 1 if and only if
n = 1 or 2, we estimate the size of the set {n < z : (nd(n),¢(n)) =
a power of 2}.
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Letting ds(n) stand for the number of solutions of ajazas = n in
positive integers aj,as,a3 and setting F(n) := (nds(n),¢(n)) and
U(n) := (nds(n),o(n)), we estimate the size of the sets {n < z: F(n) =
1} and {n < z:U(n) = 1} and of the sum }° . 17,1 0)—1 d(P + @)

Then, by using the method of Erdés, we prove a result similar to (3)
with the additional restriction that the integers n in A, and B, satisfy
w(n) =r with r =r(z) = (1 + o(1))z2.

Finally, we show that #{n < z : (n,¢o(n)) = 1, w(n) = r

} ~
[l,<.,(1 = (1/p) - #{n < z : w(n) = r} uniformly for r = r(z) =
(14 o(1))zs.

2. Main results. Observe that E(n) := (nd(n),¢(n)) = 1 if and
only if n = 1 or 2. Indeed, assuming that n > 3 with E(n) = 1, it
is clear that n must be squarefree; therefore, n must be divisible by
an odd prime p, in which case ¢(p) is even and d(p) = 2, implying
that 2|E(n), thus establishing our claim. On the other hand, it turns
out that E(n) is quite often a power of 2, as is shown by the following
result.

Theorem 1. As z — oo,
#{n<z:(nd(n),p(n)) = a power of 2} = (1 + 0(1))012, T — 00,
T3
where ¢; = e~ (l +2 Zj’;l(l/Qze)).
Theorem 2. There exists a positive constant co such that

#{n<z:F(n)=1}=(140(1))ca

1/I1£E3,

Theorem 3. There exists a positive constant cs such that

#{n<z:U(n)=1}=(1+o0(1))cs —



1462 J.M. DE KONINCK AND I. KATAI

Let X be the Dirichlet character

1 ifn=1 (mod 3),
X(n)=< —1 ifn=-1 (mod 3),
0 if 3|n.

Let
r(n)=> x(d) =[] @ +x()+--+x0").

din plin

It is clear that for squarefree integers n, we have r(n) > 0 if and only
if every prime factor of n is = 1 (mod 3). Moreover if r(n) > 0 and
n is squarefree, then r(n) = d(n). By using the Bombieri-Vinogradov
theorem, one can deduce that, given any integer a # 0, there exists a
positive constant ¢ such that

Zr(p +a)=c(l+o(l))z, x— oco.

Here, setting as usual li(z) := [, (dt/logt), we shall prove the
following result.

Theorem 4. Given any nonzero integer a, there exists a positive
constant c4 such that

Z dlp+a)=(1+ 0(1))0412(0?, T — oo.

U(p+a)=1

For each positive integer r, let
Ag(r)i={n<z:(n,p(n) =1, w(n)=r}

and
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Theorem 5. Uniformly for r = r(z) = (1 + o(1))z3, as © — oo,
(i) #A4z(r) = (1 + o(1))#Be(r),
(ii) #Bo(r) = (1 + o(1)) [T,c,, 1 — (1/p) - (2/21) (23" /(r — 1)1).

3. Further notations and preliminary results. Letting P(n)
stand for the largest prime factor of n with P(1) = 1, we set as is
customary

Y(z,y) = #{n <x:P(n) <y}.

We shall be using the well-known estimate

(4)  U(w,y)=#{n<w:Pn) <y} <wexp {_;ngxy} ’

see, for instance, Tenenbaum [6].

Throughout this paper, the letters p, ¢ and 7 always stand for prime
numbers. For each positive integer 7, let

m(z) =#{n <z:w(n)=r}

Theorem A. If z — 00, 1 <y <z, (1 —ez)xe <7 < (14 ¢e,)xe,
where e, — 0, then

#{n<z:wn)=r, pn)>y}=(1+0(1)) H <1 - ]—)> - ().

pP<y

Proof. This result can be proved by using the now classical Selberg-
Delange method applied to the study of the function

o= T+ 5o ).

P>y

We shall therefore omit the details. O

Lemma 1. Let A be a positive constant, and let

fr(w7y7Q) :{TLSCU ‘n=p1---DPr, y<P1 <"'<p7‘7 Di ;’é 1 (mOd Q)}7
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where Q is an odd prime number less than x4, and assume that y < x4
and that r = r(z) = (1 + o(1))xz2. Then

r—1 I r—1

z1 - (r—1)! -1 x2

Proof. We may assume that P(n) = p, > x'/(%2) since the
contribution of those integers n € F.(z,y, Q) for which P(n) < z'/(222)
is smaller than

U(z, 2"/ ")) < zexp{—mzs} = O(z/x1),

where we used (4). From this observation and taking into account that
logz < 2logn for \/z < n < z, it follows that

(5) xl'#fr(xayaQ)<<x+\/E'xl+S*a

where

S* = Z log n.

n=pj---prz
p1>y, pr>al/(272)
p; Z1 (mod Q)

Now, using the Prime Number theorem for arithmetic progressions in
the weak form

Z logp < <1—ﬁ)x,

p<=
p#1 (mod Q)
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we have

S* < E logp
vp<w
w()=r—1
y<P(w)<p, p>al/(222) | pz£1 (mod Q)
pilv=p; Z1 (mod Q)

< Z Z logp

v<a/xl/(222) y<p<z/v
“w(v)=r—1 p#1 (mod Q)
p;lv=p; Z1 (mod Q)

1 1
<<(1—Q_1>x E -

W(V);’V‘fl
pilv=p;#1 (mod Q)

1 T 1

<l|ll-—) —- E -

( Q o 1> (T o 1)' y<g<z q
g%l (mod Q)

T 1 " r—1
< 7(71_1)! (I—Q—1> (z2 — loglogy)™ ,

which combined with (5) completes the proof of Lemma 1.

r—1

Corollary. Let R.(r|Q) be the set of those integers n < x such that
(n,o(n)) =1, w(n) =r and p(n) = Q. Then

r—1
1
Z #R,(r|Q) < EL'exp{——logzr}.
Q<r/log?r 1 (T B 1) 2

Proof. If n < z, (n,o(n)) = 1, w(n) = r and p(n) = @, then
n=Qm<z,m=p-pr-1,Q <p1 < <pgandp #£1
(mod @). Therefore, it follows from Lemma 1 that

#Rz(r‘Q) =#F (%aQaQ)

r—2 r—1 r—1
< T Ty 1 1 l_loglogQ ‘
Qxy (r —2)! Q-1 Ty
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From this, it follows that

> #R.(rQ)

Q<r/(logr)?
r—1
1 log 1
«I By Leo{(-p-res@))
! " Q<r/(logr)? 2
r—1
1
T T, 1,

s _ 2
zy (r—1)! expf 2 8 rh

thus completing the proof of the corollary.

4. The proof of Theorem 1. Let
E:={n:E(n)= power of 2} and E(z):={n<z:necf}.

In order to estimate the size of £(z), we shall examine the size of its
subsets

E(x):={2'm <z: (m2)=1,2'me&}, t=0,1,2,....

Let us first consider &(z). It is clear that n € & (x) if and only if
(n,(n)) = 1. Hence, by Erdés’ estimate (2), it follows that

(6) #E0(z) = (1 + 0(1))6—%, z — oo.
3

Let us now consider the case where 1 <t < z3—1. If n = 2'm € & (),
then m € & (x/2') and (d(2'),(m)) = (t + 1,p(m)) is a power of 2.
We shall see that #&;(x) is negligible if t+1 is not a power of 2. Indeed,
consider a fixed integer ¢ < x3 — 1 such that ¢ + 1 is not a power of 2;
such a number ¢ must have an odd prime divisor ¢ < z3, in which case
g1 @(m). In this case, by a simple sieve argument, we have

Sq(x) ::#{mgé;mm implies that p# 1 (mOdq)}

2t

T 1 T 1z

adl I | 1— = il -z

< ot 1l ( 71-> < ot exp{ 2q }
w=1 (mod gq)

< T 1z
—expl ——— ¢.
9t FP\ T2,
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From this, it follows that

1z, T
I
(7) > o) < ep{ 2x3}<<2tm23
q<t
where B is an arbitrarily large constant.
Now if ¢t + 1 is a power of 2, then m € & (x/2"), which implies that
n=2'm € &(x). From this observation, it follows using (6) that

g A T iy g
(14 o(1))e

2t£l73
uniformly for ¢t + 1 < 3.

It remains to consider the situation where t > x3. But the contribu-
tion of these t’s is small since

(9) > #E(x) < ) z/2! <—

t>x3 t>x3

In view of (6), (7), (8) and (9), we may conclude that

#E(x) = #E(@)+ Y #&(x)

t<wg—1
t+1#power of 2

+ ) #a)+ ) #E(x)

t<wz—1 t>x3
t+1=power of 2

€T X
=(1+4+o0(1))e"—+0 —
(1+o(1)e .
t+1#power of 2
Z 4T 1 x

t<wz—1 3 t+1=2¢
t+1=power of 2

—(1+ 0(1))e—7§ +(1+ 0(1))26—79333 3> 2% +0 (%) ,

3 =1

which completes the proof of Theorem 1. ]
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5. The proofs of Theorems 2 and 3. Let £, :={n <z : F(n) =
1} and

Foly):={n<z:p*(n)=1,p|n=p=1 (mod3), p(n) > y}.

Let € > 0 be fixed, ¢ a prime smaller than =3¢ and £,(q) := {n =
qv <z:F(n)=1}.
Given n = qv € L,(q), it is clear that qv is squarefree, and since

ds(p) = 3, all primes p | v must satisfy p = —1 (mod 3) and p # 1
(mod q). Therefore,

sa@<? I (-1 I (1-})

<l p=1 (mod 3) p
w=—1 (mod 3) p=1 (mod q)

so that

T
2 < g
q<zy,

where B is an arbitrarily large constant.

It follows from this that

1
L, C Fu(zy %) U a set of size — .
I1 Ty

Hence, it is clear that
fz(xg) g ﬁz U T,

where

T:={n<z:pn)>z p|n=p=1 (mod 3)
and there exists ¢ | n, p|n, p=1 (mod q)}.

Now

(10) #T < > S #EK,=S81+8+8s,

z2<g<z p=1 (mod q)
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where

vaq
=#{v <a/pg: p*(v) =1, p(v) > 2, plv=p=1 (mod 3)}

and

Si= >, ) Kuw

ra<q<z1 p<z/xy
p=1 (mod q)

S22 3, ) Kuw

ra<g<wy =/zy<plz
p=1 (mod q)

Ss=> > Ky,
p<

> Sz
=1 p=1 (mod q)

For Sy, using the inequality

T
K,, < ,
P4 pg(log(z/pg))t/? /3

we easily conclude that

T 1 1
S < - -
v 13 Z2<Zjl<$1 q IKZ““ p
(11) p=1 (mod q)
TTo 1 T 1
< — K - —
VZ1T3 qu q? VI1T3 T3
To estimate Sz, we use the fact that K, , < z/pg, so that since
1 1 /7 du 1 [ dv T
> —:(1+o(l))—/ :—/ — < 2,
@/ey <p<wg p q z/xy UIOgu qJzy -z, U qri
p=1 (mod q)
it follows that
TTo 1 TTo x
12 Sy € — —- < = .
( ) 2 T Z q? T1T2X3 T1T3
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Finally, using again the fact that K, ; < x/pq, it follows that

1 1
(13) S;:,<<Z§ > z_a<<m2zq_2<<w£1'
p<z

> < >z
=7 p=1 (mod q) =1

Gathering (11), (12) and (13), it follows from (10) that

T 1
14 T —  ——.

Let us now estimate the size of the difference

Dy = fw(x%_e) — Folz2).

If n € D,, then n is squarefree and can be written as n = qv, where

p(n) = q € [z}, 5], and all prime factors of n are = 1 (mod 3). The

number of these v < x/q is less than

Since

it follows that

ET

\/L1I3 ’

(15) #D, <

Combining (14) and (15), the proof of Theorem 2 is complete.

The proof of Theorem 3 can be obtained in a similar manner.
Therefore we shall only give a sketch of it.

Assume that m > 1 is squarefree and that U(m) = 1. Then
ds(m) = 3™ so that p | m implies that 3 p+ 1 = o(p), that is,
p =1 (mod 3). Similarly, one can show that m cannot be a multiple
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of 3. Then, as in the proof of Theorem 2, we can deduce that there
exists a positive constant cg such that

(16) #{m <z:p*(m)=1, U(m) =1}
J#{n <x:p(n) >z, pln=p=2 (mod 3)}

Now, let n < x with U(n) = 1. We can write n = km, where
k is squarefull, m is squarefree and (k,m) = 1. We have (kds(k) -
39(m) g3(k)o(m)) = 1. Thus, U(m) = 1, U(k) = 1, 3 { o3(k) and
(kd3(k), o(m)) = 1.

In light of (16), the proof of Theorem 3 will be complete if we can
show that
(17)

#{n<z:Um) =1} =1 +o(1)#{m <z :p?(m) =1, U(m) = 1}.

To do so, we first observe that we can drop all those integers n = km <
z such that k > z%, since their number is clearly O(z/z1). Letting
T = T, be a function slowly tending to +oo with =, we then have

(18) Y #n=km<a:Un) =1}

1
k squarefull

< Y #m<a/kilm) =1, Um) =1}

Ty <k<z?
k squarefull

T 1 z
< o(1 .
\/IL1T3 Z k ( )\/IlIg

Ty < kgmf
k squarefull

So let us assume that 2 < k < T,, U(k) =1 and T, < x5, say. We
shall obtain an upper bound for the number D(z) of positive integers
n = km < z such that U(n) = 1 and m > 2. Then 3 { o(k) and
2 t kds(k). Assume that there exists a prime w | kds(k), © # 3.
Then, for this fixed number k, the corresponding integer m (< z/k)
has to satisfy the four conditions p | m, mtp+ 1, p Z1 (mod 3) and
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p(m) > z37°. But the number of these integers is less than

T 1 T 1
1 1-—- —_———= .
(19) ky/T1T3 1-21;[@ < p> < ky/T123 exp{ 22(r—1) }

p=—1 (mod =)
p=1 (mod 3)

Since m < T}, < x5, this far right side of (19) is less than

T 1
k\/x zB’
1 Ty

where B > 0 is an arbitrary constant.

Therefore it remains to consider the case when kds(k) = 3° for some
positive integer (, in which case k = 3% for some integer @ > 2.
This implies that d3(3*) = ((a+1)(a+2))/2 and therefore that
38~ = ((a+1)(a+2))/2. But no integer a@ > 2 exists with this
condition.

We have thus established that

D(z) = Z #{n=km<z:Um)=1,m>2}

2<k<Ty
k squarefull

< Y = i—o( ° )
2<kaTy k\/Il IZB A/ L1I3 )

k squarefull

Therefore, in view of (18), estimate (17) is proved. Hence, in light of
(16) and (17), the proof of Theorem 3 is complete.

6. The proof of Theorem 4. Let £ be the set of squarefree
numbers for which all the prime factors are =1 (mod 3), and let £L(y)
(C L) be the set of those integers in £ with the additional condition
that all their prime divisors are > y.

Now let k run over the squarefull numbers (including & = 1) and
assume that U(p + a) = 1 with p + a = km, where p?(m) = 1 and
(k,m) = 1. Then (kmds(k) - 3*(™ o (k)o(m)) = 1, so that U(m) = 1

and U(k) = 1, and consequently (3,0(m)) = 1, in which case m € L,
(kd3(k),o(m)) =1 and (m,o(k)) = 1.
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Let
Ei(z) == Z dlp+a) and E(z)= Z Ei(z).

p<z k<e

U(p+a)=1 k squarefull
klp+a, (pt+a)/keL
Since >, ., d(n) < 3ylogy for each y > 2, we have
d(k
Ei(z) < d(k) ;k d(v) < 3%%@1,

thus implying that

d(k
}E: l?k($) <L xr1 z{: —%;2 < x?:i?.
1

k:>mi4 kme
k squarefull k squarefull
Consequently,
(20) BE@)= Y Ey2)+0 (mmi“‘”) .
k<azd
=71

k squarefull

Let us first consider the case k = 1.

For this, we set

Si(z,y):= Y dp+a).

pt+acL(y)

Fix € > 0. Our plan is to show that
(14 0(1))S1(z,z2) < Ey(z) < (14 0(1))51(%”@%75), T — 00,
and that

Si(z, 23 %) = (1 +0(1))S1(z,z2), = — oo.
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and finally that, for some constant Cj,

Sy(a,a2) = (1+o(1))Cy 2,

T3

thereby completing the proof of Theorem 4. ]

We start by estimating the sum of d(p + a) for those p 4+ a € L for
which the smallest prime divisor of p+ a is smaller than w%fg, in which
case we may write

p+a=qmmg---Ts.

If U(p+a) =1, then clearly g f (m; + 1) for j =1,...,s.
Now let g # 3, and let £, C L be the set of those integers n for which
7 | n implies that 7 +1 # 0 (mod g). Moreover, let L,(y) = L(y) N L,,.
Set

)= Y dp+a).

p<z
(pta/q)€Lq(q)

We may obtain an upper bound for Tl(q)(m) by counting the number of
couples (u,v) for which

r+a
p+ta=gquv, u<v, w < » u v € Lo(g).
q

By classical sieve theory, this quantity is less than

@) Roi= 2. qlso((u)) 1l <1‘%>’

u<VzE 7|'€7:1
u€Lq(a)

where

Tyi={r<gqorm=-1 (mod3)orm=-1 (modgq)}.

1 log g\ /24121
22 1-= :
@ T(g) = ()

€Ty
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and
1 1 1
> —=< ]I 1+ =) < exp > =
o(u) T T
u<lVzT g<m <z g<m <~z
wELg(a) x=1 (mod 3) 7=1 (mod 3)
(23) w+1#0 (mod q) 7w+1#£0 (mod q)

= exp { <% - ﬁ) (z2 — loglogq)}

= (log q)—1/2+(1/2(q—1)) .m}/2*(1/2(q71))‘

Using (22) and (23) in (21), we get that

(@) li (z) 1/(q-1) , 1

T"(@) < By < o (log ) D

so that
> 10w« ¥ S gl cu) ew-s )
=~ = _qlogq g—1
q<z, q<zT,

from which it follows that
(24) Eqi(z) < Sy (m,x%_s) +0 (li (z) - exp{—x%_s}) .

Now we estimate the sum of d(p+a) over all those primes p for which
p+a € L(zz) and U(p + a) # 1. If p is such a prime, then there exist
prime divisors my,m2 of p 4+ a such that 73 = 1 (mod m;). For fixed
1, T2, the contribution is less than
(25)

#{p+a=mmuv:u<uv, (u,v) =1, w < z/(mm2), u,v € L(x2)}.

Since
Z Z Z d(p+a)<<zz Z d(v)
7r1>ziB m2=1 (mod 1) mim2|p+ta w1 w2 v<(z/mim2)

T, 1 1-B/2
€D, Comm ) g <an T
my T2 1
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we may assume that m; < zP. Using this fact, we shall now estimate
from above the expression (25) separating the set into two subsets,
namely

C1. those elements for which w1 < a:lB, m2 = 1 (mod m) and
o > x?/3;

C2. those elements for which m < zP, m = 1 (mod m;) and
T2 S 1‘2/3.

We start with case Cl and set o := mjuv. The number of solutions
of the equation p + a = ams in primes p < z and mp =1 (mod 7y) is
less than

z/ log® z T
mpl@) © a2ndp(un)

Summing up over u, v, the total number of solutions is therefore

x 1 d(n) x 2

adl - 2\ 1+ 2

“<3Xa X e I ()
T ne"5(22> 7r512<(mo<d 3)

(26)

T 1 T T
< —5—expy 2 Z — ¢ K z—exp{ry — x4} = 5
T1T3 wp<m<a ™ T1T3 T1T3
w=1 (mod 3)
To consider case C2, we fix 71,73 and u (< y/z/(m1m2)). By using
standard sieve theory, the number of solutions of p 4+ a = mymuv < x
in p and v € L(x2) is less than

x/z1 H (1 B 1) _ (ﬂ>1/2 1
7r17r2<,0(u) zo<w<m ™ T1T172 \ T3 (p(u)
w=—1 (mod 3)

Summing up this last expression on u, it becomes

—-1/2
T 1 1
< T1,T2) 1= — E —
Q( ! 2) L1172 <£I)3> <p(u)

USV 7r1I7r2
—-1/2
T 1 1
it 14—
<<x17T17T2 <$3> H < +p_1)

zom <z
w=1 (mod 3)

-1/2 1/2
X X1 I X
<< b = .
T1T172 \ T3 T3 T1T17T2
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Since

1 1 1 1

J— JE— JR— << J—
w2 S Em) a<
T1>T2 m2=1 (mod 71) TL>T2

it follows that

(27) YooY Qm) <

T1T3
T1>T2 mp=1 (mod my)

Gathering the bounds (26) and (27) obtained from cases C1 and C2,
we have thus proved that

(28) Ei(z) 251(1',:62)—0< ad )

r1X3

In order to take advantage of estimates (24) and (28), let us now
count Sy (x,y) for y = 25 and y = x».

By using a method of Hooley and the Bombieri-Vinogradov theorem,
one can show that, for some positive constant C,

li(z)

Si(z,y) = (1+0(1))Co @, T — 00.
Therefore,
1oy _ o i) 1 li (z)
Si(z, g €)= Si(z,22) = Co - T—% 1)+o v )

By replacing € by a function £(z) which tends to 0 very slowly as
x — oo, we may conclude from (24) and (28) that

(29) Er(z) = (1+ o(1))Co hgf"’”), > o0,

As we shall now see,

(30 > B =o("D),

1<k§mf
k squarefull
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which in light of (20) and (29) will complete the proof of Theorem 4.

We shall first consider the case of squarefull k£ > 1.

First observe that, since d3(7®) = ((a 4+ 1)(a + 2))/2, it follows that
if 2|d3(7®) for some prime power 7% ||k, then U(p+a) # 1 unless ¢(m) is
odd, which only occurs for m = 1. Whence, one can obtain U (p+a) =1
only when p+a = k.

Since a > 2, it follows that ((aw +1)(ax+2))/2 is odd only if « = 0
(mod 4).

If d3(7®) is not divisible by any prime other than 3, then
(a+1)(a+2)
2

for some integer § > 1, an equation whose only solutionis o =1, § = 1.
But this is impossible since k is squarefull.

=39

So let ¢(k) be the smallest prime divisor of kd3(k). For each squarefull
number k£ > 1, we shall consider separately the two cases:

DL g(k) < a5~
D2. q(k) >z ©.
In case D1, we have
Ep(z) <#{p<z:p+a=kuv, u<v, u,ve Lyp)}

Using basic sieve theory, we obtain that

1 li(x) 1
Bi(z) < ¢ > @) 11 (1 - ;)

us /T G e )
u€Lg(k) -

li(z)  1/2-0/2ak)-1) L
! L1/2+(1/2(a(k)=1D))

1
li(z) 3 li () e
<= exp{ O 1} < — exp{—z3}.

It follows from this that, in case D1, we have

(31) Y Ei(w)=o <%> :

1<k§mf
k squarefull
a(k)<a}~*
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We now move to case D2. Given a squarefull number k > 1, let 7|k

(with a > 2). In this case, we have 7 > 21 ¢, (a+2)/2 > z} © and

therefore k > 7 > exp{z3 °}. For such squarefull k¥ > 1, we have that

Ei(z) < #{p+1:kuv, u<v, uw €L, uv < %}

li(@) §~ 1 1
o e Zow, 1L (45)

Since we clearly have

> =l
— =ol| —
k x3 )’
exp{a:;_s}<k§mi4 SO( ) 3
k squarefull

it follows from (32) that

(33) Y Bu@)=o <h£:)> .

1<k<z4
k squarefull

a(k)>al ¢

Gathering (31) and (33), then (30) follows, thus completing the proof
of Theorem 4. O

7. The proof of Theorem 5. We start by proving that, for most
n € B,(r), we have (n,p(n)) = 1.

In order to do so, first observe that the number of non squarefree
numbers belonging to B, (r) is negligible. Assume now that n € B,(r),
p*(n) = 1 and n ¢ A,(r). Then clearly there exist two prime
numbers p; < ps with p = 1 (mod p;) such that n = pypov, with

ve Bw/(mpz)(r - 2).
We shall now consider the three possible cases:
(i) p1 > @1;
(i) p1 < xy and p2 > z2/3;
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(iii) p1 < 1 and py < x2/3,

Then
T
> pin) < ) >
neBg (r)\ Az () Z1<pL<E pa<z p1p2
(34) Case (i) p2=1 (mod pjp)
Z T T X
<< _2 << = —.
1T T
Lo p1 122 1

When considering those integers n satisfying case (ii), we may assume
that v < 2935, say. Then, for fixed p;, the number of p,’s satisfying
p2 < z/(p1v), p2 =1 (mod p;), the number of squarefree n = pypav <
x is no larger than

9 r—3

x w(v) x 1 1

< e .

z1p? W((V)z;:rz o(v) z1p? (r — 3)! $2§<E q—1
p(v)>ay

Summing up this last quantity over p; < z1, we may conclude that

9 T 1 3 1
« e (a — -
on ;A " 2 (n) 1 (7“ — 3)| (CL’Q $4) N <Z<m %
(35) Case (i), 2SP1sT
€z 1 r—3
12023 (r — 3)! (2 = 24)
In case (iii), we have v < z/(p1p2) with z/(p1p2) > %3, say. Then
using a result similar to Lemma 1 but where we drop the condition
p; Z1 (mod @), and choosing y = z2 and taking r — 2 instead of r, we
get that

(36)
Z /L2(n)<<x£1 Z i Z i;g)l(x2 _ x4)T*3

r—
"EBm(T‘)\'f"m(T‘) T2<p1<T1 p1<p2sz2/3 P2 (
Case (iii) p2=1 (mod pj)

«Z T <1 - E>T_3 > le® @ <1 - E>T_3
z1 (r — 3)! T wz<p1§z1p% z1T2w3 (1 — 3)! T

Let € > 0 be a small constant. We shall prove that

(37) #{n<z:w(n)=r, p(n) < xéf‘i, (n,o(n)) =1} = o(#By(r)).
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First we drop all the integers n < z for which P(n) < exp{z1/z3} =Y
In light of (4), the quantity of these numbers n is less than ¥(z,Y) <
zexp{—1/2(logz/logY)} < wexp{—z3/2}, a quantity which is so
small that we can indeed drop this category of integers n < x. Hence,
we only need to consider those integers n < x such that w(n) = r,
p(n) =q <z, (n,0(n)) = 1 and P(n) > Y. Writing these numbers
nasn =gqpy---pr—1 with p,_; > Y, then, using a classical Hardy and
Ramanujan approach, we get that the number of these integers n < z,
for a fixed prime ¢, is less than

r—2
Cc5T 1
gz (r — 2)! q;m P
p—1£0 (mod q)
CeI
< g —2)! exp{(r — 2)(z2 — loglogq)}

for some positive constants c; and cg. Summing up over g < m%fg, (37)
follows.

Finally, it follows from Theorem A that

#{n <z:wn)=r pn) >z °}
—#{n <z:wln) =71, p(n) > 22}

:O<(€+0(1) - Txill < ))

p<wz

Hence, in light of (34), (35), (36) and (37), the proof of Theorem 5 is
complete.
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