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POSITIVE INTEGERS WHOSE EULER FUNCTION
IS A POWER OF THEIR KERNEL FUNCTION

J.-M. DE KONINCK, F. LUCA AND A. SANKARANARAYANAN

1. Introduction. For a positive integer n, let γ(n) :=
∏

p|n p. The
function γ(n) is sometimes referred to as either the algebraic radical
of n, or the squarefree kernel of n. Let φ(n), σ(n) and ω(n) denote
the Euler function of n, the sum of the positive divisors of n and the
number of distinct prime factors of n, respectively. We also write P (n)
for the largest prime factor of n (with the convention that P (1) = 1),
and μ(n) for the Möbius function of n.

Jean-Marie De Koninck, see [3], asked for all the positive integers n
which are solutions of the equation

(1) f(n) = γ(n)2,

where f ∈ {φ, σ}. With f = φ, the above equation has precisely six
solutions, and all these are listed in the last section of this paper. With
f = σ, it is conjectured that n = 1, 1782 are the only solutions of the
above equation, but we do not even know if this equation admits finitely
many or infinitely many solutions n. In [4], it is shown, among other
things, that every positive integer n satisfying equation (1) with f = σ
can be bounded above by a function depending on ω(n). In particular,
if one puts an upper bound on the number of distinct prime factors of
the positive integer n satisfying equation (1) with f = σ, then one can
bound the positive integer n.

In this paper, we let k be any positive integer, and we let Ek be the
set of positive integer solutions n for the equation

(2) φ(n) = γ(n)k.

We also set Nk := |Ek|. It is easy to see that E1 = {1, 22, 2 · 32}.
Moreover, for k ≥ 2, each one of the numbers 1, 2k+1, 2k · 3k+1, 2k−1 ·
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5k+1 is in Ek, and therefore Nk ≥ 4 for all k ≥ 2. Note further
that if n ∈ Ek, the φ(nγ(n)) = φ(n)γ(n) = γ(n)k+1, and therefore
nγ(n) ∈ Ek+1. Since the map n �→ nγ(n) is injective, we conclude that
Nk+1 ≥ Nk.

In this paper, we give upper and lower bounds on Nk and we also
give an upper bound on the largest possible member of Ek.

Theorem. There exist positive computable constants c1 and c2 such
that the inequality

(3) exp(c1k log k) < Nk < exp(c2k
2)

holds for all positive integers k. Moreover, if n ∈ Ek, then

(4) n < 3(k+1)k+2
.

In particular, from the above theorem, we see that Nk tends to infinity
with k.

In Section 2, we prove our Theorem. In Section 3, we compute Ek

for k = 1, 2, 3, 4.

2. The proof of the theorem.

Proof. We start with the upper bound on Nk. Since N1 = 3, N2 = 6
and N3 = 16, see Section 3, it follows that the upper bound (3) holds
for k = 1, 2, 3 and with any c2 > log 3. Assume now that k ≥ 4 and that
n > 2 is in Ek. Since φ(n) > 1, it follows that φ(n) is even, so that 2|n.
Let n = pα1

1 · · · pαl

l , where 2 = p1 < p2 < · · · < pl are prime numbers
and αi are positive integers for i = 1, . . . , l. Since 2 divides pi − 1 for
all i = 2, . . . , l we see that 2l−1|φ(n). Since φ(n) = γ(n)k, it follows
that 2k|φ(n), and therefore that l − 1 ≤ k. When l = 1, it follows that
n = 2α1 , so that 2α1−1 = φ(n) = 2k, in which case n = 2k+1. From
now on, we shall assume that l ≥ 2. Fix an integer l in the interval
[2, k + 1]. The equation

φ(n) = γ(n)k

can be rewritten as
l∏

i=1

(pi − 1)
l∏

i=1

pαi−1
i =

l∏
i=1

pk
i ,
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which is equivalent to

(5)
l∏

i=1

(pi − 1) =
l∏

i=1

pβi

i ,

where βi := k − αi + 1. Note that the numbers βi are nonnegative
integers in the interval [0, k] and that βl = 0, so that αl = k + 1.
Conversely, every solution (p1, . . . , pl, β1, . . . , βl) in prime numbers
2 = p1 < · · · < pl and nonnegative integers β1, . . . , βl in the interval
[0, k] of equation (5) leads to a solution n = pα1

1 · · · pαl

l of the equation
φ(n) = γ(n)k simply by setting αi := k − βi + 1, and by unique
factorization. It follows that distinct solutions of equation (5) lead
to distinct elements of Ek. Thus, it suffices to find an upper bound for
the number of solutions of (5).

Notice also that every solution of (5) leads to a solution of the system
of equations

(6) pi − 1 =
∏
j<i

p
γij

j , for i = 2, . . . , l,

where γij are nonnegative integers such that

(7)
∑

j<i≤l

γij = βj holds for all j = 2, . . . , l − 1.

For a fixed j = 1, . . . , l−1, the number of l−j+1-tuples of nonnegative
integers (γj+1,j , . . . , γl,j , βj) satisfying equation (7), with βj ≤ k, is

(
k + l − j

l − j

)
.

Thus, the total number of solutions of (5) with a fixed value of l is at
most

(8)

l−1∏
j=1

(
k + l − j

l − j

)
=

l−1∏
j=1

(
k + j

j

)
≤

k∏
j=1

(
2k

j

)

≤
(

1
k

k∑
j=1

(
2k

j

))k

<

(
22k

k

)k

,
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where we used the AGM -inequality. Summing up (8) over all l ∈
[2, k + 1], and accounting also for the numbers n = 1, 2k+1 in Ek, we
get

(9) Nk ≤ 2 +
22k2

kk−1
< 22k2

for k ≥ 2.

Thus, inequality (3) holds with c2 = 2 log 2 > log 3 and for all values of
the positive integer k.

We now prove inequality (4). From the computation of Ek for
k = 1, 2, one sees that inequality (4) holds for these two values of
k. Assume now that k ≥ 3, and let n ∈ Ek be a number with ω(n) = l,
where l ∈ [2, k + 1]. Then, with the previous notations, we have

p2 + 1 ≤ 2k + 2 < (2 + 1)k = 3k < 3k+1,

p3 + 1 ≤ 2kpk
2 + 2 < (2 + 1)k(p2 + 1)k < 3k2+k < 3(k+1)2 ,

and, by induction, one shows that the inequality

pj + 1 < 3(k+1)j−1

holds for all values of j = 2, 3, . . . , l. Indeed, assuming that the above
inequality holds for the index j < l and all indices i ≤ j, we get that

pj+1 + 1 ≤ 2kpk
2 · · · pk

j + 1 < (2 + 1)k(p2 + 1)k · · · (pj + 1)k

< 3k
∑j−1

i=0
(k+1)i

= 3(k+1)j−1 < 3(k+1)j

,

where in the above inequality we used the identity

j−1∑
i=0

(k + 1)i =
(k + 1)j − 1

k
.

Thus,

γ(n) ≤ 2 · 3
∑l

j=2
(k+1)j−1

< 3(k+1)l ≤ 3(k+1)k+1
,

and since n|γ(n)k+1 whenever n ∈ Ek, we get n < 3(k+1)k+2
, which is

precisely inequality (4).
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We now turn our attention to the lower bound on Nk. Here, we
employ the following observation: Assume that P is a set of prime
numbers containing the number 2 and such that

(10)
∏
p∈P

(p − 1) = 2k
∏
p∈P
p�=2

pαp

holds with some integers αp in the interval [0, k]. Then

n = 2
∏
p∈P
p�=2

pβp

belongs to Ek, where βp = k−αp+1. Moreover, by unique factorization,
it follows that distinct sets of integers P satisfying equation (10) with
some αp’s will lead to distinct solutions n ∈ Ek (simply because
γ(n) =

∏
p∈P p).

To construct such sets P, we start by taking a large real number x
and by writing

(11) Q(x) =
∏
p≤x

(p − 1).

For any positive integer m and any prime number p, we let μp(m) be the
order at which p appears in the factorization of m. For any coprime
positive integers a and d and any positive real number y we write
π(y; d, a) for the number of primes p ≤ y such that p ≡ a (mod d). We
also write π(y) for the total number of primes p ≤ y. We now consider
the factorization of Q(x). Let q ≤ x/2 be an arbitrary fixed prime.
Then,
(12)

μq(Q(x)) =
∑
r≥1

π(x; qr, 1) =
∑
r≥1

qr≤x1/3

π(x; qr, 1) +
∑
r≥1

qr>x1/3

π(x; qr, 1).
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For the first sum in (12) above, we use the Bombieri-Vinogradov
theorem (see page 262 in [5]) to conclude that

(13 )
∑
r≥1

qr≤x1/3

π(x; qr, 1) =
∑
r≥1

qr≤x1/3

π(x)
φ(qr)

+ O

(
x

log2 x

)

= π(x)
(∑

r≥1

1
φ(qr)

−
∑
r≥1

qr>x1/3

1
φ(qr)

)
+ O

(
x

log2 x

)
.

Clearly,

(14)
∑
r≥1

qr>x1/3

1
φ(qr)

�
∑
r≥1

qr>x1/3

1
qr

<
1

x1/3

∑
s≥0

1
qs

� 1
x1/3

.

With (14), we get from (13) that

(15)

∑
r≥1

qr≤x1/3

π(x; qr, 1) = π(x)
∑
r≥1

1
φ(qr)

+ O

(
x

log2 x

)

=
qπ(x)

(q − 1)2
+ O

(
x

log2 x

)
.

For the second sum in (12), we simply use the fact that, when x1/3 <
qr ≤ x, we have

π(x; qr, 1) ≤ x

qr
< x2/3.

Now, since the number of such numbers r satisfying qr ≤ x is ≤
log x/log q ≤ log x/log 2, we get that the second sum in (12) can be
bounded above as

(16)
∑
r≥1

qr>x1/3

π(x; qr, 1) � x2/3 log x = o

(
x

log2 x

)
.

With (15) and (16), we get that (12) becomes

(17) μq(Q(x)) =
qπ(x)

(q − 1)2
+ O

(
x

log2 x

)
.
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We use formula (17) together with the prime number theorem to get
that the estimates

(18) μ2(Q(x)) = 2π(x)(1 + o(1)) > π(x)

and
μq(Q(x)) <

3
4
π(x)(1 + o(1)) < π(x)

hold for all sufficiently large values of x, and uniformly for primes q ≥ 3.
In particular, if we write

(19) Q(x) = 2α2(x)
∏

2<q≤x/2

qαq(x),

then the inequality

(20) α2(x) > αq(x)

holds for all sufficiently large values of x and all odd primes q.

We now let y ≤ x and write π(x; y) for the number of prime numbers
p ≤ x such that the largest prime factor of p − 1, written P (p − 1), is
less than or equal to y. A long time ago, Erdős, see [1], showed that
there exists a number ρ0 > 0 such that the inequality π(x1+ρ; x) >
c(ρ)π(x1+ρ) holds with some positive constant c(ρ) depending on ρ for
all ρ ∈ (0, ρ0), provided x is sufficiently large. The best (largest) value
of ρ0 for which the above inequality is known to hold with some positive
constant c(ρ) for all ρ ∈ (0, ρ0) is 2

√
e − 1 and is due to Friedlander,

see [2]. It is conjectured that such a positive constant c(ρ) exists for
all values of ρ. Actually, Erdős proved even more, namely, that there
exists an absolute constant c3 > 0 such that the inequality

(21) π(x1+ρ; x) > (1 − c3ρ)π(x1+ρ)

holds for all sufficiently large values of x and for all positive numbers
ρ such that 1 − c3ρ > 0. In particular, one can choose ρ0 = 1/c3.
Inequality (21) above follows from the argument on pages 212 213 of
[1].

Writing N (x) := {x < p ≤ x1+ρ | P (p − 1) ≤ x, μ(p − 1) 
= 0}, we
can show that

(22) |N (x)| >

(
1
10

− c3ρ

)
π(x1+ρ),
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provided x is sufficiently large. Indeed, note that

(23) |N (x)| ≥ π(x1+ρ; x) − π(x) − |N1(x)|,
where

N1(x) := {p ≤ x1+ρ | μ(p − 1) = 0}.
It is obvious that

(24)

|N1(x)| ≤
∑
q≥2

π(x1+ρ; q2, 1) ≤
∑

q≤x1/6

π(x1+ρ; q2, 1)

+
∑

q>x1/6

π(x1+ρ; q2, 1).

For the first sum in (24), we use the Bombieri-Vinogradov theorem to
conclude that
(25)∑

q≤x1/6

π(x1+ρ; q2, 1) = π(x1+ρ)
∑

q≤x1/6

1
φ(q2)

+ O

(
x1+ρ

log2 x

)

< π(x1+ρ)
(

1
2

+
1

2 · 3 +
1

4 · 5 +
∑
n≥7

1
(n − 1)n

)

+ o(π(x1+ρ))

= π(x1+ρ)
(

53
60

+ o(1)
)

.

For the second sum in (24), we simply use the fact that the inequality

π(x1+ρ; q2, 1) ≤ x1+ρ

q2

holds for all q > x1/6 to conclude that

(26)
∑

q>x1/6

π(x1+ρ; q2, 1) � x1+ρ
∑

q>x1/6

1
q2

� x5/6+ρ = o(π(x1+ρ)).

From (24), (25) and (26), we get

(27) |N1(x)| < π(x1+ρ)
(

53
60

+ o(1)
)

.
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Thus, from (21), (23) and (27), we get that

|N (x)| > π(x1+ρ)(1 − c3ρ) − π(x) − π(x1+ρ)
(

53
60

+ o(1)
)

= π(x1+ρ)
(

7
60

− c3ρ + o(1)
)

>

(
1
10

− c3ρ

)
π(x1+ρ),

which is precisely inequality (22).

We now let ε ∈ (0, 1/10) be arbitrary and define ρ implicitly by
1/10 − c3ρ = ε. In particular, the inequality

(28) |N (x)| > επ(x1+ρ)

holds for all sufficiently large values of x.

We now return to our problem. Let λ > 0 be any small positive real
number (less than 1). Moreover, let k be a large integer and write it
as k = l + δ + �λl� for some integer l and some δ ∈ {0, 1}. It is clear
that such a pair of integers l and δ always exists. In fact, if {ul}l≥0

denotes the sequence of integers defined by ul := l + �λl�, we then see
that ul+1 − ul ∈ {1, 2} holds for all l ≥ 0. In particular, every positive
integer k can be represented as k = ul + δ for some positive integer l
and some δ ∈ {0, 1}. Let 2 = p1 < p2 < · · · be the sequence of all
prime numbers and let (mj)j≥1 be the sequence of integers given by

mj := μ2(Q(pj)).

It is clear that (mj)j≥1 is an increasing sequence. Moreover, with the
notation of (19), we have that

(29)
mj+1 − mj = α2(pj+1) − α2(pj) = μ2(pj+1 − 1)

≤ log(pj+1 − 1)
log 2

� log pj .

With the numbers l and δ that we have constructed, we let j be the
largest positive integer such that mj ≤ �λl�. In this case, �λl� =
mj + m, where m � log pj , because of (29). Set x = pj and construct
the set of prime numbers P as follows: P is the union of the set
Q := {p ≤ pj} with a set of primes R of cardinality R := m+ δ + l and
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which consists of prime numbers p in the set N (pj). We first note that
such a set P fulfills (10). Indeed, we clearly have that

μ2

(∏
p∈P

(p − 1)
)

= μ2(Q(pj)) + μ2

( ∏
p∈R

(p − 1)
)

= mj + R = mj + m + δ + l

= l + �λl� + δ = k

(because all the primes p ∈ R are congruent to 3 modulo 4), while the
inequality

k = μ2

(∏
p∈P

(p − 1)
)

= mj + R = μ2(Q(pj)) + R > μq(Q(pj)) + R

> μq

(∏
p∈P

(p − 1)
)

holds by (20) together with the fact that all primes p ∈ R have the
property that p−1 is squarefree, that is, 2|p−1 for all p ∈ R and there
is no odd prime q such that q2|p − 1 for some p ∈ R. Note also that
only the primes q ∈ Q can appear in the factorization of

∏
p∈P(p− 1),

because P (p − 1) ≤ pj for all p ∈ R, and that these primes do indeed
belong to P.

We now note that the part Q of P is uniquely determined in terms
of j, hence of k, while R is not. Thus, in order to prove our lower
bound, we shall show that for large k, we can choose our set R in at
least exp(c1k log k) distinct ways, where c1 is a positive constant.

In order to do so, we need some estimates concerning the size of R.
Clearly, by (18), we have

mj = 2π(pj)(1 + o(1)) = 2j(1 + o(1)),

and m � log pj � log j. Thus,

(30) λl = mj + m + O(1) = 2j(1 + o(1)) + O(log j) = 2j(1 + o(1)),

and therefore

(31) R = m + δ + l =
2j

λ
(1 + o(1)) + O(log j) =

2j

λ
(1 + o(1)).
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Let

(32) T := |N (pj)| > επ(p1+ρ
j ) > c4j

1+ρ logρ j,

where by (28) we can choose c4 := ε/2 provided that j, hence k, is
sufficiently large. Since R = o(T ), we may use Stirling’s formula to
approximate the factorial, in which case we see that the number of
ways of choosing R, hence Nk, is at least

(33)

(
T

R

)
> exp

(
R log

(
T

R

)
(1 + o(1))

)

= exp
(

2j

λ
log

(
c4λ

2
jρ logρ j

)
(1 + o(1))

)

= exp
(

2ρ

λ
(1 + o(1))j log j

)
,

where we used (31) and (32). Finally, since

k = l + δ + �λl� = (1 + λ)l(1 + o(1)),

we get that

(34) l =
k

1 + λ
(1 + o(1)).

Hence, from (34) and (30), it follows that

(35) j =
λk

2(1 + λ)
(1 + o(1)).

Thus, putting (35) into (33), we get

(36)
(

T

R

)
> exp

(
ρ

1 + λ
(1 + o(1))k log k

)
.

Therefore, if we choose c1 to be any constant strictly smaller than ρ,
and then choose λ > 0 such that the inequality

c1 <
ρ

1 + λ
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holds, we see, by (36), that the inequality

Nk > exp(c1k log k)

holds for all sufficiently large values of k.

The Theorem is therefore proved.

3. Computational results. In this section, we compute Ek for
k = 1, 2, 3, 4. Note first that n = 1 ∈ Ek for all k > 1. Hence, from
now on, we assume that n > 1. Note also that, if n > 1 is in Ek,
it follows that φ(n) ≥ γ(n) > 1 and therefore that φ(n) is even. In
particular, we get that 2|n.

Suppose that k = 1 and n > 2. In this case, 2||φ(n), in which case
n can have at most one odd prime factor. If n = 2α for some positive
integer α, we then get 2α−1 = φ(n) = γ(n) = 2, so that α = 2 and
n = 4. If n = 2αpβ with some odd prime number p and some positive
integers α and β, we then get 2α−1(p − 1)pβ−1 = 2p. Since p − 1 is
even and coprime to p, we get α = 1, p − 1 = 2 and β = 2, so that
n = 2 · 32. Thus, E1 = {1, 22, 2 · 32}.

Suppose now that k = 2. Since 22||φ(n), it follows that n can have
at most two odd prime factors. If n = 2α, then 2α−1 = φ(n) = 22, in
which case α = 3 and n = 23. If n = 2αpβ with some odd prime number
p and some positive integers α and β, we get 2α−1(p − 1)pβ−1 = 22p2,
and since p − 1 is even and coprime to p, we get β − 1 = 2, so that
either α − 1 = 0, p − 1 = 4 or α − 1 = 1, p − 1 = 2. Thus, we get the
solutions n = 2 · 53 and n = 22 · 33. Finally, assume that n = 2αpβ1

1 pβ2
2

with p1 < p2 odd prime numbers and positive integers α, β1, β2. In
this case, we get

(37) 2α−1(p1 − 1)(p2 − 1)pβ1−1
1 pβ2−1

2 = 22p2
1p

2
2.

Since (p1−1)(p2−1) is a multiple of 4 coprime to p2, we get that α = 1,
β2 = 3, 2||p1 − 1 and 2||p2 − 1. Since p1 − 1 is coprime to p1, we get
that p1 − 1 = 2, so that p1 = 3. Equation (37) now becomes

3β1−1(p2 − 1) = 2 · 32.

Hence, either β1 = 1 and p2 = 2 · 32 + 1 = 19, or β1 = 2 and
p2 = 2 ·3+1 = 7. We have thus obtained the solutions n = 2 ·3 ·193 and
n = 2 ·32 ·73. It follows that E2 = {1, 23, 22 ·33, 2 ·53, 2 ·32 ·73, 2 ·3 ·193}.
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Suppose now that k = 3. In this case, 23‖φ(n). This implies that,
if n is not a power of 2, it must have at most three odd prime factors.
If n = 2α, we then get 2α−1 = φ(n) = 23, in which case α = 4 and
n = 24. We now assume that n has at least one odd prime factor. We
have to consider the three cases

(i) n = 2α · pβ1
1 , 2 < p1;

(ii) n = 2α · pβ1
1 · pβ2

2 , 2 < p1 < p2;

(iii) n = 2α · pβ1
1 · pβ2

2 · pβ3
3 , 2 < p1 < p2 < p3.

In case (i), we have

2α−1pβ1−1
1 (p1 − 1) = 23p3

1,

so that

(38) p1 − 1 = 24−αp4−β1
1 .

Since p1 − 1 is coprime to p1, it follows that β1 = 4 and p1 = 24−α + 1.
The only possibilities are therefore α = 2, p1 = 5 and α = 3, p1 = 3,
which yields the solutions n = 22 · 54, 23 · 34.

In case (ii), we have

(p1 − 1)(p2 − 1) = 24−αp4−β1
1 p4−β2

2 .

Since (p1−1)(p2−1) is a multiple of 4 which is coprime to p2, it follows
that β2 = 4 and α = 1, 2. If α = 2, we get (p1 − 1)(p2 − 1) = 4p4−β1

1 ,
and since p2 − 1 is even and p1 − 1 is even and coprime to p1, we get
that p1 − 1 = 2, so that p1 = 3. Thus, p2 − 1 = 2p4−β1

1 = 2 · 34−β1 , and
since p2 > 3, we see that the only possibilities are β1 = 2, p2 = 19 and
β1 = 3, p2 = 7. We have thus obtained the solutions n = 22 · 32 · 194

and n = 22 · 33 · 74. If α = 1, we get that (p1 − 1)(p2 − 1) = 23p4−β1
1 .

The only possibilities for p1 are 3 and 5. If p1 = 3, we get p2 − 1 =
22 · p4−β1

1 = 22 · 34−β1 , and the only possibilities are β1 = 1, p2 = 109;
β1 = 2, p2 = 37; β1 = 3, p2 = 13; β1 = 4, p2 = 5. We have thus
obtained the solutions n = 21 ·31 ·1094, 21 ·32 ·374, 21 ·33 ·134, 21 ·34 ·54.
If p1 = 5, we then get p2 − 1 = 2 · p4−β1

1 = 2 · 54−β1 and since p2 > 5,
the only possibilities are β1 = 1, p2 = 251; β1 = 3, p2 = 11. We have
thus obtained the solutions n = 21 · 51 · 2514, 21 · 53 · 114.
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In case (iii), we get the equation

(39) (p1 − 1)(p2 − 1)(p3 − 1) = 24−αp4−β1
1 p4−β2

2 p4−β3
3 .

Since (p1 − 1)(p2 − 1)(p3 − 1) is a multiple of 8 coprime to p3, we get
β3 = 4, α = 1 and 2||(pi − 1) for i = 1, 2, 3. We now easily see that
p1 = 3 and therefore that equation (39) becomes

(p2 − 1)(p3 − 1) = 22 · 34−β1 · p4−β2
2 .

In particular, p2 − 1 = 2 · 3i for some i = 1, 2, 3, 4. Note that if
i = 4, then β1 = 4 and p2 = 2p4−β2

1 + 1. But this is impossible;
indeed, since p1 ≡ 1 (mod 3), it follows that 2p4−β1

1 + 1 is always
a multiple of 3, and therefore that it cannot be a prime number
larger than 3. Thus, the only possibilities are i = 1, 2, 3. Since
2 ·33+1 = 55 is not a prime number, we are left only with i = 1, p2 = 7
and i = 2, p2 = 19. Assume first that i = 1, p2 = 7. In this
case, we get p3 − 1 = 2 · 33−β1 · p4−β2

2 = 2 · 33−β1 · 74−β2 . When
β1 = 2, we get p3 = 2 · 3 · 74−β2 + 1. But this last expression is a
prime number larger than 7 only when β2 = 3 and p3 = 43. This
yields the solution n = 21 · 32 · 73 · 434. The argument modulo 3
used above shows that β1 
= 3, which means that we only have to
consider the instance β1 = 1, in which case p3 = 2 · 32 · 74−β2 + 1,
with β2 = 1, 2, 3, 4. The only possibilities are β2 = 2, p3 = 883;
β2 = 3, p3 = 127; β2 = 4, p3 = 19, leading to the solutions
n = 21 · 31 · 72 · 8834, 21 · 31 · 73 · 1274, 21 · 31 · 74 · 194. Assume
now that i = 2, p2 = 19. In this case, p3 − 1 = 2 · 32−β1 · 194−β2 + 1.
The argument modulo 3 used above shows that β1 
= 2 and therefore
that β1 = 1. Since p3 > 19, we also get that β2 
= 4. Thus, β2 = 1, 2, 3,
but none of the numbers 2 · 3 · 194−β2 + 1 is a prime number for these
values of β2.

Hence, N3 = 16 and E3 = {1, 24, 22 · 54, 23 · 34, 22 · 32 · 194, 22 · 33 ·
74, 21 · 31 · 1094, 21 · 32 · 374, 21 · 33 · 134, 21 · 34 · 54, 21 · 51 · 2514, 21 · 53 ·
114, 21 · 32 · 73 · 434, 21 · 31 · 72 · 8834, 21 · 31 · 73 · 1274, 21 · 31 · 74 · 194}.

Similar arguments can be used to find E4. We found it more appro-
priate to use MATHEMATICA to generate all 85 numbers belonging
to E4; these are listed below.
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1, 25, 2·175, 23 ·55, 24 ·35, 2·33 ·735, 22 ·32 ·1095, 22 ·33 ·375, 22 ·34 ·135, 23 ·
3 ·1635, 23 ·33 ·195, 23 ·34 ·75, 2 ·53 ·1015, 22 ·52 ·2515, 22 ·54 ·115, 2 ·34 ·55 ·
75, 2·35 ·54 ·115, 2·33 ·75 ·135, 2·33 ·55 ·195, 22 ·32 ·75 ·195, 2·34 ·54 ·315, 2·
34 ·74 ·295, 2 ·32 ·135 ·195, 2 ·32 ·75 ·375, 22 ·33 ·74 ·435, 2 ·54 ·114 ·235, 2 ·3 ·
195 ·375, 2 ·3 ·75 ·1095, 2 ·34 ·53 ·1515, 2 ·3 ·55 ·1635, 22 ·32 ·74 ·1275, 2 ·33 ·
134 ·795, 2·35 ·52 ·2515, 2·32 ·54 ·2715, 2·34 ·73 ·1975, 22 ·3·74 ·3795, 2·34 ·
52 ·7515, 2 ·3 ·54 ·8115, 2 ·32 ·194 ·2295, 2 ·5 ·115 ·2515, 2 ·3 ·74 ·7575, 22 ·
32 · 73 · 8835, 2 · 32 · 374 · 2235, 2 · 34 · 72 · 13735, 2 · 33 · 52 · 22515, 22 · 3 · 73 ·
26475, 2·3·53 ·40515, 2·54 ·112 ·26635, 2·33 ·5·112515, 22 ·33 ·7·144075, 2·
3 ·1634 ·6535, 2 ·3 ·133 ·91275, 22 ·3 ·72 ·185235, 2 ·33 ·132 ·131835, 2 ·32 ·
5 · 337515, 2 · 52 · 2514 · 5035, 2 · 33 · 7 · 288135, 2 · 33 · 192 · 274375, 2 · 3 · 7 ·
2593095, 2 ·3 ·1093 ·712875, 2 ·3 ·1633 ·1062775, 2 ·32 ·37 ·112449675, 2 ·
3 ·74 ·195 ·435, 2 ·3 ·73 ·435 ·1275, 2 ·3 ·72 ·435 ·8835, 2 ·3 ·73 ·434 ·54195, 2 ·
3 ·7 ·195 ·144075, 2 ·3 ·72 ·194 ·391035, 2 ·32 ·73 ·433 ·776595, 2 ·3 ·72 ·1274 ·
373395, 2·3·7·434 ·2654835, 2·32 ·72 ·433 ·5436075, 2·3·72 ·8834 ·370875, 2·
3 ·74 ·432 ·14311275, 2 ·3 ·7 ·193 ·52005675, 2 ·3 ·74 ·19 ·54734835, 2 ·3 ·7 ·
8834 ·2596035, 2 ·3 ·72 ·192 ·141158235, 2 ·32 ·72 ·432 ·233750595, 2 ·3 ·7 ·
432 ·4908762195, 2·3·72 ·8833 ·327469395, 2·3·7·19·18774043275, 2·3·72 ·
1272 ·6022246035, 2 ·3 ·72 ·43 ·30153824835, 2 ·3 ·73 ·127 ·109260749235.

Using MATHEMATICA, we also computed E5. We will refrain from
listing here all the members of E5; let us simply mention that N5 = 969.
More precisely, if we let Ek,r stand for the set of those n ∈ Ek such
that ω(n) = r and if we let Nk,r stand for the cardinality of Ek,r, we
obtained that N5,0 = N5,1 = 1, N5,2 = 3, N5,3 = 17, N5,4 = 130,
N5,5 = 672 and N5,6 = 145 for a total of N5 = 969.
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