POSITIVE INTEGERS WHOSE EULER FUNCTION IS A POWER OF THEIR KERNEL FUNCTION

J.-M. DE KONINCK, F. LUCA AND A. SANKARANARAYANAN

1. Introduction. For a positive integer n, let $\gamma(n):=\prod_{p \mid n} p$. The function $\gamma(n)$ is sometimes referred to as either the algebraic radical of n, or the squarefree kernel of n. Let $\phi(n), \sigma(n)$ and $\omega(n)$ denote the Euler function of n, the sum of the positive divisors of n and the number of distinct prime factors of n, respectively. We also write $P(n)$ for the largest prime factor of n (with the convention that $P(1)=1$), and $\mu(n)$ for the Möbius function of n.

Jean-Marie De Koninck, see [3], asked for all the positive integers n which are solutions of the equation

$$
\begin{equation*}
f(n)=\gamma(n)^{2} \tag{1}
\end{equation*}
$$

where $f \in\{\phi, \sigma\}$. With $f=\phi$, the above equation has precisely six solutions, and all these are listed in the last section of this paper. With $f=\sigma$, it is conjectured that $n=1,1782$ are the only solutions of the above equation, but we do not even know if this equation admits finitely many or infinitely many solutions n. In [4], it is shown, among other things, that every positive integer n satisfying equation (1) with $f=\sigma$ can be bounded above by a function depending on $\omega(n)$. In particular, if one puts an upper bound on the number of distinct prime factors of the positive integer n satisfying equation (1) with $f=\sigma$, then one can bound the positive integer n.
In this paper, we let k be any positive integer, and we let E_{k} be the set of positive integer solutions n for the equation

$$
\begin{equation*}
\phi(n)=\gamma(n)^{k} . \tag{2}
\end{equation*}
$$

We also set $N_{k}:=\left|E_{k}\right|$. It is easy to see that $E_{1}=\left\{1,2^{2}, 2 \cdot 3^{2}\right\}$. Moreover, for $k \geq 2$, each one of the numbers $1,2^{k+1}, 2^{k} \cdot 3^{k+1}, 2^{k-1}$.

[^0] 2004.
5^{k+1} is in E_{k}, and therefore $N_{k} \geq 4$ for all $k \geq 2$. Note further that if $n \in E_{k}$, the $\phi(n \gamma(n))=\phi(n) \gamma(n)=\gamma(n)^{k+1}$, and therefore $n \gamma(n) \in E_{k+1}$. Since the map $n \mapsto n \gamma(n)$ is injective, we conclude that $N_{k+1} \geq N_{k}$.

In this paper, we give upper and lower bounds on N_{k} and we also give an upper bound on the largest possible member of E_{k}.

Theorem. There exist positive computable constants c_{1} and c_{2} such that the inequality

$$
\begin{equation*}
\exp \left(c_{1} k \log k\right)<N_{k}<\exp \left(c_{2} k^{2}\right) \tag{3}
\end{equation*}
$$

holds for all positive integers k. Moreover, if $n \in E_{k}$, then

$$
\begin{equation*}
n<3^{(k+1)^{k+2}} \tag{4}
\end{equation*}
$$

In particular, from the above theorem, we see that N_{k} tends to infinity with k.
In Section 2, we prove our Theorem. In Section 3, we compute E_{k} for $k=1,2,3,4$.

2. The proof of the theorem.

Proof. We start with the upper bound on N_{k}. Since $N_{1}=3, N_{2}=6$ and $N_{3}=16$, see Section 3, it follows that the upper bound (3) holds for $k=1,2,3$ and with any $c_{2}>\log 3$. Assume now that $k \geq 4$ and that $n>2$ is in E_{k}. Since $\phi(n)>1$, it follows that $\phi(n)$ is even, so that $2 \mid n$. Let $n=p_{1}^{\alpha_{1}} \cdots p_{l}^{\alpha_{l}}$, where $2=p_{1}<p_{2}<\cdots<p_{l}$ are prime numbers and α_{i} are positive integers for $i=1, \ldots, l$. Since 2 divides $p_{i}-1$ for all $i=2, \ldots, l$ we see that $2^{l-1} \mid \phi(n)$. Since $\phi(n)=\gamma(n)^{k}$, it follows that $2^{k} \mid \phi(n)$, and therefore that $l-1 \leq k$. When $l=1$, it follows that $n=2^{\alpha_{1}}$, so that $2^{\alpha_{1}-1}=\phi(n)=2^{k}$, in which case $n=2^{k+1}$. From now on, we shall assume that $l \geq 2$. Fix an integer l in the interval $[2, k+1]$. The equation

$$
\phi(n)=\gamma(n)^{k}
$$

can be rewritten as

$$
\prod_{i=1}^{l}\left(p_{i}-1\right) \prod_{i=1}^{l} p_{i}^{\alpha_{i}-1}=\prod_{i=1}^{l} p_{i}^{k}
$$

which is equivalent to

$$
\begin{equation*}
\prod_{i=1}^{l}\left(p_{i}-1\right)=\prod_{i=1}^{l} p_{i}^{\beta_{i}} \tag{5}
\end{equation*}
$$

where $\beta_{i}:=k-\alpha_{i}+1$. Note that the numbers β_{i} are nonnegative integers in the interval $[0, k]$ and that $\beta_{l}=0$, so that $\alpha_{l}=k+1$. Conversely, every solution ($p_{1}, \ldots, p_{l}, \beta_{1}, \ldots, \beta_{l}$) in prime numbers $2=p_{1}<\cdots<p_{l}$ and nonnegative integers $\beta_{1}, \ldots, \beta_{l}$ in the interval [0, k] of equation (5) leads to a solution $n=p_{1}^{\alpha_{1}} \cdots p_{l}^{\alpha_{l}}$ of the equation $\phi(n)=\gamma(n)^{k}$ simply by setting $\alpha_{i}:=k-\beta_{i}+1$, and by unique factorization. It follows that distinct solutions of equation (5) lead to distinct elements of E_{k}. Thus, it suffices to find an upper bound for the number of solutions of (5).

Notice also that every solution of (5) leads to a solution of the system of equations

$$
\begin{equation*}
p_{i}-1=\prod_{j<i} p_{j}^{\gamma_{i j}}, \quad \text { for } i=2, \ldots, l, \tag{6}
\end{equation*}
$$

where $\gamma_{i j}$ are nonnegative integers such that

$$
\begin{equation*}
\sum_{j<i \leq l} \gamma_{i j}=\beta_{j} \quad \text { holds for all } j=2, \ldots, l-1 \tag{7}
\end{equation*}
$$

For a fixed $j=1, \ldots, l-1$, the number of $l-j+1$-tuples of nonnegative integers $\left(\gamma_{j+1, j}, \ldots, \gamma_{l, j}, \beta_{j}\right)$ satisfying equation (7), with $\beta_{j} \leq k$, is

$$
\binom{k+l-j}{l-j}
$$

Thus, the total number of solutions of (5) with a fixed value of l is at most

$$
\begin{align*}
\prod_{j=1}^{l-1}\binom{k+l-j}{l-j} & =\prod_{j=1}^{l-1}\binom{k+j}{j} \leq \prod_{j=1}^{k}\binom{2 k}{j} \tag{8}\\
& \leq\left(\frac{1}{k} \sum_{j=1}^{k}\binom{2 k}{j}\right)^{k}<\left(\frac{2^{2 k}}{k}\right)^{k}
\end{align*}
$$

where we used the $A G M$-inequality. Summing up (8) over all $l \in$ $[2, k+1]$, and accounting also for the numbers $n=1,2^{k+1}$ in E_{k}, we get

$$
\begin{equation*}
N_{k} \leq 2+\frac{2^{2 k^{2}}}{k^{k-1}}<2^{2 k^{2}} \quad \text { for } \quad k \geq 2 \tag{9}
\end{equation*}
$$

Thus, inequality (3) holds with $c_{2}=2 \log 2>\log 3$ and for all values of the positive integer k.

We now prove inequality (4). From the computation of E_{k} for $k=1,2$, one sees that inequality (4) holds for these two values of k. Assume now that $k \geq 3$, and let $n \in E_{k}$ be a number with $\omega(n)=l$, where $l \in[2, k+1]$. Then, with the previous notations, we have

$$
\begin{aligned}
& p_{2}+1 \leq 2^{k}+2<(2+1)^{k}=3^{k}<3^{k+1} \\
& p_{3}+1 \leq 2^{k} p_{2}^{k}+2<(2+1)^{k}\left(p_{2}+1\right)^{k}<3^{k^{2}+k}<3^{(k+1)^{2}}
\end{aligned}
$$

and, by induction, one shows that the inequality

$$
p_{j}+1<3^{(k+1)^{j-1}}
$$

holds for all values of $j=2,3, \ldots, l$. Indeed, assuming that the above inequality holds for the index $j<l$ and all indices $i \leq j$, we get that

$$
\begin{aligned}
p_{j+1}+1 & \leq 2^{k} p_{2}^{k} \cdots p_{j}^{k}+1<(2+1)^{k}\left(p_{2}+1\right)^{k} \cdots\left(p_{j}+1\right)^{k} \\
& <3^{k \sum_{i=0}^{j-1}(k+1)^{i}} \\
& =3^{(k+1)^{j}-1}<3^{(k+1)^{j}}
\end{aligned}
$$

where in the above inequality we used the identity

$$
\sum_{i=0}^{j-1}(k+1)^{i}=\frac{(k+1)^{j}-1}{k}
$$

Thus,

$$
\gamma(n) \leq 2 \cdot 3^{\sum_{j=2}^{l}(k+1)^{j-1}}<3^{(k+1)^{l}} \leq 3^{(k+1)^{k+1}}
$$

and since $n \mid \gamma(n)^{k+1}$ whenever $n \in E_{k}$, we get $n<3^{(k+1)^{k+2}}$, which is precisely inequality (4).

We now turn our attention to the lower bound on N_{k}. Here, we employ the following observation: Assume that \mathcal{P} is a set of prime numbers containing the number 2 and such that

$$
\begin{equation*}
\prod_{p \in \mathcal{P}}(p-1)=2^{k} \prod_{\substack{p \in \mathcal{P} \\ p \neq 2}} p^{\alpha_{p}} \tag{10}
\end{equation*}
$$

holds with some integers α_{p} in the interval $[0, k]$. Then

$$
n=2 \prod_{\substack{p \in \mathcal{P} \\ p \neq 2}} p^{\beta_{p}}
$$

belongs to E_{k}, where $\beta_{p}=k-\alpha_{p}+1$. Moreover, by unique factorization, it follows that distinct sets of integers \mathcal{P} satisfying equation (10) with some α_{p} 's will lead to distinct solutions $n \in E_{k}$ (simply because $\left.\gamma(n)=\prod_{p \in \mathcal{P}} p\right)$.

To construct such sets \mathcal{P}, we start by taking a large real number x and by writing

$$
\begin{equation*}
Q(x)=\prod_{p \leq x}(p-1) \tag{11}
\end{equation*}
$$

For any positive integer m and any prime number p, we let $\mu_{p}(m)$ be the order at which p appears in the factorization of m. For any coprime positive integers a and d and any positive real number y we write $\pi(y ; d, a)$ for the number of primes $p \leq y$ such that $p \equiv a(\bmod d)$. We also write $\pi(y)$ for the total number of primes $p \leq y$. We now consider the factorization of $Q(x)$. Let $q \leq x / 2$ be an arbitrary fixed prime. Then,

$$
\begin{equation*}
\mu_{q}(Q(x))=\sum_{r \geq 1} \pi\left(x ; q^{r}, 1\right)=\sum_{\substack{r \geq 1 \\ q^{r} \leq x^{1 / 3}}} \pi\left(x ; q^{r}, 1\right)+\sum_{\substack{r \geq 1 \\ q^{r}>x^{1 / 3}}} \pi\left(x ; q^{r}, 1\right) \tag{12}
\end{equation*}
$$

For the first sum in (12) above, we use the Bombieri-Vinogradov theorem (see page 262 in [5]) to conclude that

$$
\begin{align*}
\sum_{\substack{r \geq 1 \\
q^{r} \leq x^{1 / 3}}} \pi\left(x ; q^{r}, 1\right)= & \sum_{\substack{r \geq 1 \\
q^{r} \leq x^{1 / 3}}} \frac{\pi(x)}{\phi\left(q^{r}\right)}+O\left(\frac{x}{\log ^{2} x}\right) \tag{13}\\
& =\pi(x)\left(\sum_{r \geq 1} \frac{1}{\phi\left(q^{r}\right)}-\sum_{\substack{r \geq 1 \\
q^{r}>x^{1 / 3}}} \frac{1}{\phi\left(q^{r}\right)}\right)+O\left(\frac{x}{\log ^{2} x}\right)
\end{align*}
$$

Clearly,

$$
\begin{equation*}
\sum_{\substack{r \geq 1 \\ q^{r}>x^{1 / 3}}} \frac{1}{\phi\left(q^{r}\right)} \ll \sum_{\substack{r \geq 1 \\ q^{r}>x^{1 / 3}}} \frac{1}{q^{r}}<\frac{1}{x^{1 / 3}} \sum_{s \geq 0} \frac{1}{q^{s}} \ll \frac{1}{x^{1 / 3}} \tag{14}
\end{equation*}
$$

With (14), we get from (13) that

$$
\begin{align*}
\sum_{\substack{r \geq 1 \\
q^{r} \leq x^{1 / 3}}} \pi\left(x ; q^{r}, 1\right) & =\pi(x) \sum_{r \geq 1} \frac{1}{\phi\left(q^{r}\right)}+O\left(\frac{x}{\log ^{2} x}\right) \tag{15}\\
& =\frac{q \pi(x)}{(q-1)^{2}}+O\left(\frac{x}{\log ^{2} x}\right) .
\end{align*}
$$

For the second sum in (12), we simply use the fact that, when $x^{1 / 3}<$ $q^{r} \leq x$, we have

$$
\pi\left(x ; q^{r}, 1\right) \leq \frac{x}{q^{r}}<x^{2 / 3}
$$

Now, since the number of such numbers r satisfying $q^{r} \leq x$ is \leq $\log x / \log q \leq \log x / \log 2$, we get that the second sum in (12) can be bounded above as

$$
\begin{equation*}
\sum_{\substack{r \geq 1 \\ q^{r}>x^{1 / 3}}} \pi\left(x ; q^{r}, 1\right) \ll x^{2 / 3} \log x=o\left(\frac{x}{\log ^{2} x}\right) \tag{16}
\end{equation*}
$$

With (15) and (16), we get that (12) becomes

$$
\begin{equation*}
\mu_{q}(Q(x))=\frac{q \pi(x)}{(q-1)^{2}}+O\left(\frac{x}{\log ^{2} x}\right) \tag{17}
\end{equation*}
$$

We use formula (17) together with the prime number theorem to get that the estimates

$$
\begin{equation*}
\mu_{2}(Q(x))=2 \pi(x)(1+o(1))>\pi(x) \tag{18}
\end{equation*}
$$

and

$$
\mu_{q}(Q(x))<\frac{3}{4} \pi(x)(1+o(1))<\pi(x)
$$

hold for all sufficiently large values of x, and uniformly for primes $q \geq 3$. In particular, if we write

$$
\begin{equation*}
Q(x)=2^{\alpha_{2}(x)} \prod_{2<q \leq x / 2} q^{\alpha_{q}(x)} \tag{19}
\end{equation*}
$$

then the inequality

$$
\begin{equation*}
\alpha_{2}(x)>\alpha_{q}(x) \tag{20}
\end{equation*}
$$

holds for all sufficiently large values of x and all odd primes q.
We now let $y \leq x$ and write $\pi(x ; y)$ for the number of prime numbers $p \leq x$ such that the largest prime factor of $p-1$, written $P(p-1)$, is less than or equal to y. A long time ago, Erdős, see [1], showed that there exists a number $\rho_{0}>0$ such that the inequality $\pi\left(x^{1+\rho} ; x\right)>$ $c(\rho) \pi\left(x^{1+\rho}\right)$ holds with some positive constant $c(\rho)$ depending on ρ for all $\rho \in\left(0, \rho_{0}\right)$, provided x is sufficiently large. The best (largest) value of ρ_{0} for which the above inequality is known to hold with some positive constant $c(\rho)$ for all $\rho \in\left(0, \rho_{0}\right)$ is $2 \sqrt{e}-1$ and is due to Friedlander, see [2]. It is conjectured that such a positive constant $c(\rho)$ exists for all values of ρ. Actually, Erdős proved even more, namely, that there exists an absolute constant $c_{3}>0$ such that the inequality

$$
\begin{equation*}
\pi\left(x^{1+\rho} ; x\right)>\left(1-c_{3} \rho\right) \pi\left(x^{1+\rho}\right) \tag{21}
\end{equation*}
$$

holds for all sufficiently large values of x and for all positive numbers ρ such that $1-c_{3} \rho>0$. In particular, one can choose $\rho_{0}=1 / c_{3}$. Inequality (21) above follows from the argument on pages $212-213$ of [1].

Writing $\mathcal{N}(x):=\left\{x<p \leq x^{1+\rho} \mid P(p-1) \leq x, \mu(p-1) \neq 0\right\}$, we can show that

$$
\begin{equation*}
|\mathcal{N}(x)|>\left(\frac{1}{10}-c_{3} \rho\right) \pi\left(x^{1+\rho}\right) \tag{22}
\end{equation*}
$$

provided x is sufficiently large. Indeed, note that

$$
\begin{equation*}
|\mathcal{N}(x)| \geq \pi\left(x^{1+\rho} ; x\right)-\pi(x)-\left|\mathcal{N}_{1}(x)\right| \tag{23}
\end{equation*}
$$

where

$$
\mathcal{N}_{1}(x):=\left\{p \leq x^{1+\rho} \mid \mu(p-1)=0\right\}
$$

It is obvious that

$$
\begin{align*}
\left|\mathcal{N}_{1}(x)\right| \leq \sum_{q \geq 2} \pi\left(x^{1+\rho} ; q^{2}, 1\right) \leq & \sum_{q \leq x^{1 / 6}} \pi\left(x^{1+\rho} ; q^{2}, 1\right) \\
& +\sum_{q>x^{1 / 6}} \pi\left(x^{1+\rho} ; q^{2}, 1\right) \tag{24}
\end{align*}
$$

For the first sum in (24), we use the Bombieri-Vinogradov theorem to conclude that

$$
\begin{align*}
\sum_{q \leq x^{1 / 6}} \pi\left(x^{1+\rho} ; q^{2}, 1\right)= & \pi\left(x^{1+\rho}\right) \sum_{q \leq x^{1 / 6}} \frac{1}{\phi\left(q^{2}\right)}+O\left(\frac{x^{1+\rho}}{\log ^{2} x}\right) \tag{25}\\
< & \pi\left(x^{1+\rho}\right)\left(\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{4 \cdot 5}+\sum_{n \geq 7} \frac{1}{(n-1) n}\right) \\
& +o\left(\pi\left(x^{1+\rho}\right)\right) \\
= & \pi\left(x^{1+\rho}\right)\left(\frac{53}{60}+o(1)\right)
\end{align*}
$$

For the second sum in (24), we simply use the fact that the inequality

$$
\pi\left(x^{1+\rho} ; q^{2}, 1\right) \leq \frac{x^{1+\rho}}{q^{2}}
$$

holds for all $q>x^{1 / 6}$ to conclude that
(26) $\sum_{q>x^{1 / 6}} \pi\left(x^{1+\rho} ; q^{2}, 1\right) \ll x^{1+\rho} \sum_{q>x^{1 / 6}} \frac{1}{q^{2}} \ll x^{5 / 6+\rho}=o\left(\pi\left(x^{1+\rho}\right)\right)$.

From (24), (25) and (26), we get

$$
\begin{equation*}
\left|\mathcal{N}_{1}(x)\right|<\pi\left(x^{1+\rho}\right)\left(\frac{53}{60}+o(1)\right) \tag{27}
\end{equation*}
$$

Thus, from (21), (23) and (27), we get that

$$
\begin{aligned}
|\mathcal{N}(x)| & >\pi\left(x^{1+\rho}\right)\left(1-c_{3} \rho\right)-\pi(x)-\pi\left(x^{1+\rho}\right)\left(\frac{53}{60}+o(1)\right) \\
& =\pi\left(x^{1+\rho}\right)\left(\frac{7}{60}-c_{3} \rho+o(1)\right)>\left(\frac{1}{10}-c_{3} \rho\right) \pi\left(x^{1+\rho}\right)
\end{aligned}
$$

which is precisely inequality (22).
We now let $\varepsilon \in(0,1 / 10)$ be arbitrary and define ρ implicitly by $1 / 10-c_{3} \rho=\varepsilon$. In particular, the inequality

$$
\begin{equation*}
|\mathcal{N}(x)|>\varepsilon \pi\left(x^{1+\rho}\right) \tag{28}
\end{equation*}
$$

holds for all sufficiently large values of x.
We now return to our problem. Let $\lambda>0$ be any small positive real number (less than 1). Moreover, let k be a large integer and write it as $k=l+\delta+\lfloor\lambda l\rfloor$ for some integer l and some $\delta \in\{0,1\}$. It is clear that such a pair of integers l and δ always exists. In fact, if $\left\{u_{l}\right\}_{l \geq 0}$ denotes the sequence of integers defined by $u_{l}:=l+\lfloor\lambda l\rfloor$, we then see that $u_{l+1}-u_{l} \in\{1,2\}$ holds for all $l \geq 0$. In particular, every positive integer k can be represented as $k=u_{l}+\delta$ for some positive integer l and some $\delta \in\{0,1\}$. Let $2=p_{1}<p_{2}<\cdots$ be the sequence of all prime numbers and let $\left(m_{j}\right)_{j \geq 1}$ be the sequence of integers given by

$$
m_{j}:=\mu_{2}\left(Q\left(p_{j}\right)\right)
$$

It is clear that $\left(m_{j}\right)_{j \geq 1}$ is an increasing sequence. Moreover, with the notation of (19), we have that

$$
\begin{align*}
m_{j+1}-m_{j} & =\alpha_{2}\left(p_{j+1}\right)-\alpha_{2}\left(p_{j}\right)=\mu_{2}\left(p_{j+1}-1\right) \\
& \leq \frac{\log \left(p_{j+1}-1\right)}{\log 2} \ll \log p_{j} . \tag{29}
\end{align*}
$$

With the numbers l and δ that we have constructed, we let j be the largest positive integer such that $m_{j} \leq\lfloor\lambda l\rfloor$. In this case, $\lfloor\lambda l\rfloor=$ $m_{j}+m$, where $m \ll \log p_{j}$, because of (29). Set $x=p_{j}$ and construct the set of prime numbers \mathcal{P} as follows: \mathcal{P} is the union of the set $\mathcal{Q}:=\left\{p \leq p_{j}\right\}$ with a set of primes \mathcal{R} of cardinality $R:=m+\delta+l$ and
which consists of prime numbers p in the set $\mathcal{N}\left(p_{j}\right)$. We first note that such a set \mathcal{P} fulfills (10). Indeed, we clearly have that

$$
\begin{aligned}
\mu_{2}\left(\prod_{p \in \mathcal{P}}(p-1)\right) & =\mu_{2}\left(Q\left(p_{j}\right)\right)+\mu_{2}\left(\prod_{p \in \mathcal{R}}(p-1)\right) \\
& =m_{j}+R=m_{j}+m+\delta+l \\
& =l+\lfloor\lambda l\rfloor+\delta=k
\end{aligned}
$$

(because all the primes $p \in \mathcal{R}$ are congruent to 3 modulo 4), while the inequality

$$
\begin{aligned}
k & =\mu_{2}\left(\prod_{p \in \mathcal{P}}(p-1)\right)=m_{j}+R=\mu_{2}\left(Q\left(p_{j}\right)\right)+R>\mu_{q}\left(Q\left(p_{j}\right)\right)+R \\
& >\mu_{q}\left(\prod_{p \in \mathcal{P}}(p-1)\right)
\end{aligned}
$$

holds by (20) together with the fact that all primes $p \in \mathcal{R}$ have the property that $p-1$ is squarefree, that is, $2 \mid p-1$ for all $p \in \mathcal{R}$ and there is no odd prime q such that $q^{2} \mid p-1$ for some $p \in \mathcal{R}$. Note also that only the primes $q \in \mathcal{Q}$ can appear in the factorization of $\prod_{p \in \mathcal{P}}(p-1)$, because $P(p-1) \leq p_{j}$ for all $p \in \mathcal{R}$, and that these primes do indeed belong to \mathcal{P}.
We now note that the part \mathcal{Q} of \mathcal{P} is uniquely determined in terms of j, hence of k, while \mathcal{R} is not. Thus, in order to prove our lower bound, we shall show that for large k, we can choose our set \mathcal{R} in at least $\exp \left(c_{1} k \log k\right)$ distinct ways, where c_{1} is a positive constant.

In order to do so, we need some estimates concerning the size of \mathcal{R}. Clearly, by (18), we have

$$
m_{j}=2 \pi\left(p_{j}\right)(1+o(1))=2 j(1+o(1))
$$

and $m \ll \log p_{j} \ll \log j$. Thus,

$$
\begin{equation*}
\lambda l=m_{j}+m+O(1)=2 j(1+o(1))+O(\log j)=2 j(1+o(1)) \tag{30}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
R=m+\delta+l=\frac{2 j}{\lambda}(1+o(1))+O(\log j)=\frac{2 j}{\lambda}(1+o(1)) \tag{31}
\end{equation*}
$$

Let

$$
\begin{equation*}
T:=\left|\mathcal{N}\left(p_{j}\right)\right|>\varepsilon \pi\left(p_{j}^{1+\rho}\right)>c_{4} j^{1+\rho} \log ^{\rho} j \tag{32}
\end{equation*}
$$

where by (28) we can choose $c_{4}:=\varepsilon / 2$ provided that j, hence k, is sufficiently large. Since $R=o(T)$, we may use Stirling's formula to approximate the factorial, in which case we see that the number of ways of choosing \mathcal{R}, hence N_{k}, is at least

$$
\begin{align*}
\binom{T}{R} & >\exp \left(R \log \left(\frac{T}{R}\right)(1+o(1))\right) \\
& =\exp \left(\frac{2 j}{\lambda} \log \left(\frac{c_{4} \lambda}{2} j^{\rho} \log ^{\rho} j\right)(1+o(1))\right) \tag{33}\\
& =\exp \left(\frac{2 \rho}{\lambda}(1+o(1)) j \log j\right),
\end{align*}
$$

where we used (31) and (32). Finally, since

$$
k=l+\delta+\lfloor\lambda l\rfloor=(1+\lambda) l(1+o(1))
$$

we get that

$$
\begin{equation*}
l=\frac{k}{1+\lambda}(1+o(1)) \tag{34}
\end{equation*}
$$

Hence, from (34) and (30), it follows that

$$
\begin{equation*}
j=\frac{\lambda k}{2(1+\lambda)}(1+o(1)) \tag{35}
\end{equation*}
$$

Thus, putting (35) into (33), we get

$$
\begin{equation*}
\binom{T}{R}>\exp \left(\frac{\rho}{1+\lambda}(1+o(1)) k \log k\right) \tag{36}
\end{equation*}
$$

Therefore, if we choose c_{1} to be any constant strictly smaller than ρ, and then choose $\lambda>0$ such that the inequality

$$
c_{1}<\frac{\rho}{1+\lambda}
$$

holds, we see, by (36), that the inequality

$$
N_{k}>\exp \left(c_{1} k \log k\right)
$$

holds for all sufficiently large values of k.
The Theorem is therefore proved.
3. Computational results. In this section, we compute E_{k} for $k=1,2,3,4$. Note first that $n=1 \in E_{k}$ for all $k>1$. Hence, from now on, we assume that $n>1$. Note also that, if $n>1$ is in E_{k}, it follows that $\phi(n) \geq \gamma(n)>1$ and therefore that $\phi(n)$ is even. In particular, we get that $2 \mid n$.

Suppose that $k=1$ and $n>2$. In this case, $2 \| \phi(n)$, in which case n can have at most one odd prime factor. If $n=2^{\alpha}$ for some positive integer α, we then get $2^{\alpha-1}=\phi(n)=\gamma(n)=2$, so that $\alpha=2$ and $n=4$. If $n=2^{\alpha} p^{\beta}$ with some odd prime number p and some positive integers α and β, we then get $2^{\alpha-1}(p-1) p^{\beta-1}=2 p$. Since $p-1$ is even and coprime to p, we get $\alpha=1, p-1=2$ and $\beta=2$, so that $n=2 \cdot 3^{2}$. Thus, $E_{1}=\left\{1,2^{2}, 2 \cdot 3^{2}\right\}$.

Suppose now that $k=2$. Since $2^{2} \| \phi(n)$, it follows that n can have at most two odd prime factors. If $n=2^{\alpha}$, then $2^{\alpha-1}=\phi(n)=2^{2}$, in which case $\alpha=3$ and $n=2^{3}$. If $n=2^{\alpha} p^{\beta}$ with some odd prime number p and some positive integers α and β, we get $2^{\alpha-1}(p-1) p^{\beta-1}=2^{2} p^{2}$, and since $p-1$ is even and coprime to p, we get $\beta-1=2$, so that either $\alpha-1=0, p-1=4$ or $\alpha-1=1, p-1=2$. Thus, we get the solutions $n=2 \cdot 5^{3}$ and $n=2^{2} \cdot 3^{3}$. Finally, assume that $n=2^{\alpha} p_{1}^{\beta_{1}} p_{2}^{\beta_{2}}$ with $p_{1}<p_{2}$ odd prime numbers and positive integers $\alpha, \beta_{1}, \beta_{2}$. In this case, we get

$$
\begin{equation*}
2^{\alpha-1}\left(p_{1}-1\right)\left(p_{2}-1\right) p_{1}^{\beta_{1}-1} p_{2}^{\beta_{2}-1}=2^{2} p_{1}^{2} p_{2}^{2} \tag{37}
\end{equation*}
$$

Since $\left(p_{1}-1\right)\left(p_{2}-1\right)$ is a multiple of 4 coprime to p_{2}, we get that $\alpha=1$, $\beta_{2}=3,2 \| p_{1}-1$ and $2 \| p_{2}-1$. Since $p_{1}-1$ is coprime to p_{1}, we get that $p_{1}-1=2$, so that $p_{1}=3$. Equation (37) now becomes

$$
3^{\beta_{1}-1}\left(p_{2}-1\right)=2 \cdot 3^{2}
$$

Hence, either $\beta_{1}=1$ and $p_{2}=2 \cdot 3^{2}+1=19$, or $\beta_{1}=2$ and $p_{2}=2 \cdot 3+1=7$. We have thus obtained the solutions $n=2 \cdot 3 \cdot 19^{3}$ and $n=2 \cdot 3^{2} \cdot 7^{3}$. It follows that $E_{2}=\left\{1,2^{3}, 2^{2} \cdot 3^{3}, 2 \cdot 5^{3}, 2 \cdot 3^{2} \cdot 7^{3}, 2 \cdot 3 \cdot 19^{3}\right\}$.

Suppose now that $k=3$. In this case, $2^{3} \| \phi(n)$. This implies that, if n is not a power of 2 , it must have at most three odd prime factors. If $n=2^{\alpha}$, we then get $2^{\alpha-1}=\phi(n)=2^{3}$, in which case $\alpha=4$ and $n=2^{4}$. We now assume that n has at least one odd prime factor. We have to consider the three cases
(i) $n=2^{\alpha} \cdot p_{1}^{\beta_{1}}, 2<p_{1}$;
(ii) $n=2^{\alpha} \cdot p_{1}^{\beta_{1}} \cdot p_{2}^{\beta_{2}}, 2<p_{1}<p_{2}$;
(iii) $n=2^{\alpha} \cdot p_{1}^{\beta_{1}} \cdot p_{2}^{\beta_{2}} \cdot p_{3}^{\beta_{3}}, 2<p_{1}<p_{2}<p_{3}$.

In case (i), we have

$$
2^{\alpha-1} p_{1}^{\beta_{1}-1}\left(p_{1}-1\right)=2^{3} p_{1}^{3}
$$

so that

$$
\begin{equation*}
p_{1}-1=2^{4-\alpha} p_{1}^{4-\beta_{1}} \tag{38}
\end{equation*}
$$

Since $p_{1}-1$ is coprime to p_{1}, it follows that $\beta_{1}=4$ and $p_{1}=2^{4-\alpha}+1$. The only possibilities are therefore $\alpha=2, p_{1}=5$ and $\alpha=3, p_{1}=3$, which yields the solutions $n=2^{2} \cdot 5^{4}, 2^{3} \cdot 3^{4}$.

In case (ii), we have

$$
\left(p_{1}-1\right)\left(p_{2}-1\right)=2^{4-\alpha} p_{1}^{4-\beta_{1}} p_{2}^{4-\beta_{2}}
$$

Since $\left(p_{1}-1\right)\left(p_{2}-1\right)$ is a multiple of 4 which is coprime to p_{2}, it follows that $\beta_{2}=4$ and $\alpha=1,2$. If $\alpha=2$, we get $\left(p_{1}-1\right)\left(p_{2}-1\right)=4 p_{1}^{4-\beta_{1}}$, and since $p_{2}-1$ is even and $p_{1}-1$ is even and coprime to p_{1}, we get that $p_{1}-1=2$, so that $p_{1}=3$. Thus, $p_{2}-1=2 p_{1}^{4-\beta_{1}}=2 \cdot 3^{4-\beta_{1}}$, and since $p_{2}>3$, we see that the only possibilities are $\beta_{1}=2, p_{2}=19$ and $\beta_{1}=3, p_{2}=7$. We have thus obtained the solutions $n=2^{2} \cdot 3^{2} \cdot 19^{4}$ and $n=2^{2} \cdot 3^{3} \cdot 7^{4}$. If $\alpha=1$, we get that $\left(p_{1}-1\right)\left(p_{2}-1\right)=2^{3} p_{1}^{4-\beta_{1}}$. The only possibilities for p_{1} are 3 and 5 . If $p_{1}=3$, we get $p_{2}-1=$ $2^{2} \cdot p_{1}^{4-\beta_{1}}=2^{2} \cdot 3^{4-\beta_{1}}$, and the only possibilities are $\beta_{1}=1, p_{2}=109$; $\beta_{1}=2, p_{2}=37 ; \beta_{1}=3, p_{2}=13 ; \beta_{1}=4, p_{2}=5$. We have thus obtained the solutions $n=2^{1} \cdot 3^{1} \cdot 109^{4}, 2^{1} \cdot 3^{2} \cdot 37^{4}, 2^{1} \cdot 3^{3} \cdot 13^{4}, 2^{1} \cdot 3^{4} \cdot 5^{4}$. If $p_{1}=5$, we then get $p_{2}-1=2 \cdot p_{1}^{4-\beta_{1}}=2 \cdot 5^{4-\beta_{1}}$ and since $p_{2}>5$, the only possibilities are $\beta_{1}=1, p_{2}=251 ; \beta_{1}=3, p_{2}=11$. We have thus obtained the solutions $n=2^{1} \cdot 5^{1} \cdot 251^{4}, 2^{1} \cdot 5^{3} \cdot 11^{4}$.

In case (iii), we get the equation

$$
\begin{equation*}
\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right)=2^{4-\alpha} p_{1}^{4-\beta_{1}} p_{2}^{4-\beta_{2}} p_{3}^{4-\beta_{3}} \tag{39}
\end{equation*}
$$

Since $\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right)$ is a multiple of 8 coprime to p_{3}, we get $\beta_{3}=4, \alpha=1$ and $2 \|\left(p_{i}-1\right)$ for $i=1,2,3$. We now easily see that $p_{1}=3$ and therefore that equation (39) becomes

$$
\left(p_{2}-1\right)\left(p_{3}-1\right)=2^{2} \cdot 3^{4-\beta_{1}} \cdot p_{2}^{4-\beta_{2}}
$$

In particular, $p_{2}-1=2 \cdot 3^{i}$ for some $i=1,2,3,4$. Note that if $i=4$, then $\beta_{1}=4$ and $p_{2}=2 p_{1}^{4-\beta_{2}}+1$. But this is impossible; indeed, since $p_{1} \equiv 1(\bmod 3)$, it follows that $2 p_{1}^{4-\beta_{1}}+1$ is always a multiple of 3 , and therefore that it cannot be a prime number larger than 3 . Thus, the only possibilities are $i=1,2,3$. Since $2 \cdot 3^{3}+1=55$ is not a prime number, we are left only with $i=1, p_{2}=7$ and $i=2, p_{2}=19$. Assume first that $i=1, p_{2}=7$. In this case, we get $p_{3}-1=2 \cdot 3^{3-\beta_{1}} \cdot p_{2}^{4-\beta_{2}}=2 \cdot 3^{3-\beta_{1}} \cdot 7^{4-\beta_{2}}$. When $\beta_{1}=2$, we get $p_{3}=2 \cdot 3 \cdot 7^{4-\beta_{2}}+1$. But this last expression is a prime number larger than 7 only when $\beta_{2}=3$ and $p_{3}=43$. This yields the solution $n=2^{1} \cdot 3^{2} \cdot 7^{3} \cdot 43^{4}$. The argument modulo 3 used above shows that $\beta_{1} \neq 3$, which means that we only have to consider the instance $\beta_{1}=1$, in which case $p_{3}=2 \cdot 3^{2} \cdot 7^{4-\beta_{2}}+1$, with $\beta_{2}=1,2,3,4$. The only possibilities are $\beta_{2}=2, p_{3}=883$; $\beta_{2}=3, p_{3}=127 ; \beta_{2}=4, p_{3}=19$, leading to the solutions $n=2^{1} \cdot 3^{1} \cdot 7^{2} \cdot 883^{4}, 2^{1} \cdot 3^{1} \cdot 7^{3} \cdot 127^{4}, 2^{1} \cdot 3^{1} \cdot 7^{4} \cdot 19^{4}$. Assume now that $i=2, p_{2}=19$. In this case, $p_{3}-1=2 \cdot 3^{2-\beta_{1}} \cdot 19^{4-\beta_{2}}+1$. The argument modulo 3 used above shows that $\beta_{1} \neq 2$ and therefore that $\beta_{1}=1$. Since $p_{3}>19$, we also get that $\beta_{2} \neq 4$. Thus, $\beta_{2}=1,2,3$, but none of the numbers $2 \cdot 3 \cdot 19^{4-\beta_{2}}+1$ is a prime number for these values of β_{2}.
Hence, $N_{3}=16$ and $E_{3}=\left\{1,2^{4}, 2^{2} \cdot 5^{4}, 2^{3} \cdot 3^{4}, 2^{2} \cdot 3^{2} \cdot 19^{4}, 2^{2} \cdot 3^{3}\right.$. $7^{4}, 2^{1} \cdot 3^{1} \cdot 109^{4}, 2^{1} \cdot 3^{2} \cdot 37^{4}, 2^{1} \cdot 3^{3} \cdot 13^{4}, 2^{1} \cdot 3^{4} \cdot 5^{4}, 2^{1} \cdot 5^{1} \cdot 251^{4}, 2^{1} \cdot 5^{3}$. $\left.11^{4}, 2^{1} \cdot 3^{2} \cdot 7^{3} \cdot 43^{4}, 2^{1} \cdot 3^{1} \cdot 7^{2} \cdot 883^{4}, 2^{1} \cdot 3^{1} \cdot 7^{3} \cdot 127^{4}, 2^{1} \cdot 3^{1} \cdot 7^{4} \cdot 19^{4}\right\}$.
Similar arguments can be used to find E_{4}. We found it more appropriate to use MATHEMATICA to generate all 85 numbers belonging to E_{4}; these are listed below.

$$
\begin{aligned}
& 1,2^{5}, 2 \cdot 17^{5}, 2^{3} \cdot 5^{5}, 2^{4} \cdot 3^{5}, 2 \cdot 3^{3} \cdot 73^{5}, 2^{2} \cdot 3^{2} \cdot 109^{5}, 2^{2} \cdot 3^{3} \cdot 37^{5}, 2^{2} \cdot 3^{4} \cdot 13^{5}, 2^{3} \text {. } \\
& 3 \cdot 163^{5}, 2^{3} \cdot 3^{3} \cdot 19^{5}, 2^{3} \cdot 3^{4} \cdot 7^{5}, 2 \cdot 5^{3} \cdot 101^{5}, 2^{2} \cdot 5^{2} \cdot 251^{5}, 2^{2} \cdot 5^{4} \cdot 11^{5}, 2 \cdot 3^{4} \cdot 5^{5} \text {. } \\
& 7^{5}, 2 \cdot 3^{5} \cdot 5^{4} \cdot 11^{5}, 2 \cdot 3^{3} \cdot 7^{5} \cdot 13^{5}, 2 \cdot 3^{3} \cdot 5^{5} \cdot 19^{5}, 2^{2} \cdot 3^{2} \cdot 7^{5} \cdot 19^{5}, 2 \cdot 3^{4} \cdot 5^{4} \cdot 31^{5}, 2 \cdot \\
& 3^{4} \cdot 7^{4} \cdot 29^{5}, 2 \cdot 3^{2} \cdot 13^{5} \cdot 19^{5}, 2 \cdot 3^{2} \cdot 7^{5} \cdot 37^{5}, 2^{2} \cdot 3^{3} \cdot 7^{4} \cdot 43^{5}, 2 \cdot 5^{4} \cdot 11^{4} \cdot 23^{5}, 2 \cdot 3 \cdot \\
& 19^{5} \cdot 37^{5}, 2 \cdot 3 \cdot 7^{5} \cdot 109^{5}, 2 \cdot 3^{4} \cdot 5^{3} \cdot 151^{5}, 2 \cdot 3 \cdot 5^{5} \cdot 163^{5}, 2^{2} \cdot 3^{2} \cdot 7^{4} \cdot 127^{5}, 2 \cdot 3^{3} \text {. } \\
& 13^{4} \cdot 79^{5}, 2 \cdot 3^{5} \cdot 5^{2} \cdot 251^{5}, 2 \cdot 3^{2} \cdot 5^{4} \cdot 271^{5}, 2 \cdot 3^{4} \cdot 7^{3} \cdot 197^{5}, 2^{2} \cdot 3 \cdot 7^{4} \cdot 379^{5}, 2 \cdot 3^{4} \text {. } \\
& 5^{2} \cdot 751^{5}, 2 \cdot 3 \cdot 5^{4} \cdot 811^{5}, 2 \cdot 3^{2} \cdot 19^{4} \cdot 229^{5}, 2 \cdot 5 \cdot 11^{5} \cdot 251^{5}, 2 \cdot 3 \cdot 7^{4} \cdot 757^{5}, 2^{2} \text {. } \\
& 3^{2} \cdot 7^{3} \cdot 883^{5}, 2 \cdot 3^{2} \cdot 37^{4} \cdot 223^{5}, 2 \cdot 3^{4} \cdot 7^{2} \cdot 1373^{5}, 2 \cdot 3^{3} \cdot 5^{2} \cdot 2251^{5}, 2^{2} \cdot 3 \cdot 7^{3} \text {. } \\
& 2647^{5}, 2 \cdot 3 \cdot 5^{3} \cdot 4051^{5}, 2 \cdot 5^{4} \cdot 11^{2} \cdot 2663^{5}, 2 \cdot 3^{3} \cdot 5 \cdot 11251^{5}, 2^{2} \cdot 3^{3} \cdot 7 \cdot 14407^{5}, 2 \cdot \\
& 3 \cdot 163^{4} \cdot 653^{5}, 2 \cdot 3 \cdot 13^{3} \cdot 9127^{5}, 2^{2} \cdot 3 \cdot 7^{2} \cdot 18523^{5}, 2 \cdot 3^{3} \cdot 13^{2} \cdot 13183^{5}, 2 \cdot 3^{2} \text {. } \\
& 5 \cdot 33751^{5}, 2 \cdot 5^{2} \cdot 251^{4} \cdot 503^{5}, 2 \cdot 3^{3} \cdot 7 \cdot 28813^{5}, 2 \cdot 3^{3} \cdot 19^{2} \cdot 27437^{5}, 2 \cdot 3 \cdot 7 \text {. } \\
& 259309^{5}, 2 \cdot 3 \cdot 109^{3} \cdot 71287^{5}, 2 \cdot 3 \cdot 163^{3} \cdot 106277^{5}, 2 \cdot 3^{2} \cdot 37 \cdot 11244967^{5}, 2 \cdot \\
& 3 \cdot 7^{4} \cdot 19^{5} \cdot 43^{5}, 2 \cdot 3 \cdot 7^{3} \cdot 43^{5} \cdot 127^{5}, 2 \cdot 3 \cdot 7^{2} \cdot 43^{5} \cdot 883^{5}, 2 \cdot 3 \cdot 7^{3} \cdot 43^{4} \cdot 5419^{5}, 2 \text {. } \\
& 3 \cdot 7 \cdot 19^{5} \cdot 14407^{5}, 2 \cdot 3 \cdot 7^{2} \cdot 19^{4} \cdot 39103^{5}, 2 \cdot 3^{2} \cdot 7^{3} \cdot 43^{3} \cdot 77659^{5}, 2 \cdot 3 \cdot 7^{2} \cdot 127^{4} \text {. } \\
& 37339^{5}, 2 \cdot 3 \cdot 7 \cdot 43^{4} \cdot 265483^{5}, 2 \cdot 3^{2} \cdot 7^{2} \cdot 43^{3} \cdot 543607^{5}, 2 \cdot 3 \cdot 7^{2} \cdot 883^{4} \cdot 37087^{5}, 2 \text {. } \\
& 3 \cdot 7^{4} \cdot 43^{2} \cdot 1431127^{5}, 2 \cdot 3 \cdot 7 \cdot 19^{3} \cdot 5200567^{5}, 2 \cdot 3 \cdot 7^{4} \cdot 19 \cdot 5473483^{5}, 2 \cdot 3 \cdot 7 \cdot \\
& 883^{4} \cdot 259603^{5}, 2 \cdot 3 \cdot 7^{2} \cdot 19^{2} \cdot 14115823^{5}, 2 \cdot 3^{2} \cdot 7^{2} \cdot 43^{2} \cdot 23375059^{5}, 2 \cdot 3 \cdot 7 \cdot \\
& 43^{2} \cdot 490876219^{5}, 2 \cdot 3 \cdot 7^{2} \cdot 883^{3} \cdot 32746939^{5}, 2 \cdot 3 \cdot 7 \cdot 19 \cdot 1877404327^{5}, 2 \cdot 3 \cdot 7^{2} \text {. } \\
& 127^{2} \cdot 602224603^{5}, 2 \cdot 3 \cdot 7^{2} \cdot 43 \cdot 3015382483^{5}, 2 \cdot 3 \cdot 7^{3} \cdot 127 \cdot 10926074923^{5} \text {. }
\end{aligned}
$$

Using MATHEMATICA, we also computed E_{5}. We will refrain from listing here all the members of E_{5}; let us simply mention that $N_{5}=969$. More precisely, if we let $E_{k, r}$ stand for the set of those $n \in E_{k}$ such that $\omega(n)=r$ and if we let $N_{k, r}$ stand for the cardinality of $E_{k, r}$, we obtained that $N_{5,0}=N_{5,1}=1, N_{5,2}=3, N_{5,3}=17, N_{5,4}=130$, $N_{5,5}=672$ and $N_{5,6}=145$ for a total of $N_{5}=969$.

Acknowledgments. The authors would like to thank Professor William Yslas Vélez for suggesting the problem studied in this paper. The authors would also like to thank the anonymous referee for a careful reading of a previous version of this manuscript and for useful suggestions. The first author was partially supported by a grant from NSERC. The second and third authors were partially supported by grant SEP-CONACyT 37259-E. The third author is grateful to the Mathematical Institute of the UNAM, Morelia, Mexico for its warm hospitality and financial support.

REFERENCES

1. P. Erdős, On the normal number of prime factors of $p-1$ and some other related problems concerning Euler's ϕ function, Quart. J. Math. 6 (1935), 205-213.
2. J. Friedlander, Shifted primes without large factors, in Number theory and applications (R.A. Mollin, ed.), Kluwer, NATO ASI, 1989, pp. 393-401.
3. J.M. De Koninck, Proposed problem 10966, Amer. Math. Monthly 109 (2002), 759.
4. F. Luca, On numbers n for which the prime factors of $\sigma(n)$ are among the prime factors of n, Results Math. 45 (2004), 79-87.
5. G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Univ. Press, Cambridge, 1995.

Département de Mathématiques, Université Laval, Québec G1K 7P4, CANADA
E-mail address: jmdk@mat.ulaval.ca
Mathematical Institute, UNAM, Ap. Postal 61-3 (Xangari), CP 58 089, Morelia, Michoacán, MEXICO
E-mail address: fluca@matmor.unam.mx
School of Mathematics, TIFR, Mumbai-400 005, INDIA
E-mail address: sank@math.tifr.res.in

[^0]: Received by the editors on April 14, 2003, and in revised form on January 16,

