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ON THE LOCAL DISTRIBUTION OF CERTAIN ARITHMETIC
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Abstract. Let d(n), σ1(n), and φ(n) stand for the number of positive divisors of n, the sum of the positive divisors of n,

and Euler’s function, respectively. For each ν ∈ Z, we obtain asymptotic formulas for the number of integers n � x for which
en := φ(n)

d(n)2 = 2νm for some odd integer m as well as for the number of integers n � x for which en = 2νr for some odd rational
number r . Our method also applies when φ(n) is replaced by σ1(n), thus, improving upon an earlier result of Bateman, Erdős,
Pomerance, and Straus, according to which the set of integers n such that σ1(n)

d(n)2 is an integer is of density 1
2 .
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1. INTRODUCTION

Let d(n), σ1(n), and φ(n) stand for the number of positive divisors of n, the sum of the positive divisors of n,

and Euler’s function, respectively. Bateman, Erdős, Pomerance, and Straus [1] have shown that the set of integers
n such that σ1(n)

d(n)2 is an integer is of density 1
2 .

In this paper, for each integer ν, we obtain asymptotic formulas for the number of integers n � x for which
en := φ(n)

d(n)2 = 2νm for some odd integer m as well as for the number of integers n � x for which en = 2νr for
some odd rational number r . Our method can also be used to obtain similar estimates when φ(n) is replaced
by σ1(n), from which the result of [1] follows. Moreover, in the process of establishing these results, we also
investigate the local distributions of certain arithmetic functions.

As a starting point, we mention the following result of Wijsmuller [6]: For each prime number q , let the
completely additive function β = βq be defined on the primes p by β(p) = r , where r is the unique integer such
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that qr‖p + 1, and set

d1 = q

(q − 1)2 and d2 = q(q + 1)

(q − 1)3 . (1)

Then

lim
x→∞

1

x
#
{
n � x: β(n) − d1 log logx � z

√
d2 log logx

} = �(z),

where

�(z) = 1√
2π

z∫
−∞

e−t2/2 dt.

While this result establishes the global central limit distribution of the function βq , we shall examine its local
distribution as well as that of similar functions. In order to do this, we shall use the ideas developed in our earlier
paper [2].

2. THE PROBABILISTIC SET UP

As is customary, let ϕ be the density function of the Gaussian law, precisely,

ϕ(y) = 1√
2π

e−y2/2. (2)

We start this section with an important result of Esseen [3].

LEMMA 1 (Esseen). Let X1,X2, . . . be independent identically distributed random variables of lattice type
such that M Xj = 0 and M |Xj |ξ < +∞ for some ξ � 3. Assume that the values of the Xj ’s belong to the set
{ν − µ: ν ∈ Z} for some fixed real number µ and that the relation P(Xj = s − µ) · P(Xj = s + 1 − µ) �= 0 holds
for at least one s. Then

P(X1 + X2 + · · · + Xn = k − nµ) = 1

σ
√

n
ϕ(zn,k) + O

(1

n

)
,

where ϕ is defined in (2) and where

zn,k = k − nµ

σ
√

n
, σ = M X2

j .

Let q be a fixed prime, and let ξ1, ξ2, . . . be a sequence of identically distributed independent random vari-
ables with

P(ξ = s) = ρ(s), where ρ(0) = q − 2

q − 1
, ρ(s) = 1

qs
for each integer s � 1.

Letting d1 and d2 be the constants defined in (1) and setting Xj = ξj − d1, we easily see that M Xj = 0 and
σ 2 = M X2

j = d2. Now, letting

ηh = ξ1 + · · · + ξh, (3)

from Lemma 1 it follows that

P(ηh = T ) = P(X1 + · · · + Xh + hd1 = T ) = P(X1 + · · · + Xh = T − hd1)

(4)= 1

σ
√

h
ϕ
(T − hd1

σ
√

h

)
+ O

(1

h

)
.

The notation u ≈ v means that 1
2 � u

v
� 2.
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3. NOTATION AND PRELIMINARY OBSERVATIONS

As usual, let N0, N, and Z stand for the sets of nonnegative integers, positive integers, and all integers, respec-
tively.

We use the standard notation x1 = logx, xi = logxi−1 for i = 2,3, . . . .
Throughout this paper, p always denotes a prime number, while n and m stand for positive integers. On the

other hand, q � 2 stands for a fixed prime. The number c stands for a positive constant, not necessarily the
same at each occurrence. Moreover, ω(n) denotes the number of distinct prime factors of n, while P(n) and
p(n) stand for the largest and smallest prime factors of n, respectively. We also let

πk(x) := #
{
n � x: ω(n) = k

}
.

Let ℘ stand for the set of all prime numbers. Then, for each integer r � 0, let

℘r = {
p ∈ ℘: qr‖p − 1

}
,

so that ℘ = ⋃∞
r=0 ℘r . Note that, in particular, the prime q itself belongs to ℘0. Given an interval I ⊆ [0,+∞[

and an integer r � 0, we let

π(I |℘r) = #{p ∈ I ∩ ℘r }.
Let f = fq be the completely additive function defined implicitly by f (p) = r if p ∈ ℘r . Observe that

Wijsmuller’s result mentioned in Section 1 also holds when βq is replaced by fq with the same constants d1
and d2.

Setting

en := φ(n)

d(n)2 (n = 1,2, . . .),

for each integer ν, we let Dν =Bν \B∗
ν , where

Bν = {n ∈ N: en = 2νm1/m2, where m1 and m2 are odd positive integers},
B∗

ν = {n ∈ N: en = 2νm, where m is an odd positive integer}.

In general, given a set C, we denote by C(x) the cardinality of the set {n � x: n ∈ C}.
Moreover, for each integer n � 2 and each number y > 2, we let

ny =
∏
pα‖n
p<y

pα. (5)

We now introduce some notation which is somewhat similar to that we used in [2].
Let x be a fixed large number. Then letting A be a large constant and c0 a positive constant, we introduce

the set L= {�j : j = 0,1,2, . . .}, where

�0 = exp
{
xA

2

}
, �j+1 = �j + �j

(log�j )c0
for j = 0,1,2, . . . .

For each positive integer ν, define the interval Iν := [uν,uν + �uν], where uν = �jν and �uν = �jν+1 − �jν ,

and set χ(uν) := li(uν +�uν)− li(uν), where li(x) := ∫ x

2
dt

log t
. From the Prime Number Theorem for arithmetic

progressions it follows that, for some fixed constant c2 > 0,

π(Iν |℘r) = ρ(r)χ(uν)
(

1 + O
(

exp
{ − c2

√
loguν

}))
, (6)
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an estimate valid for all qr � (log�0)
c1 with an arbitrarily large fixed number c1 > 0, where

ρ(0) = q − 2

q − 1
ρ(j) = 1

qj
for j = 1,2, . . . . (7)

Let x1/2 � Y � x. An h-tuple (u1, . . . , uh) is said to be feasible if it satisfies both relations

�0 � u1 < · · · < uh and u1 · · ·uh � Y.

Now, consider a feasible h-tuple (u1, . . . , uh) such that uν+1 � 2uν for ν = 1,2, . . . , h − 1 and

(u1 + �u1) · · · (uh + �uh) � Y,

and then let

Eh(u1, . . . , uh) :=
∑

p1p2···ph
pν∈[uν ,uν+�uν ]

1 =
h∏

ν=1

∑
pν∈[uν,uν+�uν ]

1 (8)

and

S(u1, . . . , uh) :=
h∏

ν=1

(
1 + e−c2

√
log uν

)
,

where c2 > 0 is a fixed constant. Then we have

1

S(u1, . . . , uh)
� Eh(u1, . . . , uh)∏h

ν=1 χ(uν)
� S(u1, . . . , uh). (9)

But since

logS(u1, . . . , uh) =
h∑

ν=1

log
(

1 + exp
{ − c2

√
loguν

})

� exp
{

− c2

2

√
logu1

}
(10)

� exp
{

− c2

2

√
1

2
log�0

}

� exp
{ − c3x

A/2
2

}
for some constant c3 > 0, from (9) and (10) it follows that

Eh(u1, u2, . . . , uh) =
h∏

ν=1

χ(uν) ·
(

1 + O
(

exp
{ − c3x

A/2
2

}))
.

An expression of the form j1j2 · · · jt , where t is a positive integer and each ji is a nonnegative integer, is
called a word of length t .

Given a word α = j1j2 · · · jt , we let

ρ(α) := ρ(j1)ρ(j2) · · ·ρ(jt ),

where each ρ(ji) is defined by (7).
Let us define the function H on primes and on products of primes as follows: if p ∈ ℘, then H(p) = fq(p),

and if p1 < p2 < · · · < pt is a sequence of primes, then H(p1p2 · · ·pt) = H(p1)H(p2) · · ·H(pt).
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4. MAIN RESULTS

Given k ∈ N and s ∈ N0, let

Ek,s := {
n ∈ N: ω(n) = k, fq(n) = s

}
and set

Ek,s(x) := #
{
n � x: n ∈ Ek,s

}
.

THEOREM 1. Let 0 < δ < 1
2 be an arbitrary constant. Then, as x → ∞,

Ek,s(x)

πk(x)
= P(ηk = s) + O

(x3

x2

)
,

uniformly as

|k − x2| < x
1
2 +δ

2 and |s − d1x2| < x
1
2 +δ

2 , (11)

where d1 is given in (1).

THEOREM 2. For each s ∈ N0, as x → ∞,

1

x
#
{
n � x: fq(n) = s

} = 1√
d2x2

ϕ
( s − d1x2√

d2x2

)
+ O

(x3

x2

)
,

where d1 and d2 are given in (1).

THEOREM 3. For each ν ∈ Z, as x → ∞,

1

x
Bν(x) =

√
2

3x2
ϕ
( 2ν√

3x2

)
+ O

(x3

x2

)
.

THEOREM 4. For each ν ∈ Z, as x → ∞,

1

x
B∗

ν (x) =
√

2

3x2
ϕ
( 2ν√

3x2

)
+ O

(x3

x2

)
.

Note that the constants implied in the error terms appearing in Theorems 1, 2, 3, and 4 are absolute. On
the other hand, the main terms have preponderance only if s (in Theorems 1 and 2) and ν (in Theorems 3 and
4) vary in some intervals.

Clearly, from Theorem 4 it follows, in particular, that the set of positive integers n such that φ(n)

d(n)2 is an
odd integer times a (possibly, negative) power of 2 is of density 1. Moreover, summing up the estimate of
Theorem 4 for ν = 0,1,2 . . . , we obtain that φ(n)

d(n)2 is an integer for about half of the positive integers, meaning

that the density of the set of positive integers n for which φ(n)

d(n)2 is an integer is equal to 1/2. Moreover, from
our method it will become clear that φ(n) can be replaced by σ1(n). This observation implies the result of [1]
mentioned in Section 1.

Remarks. Theorems similar to Theorems 1 and 2 can be proved for a more general class of additive
functions by using the techniques developed in this paper combined with those of our earlier paper [2]. More
precisely, let the set of primes ℘ be subdivided into finite or infinite disjoint sets ℘k . Assume that

π
([x, x + y]|℘k

) := #
{
p ∈ ℘k: p ∈ [x, x + y]}

= ρ(k)
(
li(x + y) − li(x)

)(
1 + O

(
exp

{ − c2
√

logx
}))

,
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provided that x
logc x

� y � x for some constant c > 0, where all ρ(k) � 0 and
∑

k�0 ρ(k) = 1. Now let g be
an integer-valued additive function such that g(p) = h(k) for p ∈ ℘k . Let also ξi (i = 1,2, . . .) be independent
random variables taking the values h(k) with probability ρ(k) so that P(ξi = h(k)) = ρ(k), and let ηh =
ξ1 + · · · + ξh. Assume that Mξi = d1, Xj = ξj − d1, and MX2

j = d2 exist. Assume, furthermore, that the
greatest common divisor of {h(k): ρ(k) > 0} is equal to 1. Then, under these conditions, we can prove
analogues of Theorems 1 and 2 with g(n) instead of fq(n).

5. PRELIMINARY LEMMAS

LEMMA 2. There exists an absolute constant c > 0 such that, given any integer D � 3, for all x � 3,

∑
p�x

p≡1 (mod D)

1

p
<

c

φ(D)
log logx.

Proof. See Lemma 3 of Kátai [4].

LEMMA 3. Let G(x) be the number of integers n � x having two prime divisors p1 and p2 satisfying
�0 < p1 < p2 < 4p1. Then

G(x) � x

log�0
.

Proof. We have

G(x) �
∑

�0<p1<p2�4p1

x

p1p2
� x

∑
�0<p1�

√
x

1

p1

∑
p1<p2�4p1

1

p2

� x
∑

�0<p1<
√

x

1

p1 logp1
� x

∑
n>�0

1

n log2 n
� x

log�0
,

which proves Lemma 3.

LEMMA 4. Let b > 0 be a constant, and let R = R(x) > bx3. Then

#
{
n � x: there exists p|n such that qR|p − 1

} � x x2

qR
.

Proof. Let S(x) be the quantity which is to be estimated. Using Lemma 2, we then have

S(x) =
∑

p−1≡0 (mod qR)

[ x

p

]
� x

∑
p−1≡0 (mod qR)

1

p
� x

x2

φ(qR)
,

which proves Lemma 4.

LEMMA 5. Let Ah := ∑
(u1,...,uh) Eh(u1, . . . , uh), where the sum runs over those feasible k-tuples for which∏h

ν=1 uν < Y <
∏h

ν=1(uν + �uν). Let d be an arbitrary positive constant. Then

[dx2]∑
h=1

Ah � Y · x−Ac0+1
2 + Y · x−A

2 .
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Proof. In view of Lemma 3, it is clear that it suffices to sum over those (u1, . . . , uh) for which uj+1 �
2uj (j = 1, . . . , h − 1), (u0 � �0). If m ∈ Eh(u1, . . . , uh), u1 · · ·uh � Y �

∏h
ν=1(uν + �uν), then

m ∈J := [Y − Y1, Y ], (12)

where Y1 � Yx
−Ac0+1
2 . Note that (12) holds, since

h∏
ν=1

uν =
h∏

ν=1

(uν + �uν)

h∏
ν=1

1

1 + �uν

uν

> Y exp
{

− 1

2

h∑
ν=1

�uν

uν

}

and
h∑

ν=1

�uν

uν

�
h−1∑
ν=0

1

(log 2ν�0)c0
� dx2

x
Ac0
2

.

Hence, the proof of Lemma 5 is complete.

6. PROOF OF THEOREM 1

We first classify the integers n ∈ Ek,s according to the value of n�0 (recall definition (5)), that is, for each
integer K such that P(K) � �0, we let

E (K)
k,s := {n ∈ Ek,s, n�0 = K}.

Note that from here on, K always denotes an integer whose largest prime factor does not exceed �0.
Using the well-known estimate

�(x,y) := #
{
n � x: P(n) � y

} � x exp
{

− logx

2 logy

}

(see, for instance, Tenenbaum [5]), one can easily show that

∑
K>exp{xA+1

2 }
E (K)

k,s (x) � x

x2A
2

. (13)

Hence, from (13) it follows that

Ek,s(x) =
∑

K�exp{xA+1
2 }

E (K)
k,s (x) + O

( x

x2A
2

)
. (14)

Now, clearly, given any fixed b > 0, we have

∑
K�exp{xA+1

2 }
ω(K)>bx3

E (K)
k,s (x) � x

∑
K�exp{xA+1

2 }
ω(K)>bx3

1

K
. (15)

In order to estimate this last sum, note that, for each real number 1 < u � 1
2 exp{xA+1

2 },

1

u

∑
u<K�2u

K�exp{xA+1
2 }

ω(K)>bx3

1 � 2−bx3

u

∑
u<K�2u

K�exp{xA+1
2 }

d(K) = 2−bx3

u
· S0, (16)
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say. By Mertens’ theorem,

S0 �
∑

u<K�2u

K�exp{xA+1
2 }

∑
K1|K

K1<
√

2u

1 �
∑

K1<
√

2u

2u

K1
� u

∏
p��0

(
1 + 1

p

)
� u log�0. (17)

Substituting (17) into (16), we get that

1

u

∑
u<K�2u

K�exp{xA+1
2 }

ω(K)>bx3

1 � 2−bx3 log�0 = 2−bx3xA
2 . (18)

Thus, by choosing u = 2ν with ν = 1,2, . . . such that 2ν � 1
2 exp{xA+1

2 }, from (18) and (15) it follows that

∑
K�exp{xA+1

2 }
ω(K)>bx3

E (K)
k,s (x) � x x

−b log 2
2 xA

2 xA+1
2 � x x−2A

2 , (19)

provided that b is chosen large enough. Hence, substituting (19) into (14), we get that

Ek,s(x) =
∑

K�exp{xA+1
2 }

ω(K)�bx3

E (K)
k,s (x) + O

( x

x2A
2

)
. (20)

Given a constant c4 > 0, we now investigate the sum

S :=
∑

K�exp{xA+1
2 }

fq (K)>c4x3

1

K
.

First, let Q ∈ (1, q) be a fixed number. Then

S � Q−c4x3
∑

K�exp{xA+1
2 }

Qfq(K)

K

� Q−c4x3
∏

p<�0

(
1 + Qfq(p)

p
+ Q2fq(p)

p2 + · · ·
)

(21)

= Q−c4x3U,

say. Now, using Lemma 2, we have

logU �
∑
p<�0

Qfq(p)

p
=

∞∑
r=0

Qr
∑
p<�0

p≡1 (mod qr )

1

p

(22)
�

∞∑
r=0

Qr

φ(qr)
log log�0 � Ax3

1 − Q/q
.
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Substituting (23) into (22), we get that

S � Q−c4x3 exp
{ A

1 − Q/q
x3

}
� 1

x2A
2

, (23)

provided that we choose Q = √
q and c4 sufficiently large with respect to A.

Now, let T be the set of integers K satisfying the following three conditions:

K � exp
{
xA+1

2

}
, ω(K) � bx3, fq(K) � c4x3. (24)

From (14), (20), and (23) it follows that

Ek,s(x) = E ′
k,s(x) + O

( x

x2A
2

)
, (25)

where

E ′
k,s(x) :=

∑
K∈T

E (K)
k,s (x).

So, let K ∈ T and set Y = x/K . We claim, that in the estimation of Ek,s(x), we may drop the integers
n � x such that n = Km with p(m) > �0 which satisfy any of the following three conditions:

(a) m is nonsquarefree (since those integers n with a corresponding m such that m is divisible by a
square > 1 only introduce an error term of order at most x/�0);

(b) n has two “close” prime divisors p1 and p2 in the sense that �0 < p1 < p2 < 4p1 (since, according
to Lemma 3, this only introduces an error term of order at most x/ log�0);

(c) n is such that maxp|n fq(p) > c4x3 (in view of (23)).

Now, for each positive integer K , let UK be the set of integers m � x/K which remain after having
deleted those integers n = Km which satisfy at least one of conditions (a), (b), or (c).

Let m ∈ UK , so that, since (K,m) = 1, for each n ∈ Ek,s , we have

ω(m) = ω(n) − ω(K) = k − ω(K) := h,

fq(m) = fq(n) − fq(K) = s − fq(K) := t. (26)

We shall now estimate E (K)
k,s (x) for k and s satisfying conditions (11) and for K ∈ T . Recall also that

we only need to count those integers n = Km for which conditions (a), (b), and (c) do not hold.
The function Eh(u1, . . . , uh) having been defined in (8), we further define

Eh(u1, . . . , uh|α) :=
∑

p1 ···ph
pν∈[uν ,uν+�uν ]

H(p1···ph)=α

1.

We now have to introduce three more definitions, precisely:

�h,t = {
α = i1i2 · · · ih: i1 + i2 + · · · + ih = t

}
,

Nh(Y |�0, α) = #
{
p1 · · ·ph < Y : �0 < p1 < · · · < ph, H(p1 · · ·ph) = α

}
,

Nh(Y |�0) = #
{
p1 · · ·ph < Y : �0 < p1 < · · · < ph

}
.
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Now, using the Prime Number Theorem for arithmetic progressions, as we did in (6), we obtain that, at
least in the case maxν=1,...,h H(pν) � cx3,

Eh(u1, . . . , uh|α) = ρ(α)

h∏
ν=1

χ(uν)
(

1 + O
(

exp
{ − c2

√
loguν

}))
. (27)

Repeating the argument appearing in (10), at least in the case uν+1 � 2uν , from (27) it follows that the
estimate

Eh(u1, . . . , uh|α) = ρ(α)Eh(u1, . . . , uh)
(

1 + O
(

exp
{ − c3x

A/2
2

}))
(28)

holds for feasible h-tuples (u1, . . . , uh) and, therefore, that

∑
α∈�h,t

Eh(u1, . . . , uh|α)

=
(

1 + O
(

exp
{ − c3x

A/2
2

}))
Eh(u1, . . . , uh)

∑
α∈�h,t

ρ(α) + Error1 (29)

=
(

1 + O
(

exp
{ − c3x

A/2
2

}))
Eh(u1, . . . , uh)P (ηh = t) + Error1,

where Error1 comes from those words α with H(p1 · · ·ph) = α such that maxν=1,...,h H(pν) > c4x3. But
the total contribution of such integers m � Y with H(m) = α does not exceed Yx2

qc4x3 , as shown in Lemma
4. Therefore, assuming that c4 is sufficiently large, we can conclude that

Error1 � Y

x2A
2

. (30)

On the other hand, it is clear that

Nh(Y |�0) =
∑

(u1,...,uh)

∗
Eh(u1, . . . , uh) + Error2 (31)

and

Nh(Y |�0, α) =
∑

(u1,...,uh)

∗ Eh(u1, . . . , uh|α) + Error3(α), (32)

where the star on each of the above sums indicates that the sum runs over all feasible numbers
(u1, . . . , uh) which also satisfy the conditions

(u1 + �u1) · · · (uh + �uh) < Y and uν+1 � 2uν (ν = 1, . . . , h − 1).

From Lemma 3 we know that ignoring the integers n having two close prime divisors p1 and p2 with
�0 < p1 < p2 < 4p1 only generates an error � x

log�0
= x

xA
2

in each of the sums appearing in (31) and (32)

and, thus, an error term which is no larger than that claimed in the statement of Theorem 1.
Similarly, according to Lemma 5, when estimating the sums in (31) and (32), we can ignore the

integers m = p1 · · ·ph with pν ∈ [uν,uν + �uν] and u1 · · ·uh < Y < (u1 + �u1, . . . , uh + �uh), since the
error generated by counting them is � Y

x
Ac0
2

.

Furthermore, we clearly have that ∑
α∈�h,t

Error3(α) � Error2. (33)
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Thus, taking into account these error terms, from (29) and (32) we get that

∑
α∈�h,t

Nh(Y |�0, α) = P(ηh = t) · Nh(Y |�0) + O
( Y

x2A
2

)
. (34)

Consequently, gathering relations from (29) to (34), we get that

E ′
k,s(x) =

∑
K∈T

#UK =
∑
K∈T

∑
α∈�h,t

Nh

( x

K
|�0, α

)

=
(

1 + O
(

exp{−c3x
A/2
2 })) ∑

K∈T
P(ηh = t)Nh

( x

K
|�0

)
+ O

( ∑
K∈T

x

Kx2A
2

)
(35)

=
(

1 + O
(

exp{−c3x
A/2
2 })) ∑

K∈T
P(ηh = t)Nh

( x

K
|�0

)
+ O

( x

xA−1
2

)
.

Now, using (4) and the fact that ϕ′(z) is bounded on the set of real numbers, we have

∣∣P(ηh = t) − P(ηh = s)
∣∣ � |t − s|

x2
= O

(x3

x2

)
. (36)

Using (36) in (36), we obtain

E ′
k,s(x) =

(
1 + O

(
exp

{ − c3x
A/2
2

})) ∑
K∈T

P(ηh = s)Nh

( x

K
|�0

)

(37)
+ O

(
x3

x2

∑
K∈T

Nh

( x

K
|�0

))
.

Recalling (26), we have∑
K∈T

Nh

( x

K
|�0

)
� #

{
mK � x: p(m) > �0, ω(mK) = k

} = πk(x),

which means that the error term in (38) can be replaced by O(
x3
x2

πk(x)).
On the other hand, in view of (4) and since h = k + O(x3), we have

∣∣P(ηh = s) − P(ηk = s)
∣∣ � 1

h
+

∣∣∣∣ 1

σ
√

h
ϕ
( s − hd1

σ
√

h

)
+ 1

σ
√

k
ϕ
( s − kd1

σ
√

k

)∣∣∣∣ + O
( 1

x2

)

� 1

h
+

∣∣∣ 1√
h

− 1√
k

∣∣∣ + 1√
h

∣∣√h − √
k
∣∣ (38)

� 1

h
+ |h − k|

h
,

so that, for any arbitrary fixed constant c > 0, we have

max
h

|h−k|<cx3

∣∣P(ηh = s) − P(ηk = s)
∣∣ � x3

x2
.

Therefore, replacing P(ηh = s) by P(ηk = s) in (38) only introduces an additional error which is

� x3

x2

∑
K∈T

Nh

( x

K
|�0

)
� x3

x2
πk(x).
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In view of these last two remarks, we are entitled to replace (38) by

E ′
k,s(x) =

(
1 + O

(
exp

{ − c3x
A/2
2

}))
P(ηk = s)

∑
K∈T

Nh

( x

K
|�0

)
+ O

(x3

x2
πk(x)

)
. (39)

Now, noting that

πk(x) = #
{
n = Km � x: P(K) < �0, p(m) > �0, ω(n) = k

}
=

∑
P (K)<�0

#
{
m � x/K: p(m) > �0, ω(n) = k − ω(K)

}

=
∑
K∈T

#
{
m � x/K: m squarefree,p(m)>�0, ω(m)=k − ω(K)

}+O
( x

x2A
2

)
,

we get that ∑
K∈T

Nh

( x

K
|�0

)
= πk(x) + O

( x

x2A
2

)
. (40)

Using (40) in (39), we obtain that

E ′
k,s(x) =

(
1 + O

(
exp

{ − c3x
A/2
2

}))
P(ηk = s)

(
πk(x) + O

( x

x2A
2

))
+ O

(x3

x2
πk(x)

)
. (41)

Substituting (41) into (25), Theorem 1 follows.

7. PROOF OF THEOREM 2

As we shall see, Theorem 2 is an easy consequence of Theorem 1.
It is clear that

#
{
n � x: fq(n) = s

} =
∞∑

k=1

Ek,s(x) = �1 + �2 + �3,

where, in �1, we sum over k < x2 − κ , in �3, over k > x2 + κ , and, in �2, over k for which
|k − x2| � κ , where we have set κ = √

x2 · x2
3 .

Clearly,

�1 � #
{
n � x: ω(n) � x2 − κ

}
� x

x1

x
x2−1
2

(x2 − 1)!
(x2 − 1) · · · (x2 − κ)

xκ
2

(42)
� x√

x2

κ∏
j=1

(
1 − j

x2

)
� x√

x2
exp

{
− 1

x2

κ∑
j=1

j
}

� x√
x2

exp
{

− κ2

2x2

}
� x

xc
2

for each number c > 0. Similarly, we have

�3 � x

xc
2
. (43)
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Hence, in view of (43) and (43), we only need to estimate �2. We shall do this by using Theorem 1
and (39). From (36) it follows that

∣∣P(ηk = s) − P(η[x2] = s)
∣∣ � |k − [x2]|

x2
.

Hence,

�2 = P(η[x2] = s)
∑

|k−x2|<κ

πk(x) + O

( ∑
|k−x2|<κ

|k − [x2]|
x2

πk(x)

)
+ O

(∑
k

x3

x2
πk(x)

)
,

which implies that

�2 = xP (η[x2] = s) + O
(
x

x3

x2

)
,

whence Theorem 2 follows after applying (4).

8. PROOF OF THEOREM 3

We only give an outline of the proof, since it follows by using the same method as in Theorem 1.
First, we subdivide the set of primes ℘ into classes

Q−2, Q−1, Q0, Q1, Q2, Q3, . . . ,

in the following way. We first let Q−2 = {2}. Then, for each integer r � 1, we let p ∈ Qr−2 for
2r‖p − 1. Then, let g be the completely additive function defined implicitly by g(p) = s if p ∈ Qs , so
that g(p) ∈ {−2,−1,0,1,2,3, . . .}.

If m is a squarefree number, then em is clearly of the form “odd rational ×2g(m).”
Repeating the argument used in the proof of Theorem 1, one can obtain an asymptotic formula with

a remainder term for the number of integers m = p1 · · ·ph < Y with �0 < p1 < · · · < ph and pν ∈ Qiν for
ν = 1, . . . , h and for every choice of the word α = i1 · · · ih under the constraints |iν | � c4x3. Proceeding
in this way, we derive the asymptotic formula of Theorem 3, noting on the way that, in this case,
σ = √

3/2.

9. PROOF OF THEOREM 4

Clearly, it suffices to prove that

D(x) =
∞∑

ν=−∞
Dν(x) = O

( x

x2
2

)
. (44)

Now, let us write n = Km, where K is the squarefull part of n, and m is the squarefree part of n
with (K,m) = 1, and, in this case, we have en = eK · em.

First note that it is clear that the number of positive integers n � x such that the corresponding
value K satisfies K > x2

2 is O( x

x2
2
).

We shall now obtain an upper bound for the number of positive integers n � x such the correspond-
ing value K satisfies K � x2

2 and for which q−a‖en holds for some odd prime q . Since q0‖em, it
follows that q−a‖eK . Now assume that qb‖d(K). Then, given any ε > 0, if K is sufficiently large, we
have d(k) < Kε � x4ε

2 and, in this case, we can write that qa � q2b < x4ε
2 .

Now, if q2b does not divide φ(n), then n contains no prime divisor p satisfying p ≡ 1 (mod q2b).
Noting that, by Lemma 2,

∏
p<xδ

p≡1 (mod q2b)

(
1 − 1

p

)
= exp

{
−

∑
p<xδ

p≡1 (mod q2b)

1

p

}
� exp

{
− 1

φ(q2b)
x2 + O(1)

}
,



270 J. M. De Koninck and I. Kátai

it follows by Selberg’s sieve that the number of n � x with this property is less than cx exp{− x2
φ(qa)

}
for some positive constant c. Summing up over all qa � x4ε

2 , (44) follows, and Theorem 4 is thus
established.
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