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INTEGERS DIVISIBLE BY THE SUM OF THEIR
PRIME FACTORS

JEAN-MARIE DE KONINCK and FLORIAN LUCA

Abstract. For each integer n � 2, let β (n) be the sum of the distinct prime
divisors of n and let B(x) stand for the set of composite integers n � x such
that n is a multiple of β (n). Upper and lower bounds are obtained for the
cardinality of B(x).

§1. Introduction. Given an arithmetical function f such that f (n) � n, it
is somewhat natural to ask how often can n be a multiple of f (n). For
instance, letting τ (n) (resp. ω (n)) stand for the number of divisors (resp.
number of distinct prime divisors) of n, Spiro [9] has shown that #{n � x :
τ (n)|n} = (x/

√
log x)(log log x)−1+o(1), while Cooper and Kennedy [2] showed

that the set {n : ω (n)|n} has density 0. More general results were obtained by
Erdo′′s and Pomerance [5], including the case Ω(n)|n, where Ω(n) stands for the
number of prime power divisors of n. Other results of this type have recently
been obtained by Banks, Garaev, Luca and Shparlinski [1].

More recently, Vaughan and Weis [11] investigated the counting function
of the set of composite integers n such that n − 1 is a multiple of �

p|n(p − 1).
Here, we examine the counting function of the set of composite integers n such
that n is a multiple of β (n) := �

p|n p.

§2. Main result. Let B(x) := {n � x : n is composite and β (n)|n}. We shall
prove the following result.

Theorem 1. For x sufficiently large,

x exp{−c1(1 + o(1))�(x)} < #B(x) < x exp{−c2(1 + o(1))�(x)}, (1)

where �(x) :=
√

log x log log x and c1 and c2 can be taken as c1 = 3/
√

2 and
c2 = 1/

√
2.

§3. Preliminary results. Throughout this paper, we use the Vinogradov
symbols � and � as well as the Landau symbols O and o with their regular
meanings. For each integer n � 2, let P(n) stand for the largest prime factor
of n, and set P(1) = 1.

Lemma 1. For every ε > 0, there exists a real number xε such that, if
x > xε , then the interval [x/2, x] contains at least x1−ε distinct integers of the
form m − β (m), for some positive integer m � x such that ω (m) < 2 log log x.
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Proof. Let ε be fixed in the interval (0, 1). For large x, the interval
[2x/3, x] contains (1 + o(1))ρ(2/ε )x/3 positive integers m such that P(m) < xε/2.
Here, for a positive real number u > 1, ρ(u) stands for the Dickman function
(see, for example, Theorem 6 on page 367 in [10]). Since the number of positive
integers m � x for which ω (m) ≥ 2 log log x is o(x) (because the function ω (m)
has a normal order equal to log logx for m in the interval [1, x]), it follows
that most of the above numbers m have ω (m) < 2 log log x. Note that, if m

is such an integer, then β (m)�xε/2 log log x. Therefore, since m > 2x/3, it
follows that m − β (m) > x/2 if x is large enough. Thus, for such numbers
m, we have m − β (m) ∈ [x/2, x]. Let m be one such number and assume that
m − β (m) = m′ − β (m′) for some m′ ≠ m. Then

|m − m′| = |β (m) − β (m′)| � xε/2 log log x.

This argument shows that, for a fixed m, there are no more than
O(xε/2 log log x) values of m′ for which m − β (m) = m′ − β (m′) might hold.

In particular, the number of distinct values of the form m − β (m) for such
m is

�
x

xε/2 log log x
=

x1−ε/2

log log x
> x1−ε when x > xε ,

which implies the conclusion of Lemma 1.

§4. Proof of Theorem 1. Let x be a large number.
Let y = y(x) be a function tending to +� with x that we shall determine

later. We put u = log x/ log y. Recall that a positive integer m is powerful if
p2|m whenever p is a prime factor of m.

Let

B1(x) = {n ∈ B(x) : P(n) � y};
B2(x) = {n ∈ B(x) \ B1(x) : ω (n) � u};
B3(x) = {n ∈ B(x) : m|n holds for some powerful m > y2};
B4(x) = B(x) \ (B1(x) � B2(x) � B3(x)).

We shall be using the well-known estimate

Ψ(x, y) := #{n � x : P(n) � y} = x exp{− (1 + o(1))u log u}, (2)

which holds in the range (log log x)5/3+ε � log y � log x for any fixed small
ε > 0, a result due to Hildebrand [6].

In view of (2), we have

#B1(x) � x exp{− (1 + o(1))u log u}. (3)

We shall assume from now on that n /∈ B1(x).
Let z be any positive real number.
By writing each integer n with ω (n) � z as n = p1p2 � p�z�m for some

positive integer m and some distinct primes p1, p2, �, p�z�, we have that m

can take at most �x/p1p2 � p�z�� values. Hence, using Stirling’s formula, as
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well as the fact that

�
p�y

1
p

= log log y + O(1)

holds as y tends to infinity, we get that

#{n � x : ω (n) � z} � �
p1…p�z��x

x

p1 … p�z�
�

x

�z�!

(
�

p�x

1
p

)�z�

� x

(
e log log x + O(1)

�z�
)�z�

� x exp{− (1 + o(1))z log z}, (4)

provided that z is much larger than log log x, for instance when log log log x =
o(log z). Hence, choosing z = u, it follows from (4) that

#B2(x) = #{n � x : ω (n) � u} � x exp{− (1 + o(1))u log u}, (5)

provided that log log log x = o(log u). From here on, we assume that
n /∈ B1(x) � B2(x).

Clearly,

#B3(x) � �
m>y2

m powerful

x

m
�

x

y
, (6)

where the above inequality follows by partial summation from the known fact
that the estimate

#{m � x : m powerful} = C1
√

x + O(x1/3)

holds as x tends to infinity (see, for example, Theorem 14.4 in [7]).
It remains to estimate #B4(x). We first make some comments about the

integers in B4(x). Write n = n1n2, where gcd(n1n2) = 1, n1 is powerful and n2

is square-free. Since n1 � y2 (because n is not in B3(x)) and P(n) > y (because
n is not in B1(x)), we get that P(n)|n2. In particular, P(n)||n. Secondly,

τ (n) = τ (n1)τ (n2).

Clearly, τ (n2) � 2ω (n) � 2u = exp(O(u)), because n is not in B2(x). Finally, it
is well known that

τ (n1) = exp
(

O

(
log n1

log log n1

))
= exp

(
O

(
log y

log log y

))
.

In particular,

τ (n) � exp(O(u) + o(log y)).

We now let n ∈ B4(x) and write n = P(n)m, where m � x/y is a positive
integer. Note that m > 1, because n is a composite. Let d|n be such that
d = β (n). Reducing this equation modulo P(n), we get that{

�
p|m p ≡ 0 (modP(n)), if P(n)|d,

�
p|m p − d ≡ 0 (modP(n)), otherwise, that is, if d|m.

(7)
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In the first case, P(n) can take at most ω (β (m)) = O(log β (m)) = O(log x)
values, once m is fixed. (Note that β (m) > 0 because n is not a prime power.)
In the second case, P(n) can take again at most O(log x) values once m and
d (d|m) are fixed. In conclusion, for a fixed value of m, the total number of
values of P(n) is

�τ (m) log x � τ (n) log x = exp(O(u) + o(log y)),

where we used the fact that log log x = o(u), because log log log x = o(log u).
Since m � x/y, it follows that

#B4(x)�
x

y
exp(O(u) + o(log y)). (8)

In order to optimize the bounds obtained in (3), (5), (6) and (8), we choose u

in such a way that log y = u log u. We then get

log y =
log x

log y
log

(
log x

log y

)
,

so that

log2
y =

1
2
(1 + o(1)) log x log log x,

giving

log y = (1 + o(1))

√
1
2

log x log log x,

and therefore

u log u = (1 + o(1))

√
1
2

log x log log x.

The upper bound claimed by Theorem 1 follows now immediately from (3),
(5), (6) and (8).

We now turn to the lower bound.
Let again x be a large number. Then let y = y(x) < x be some function of

x which tends to +� with x and will be determined later.
Let ε > 0 be arbitrary in the interval (0, 1) but fixed. By Lemma 1, the

interval [y/2, y] contains at least y1−ε positive integers of the form m − β (m),
for some m � y such that ω (m) � 2 log log y. Let M = m − β (m) be one of
these integers. Let k be a large positive integer having the same parity as M

and let

Ik =
[

M

3k
,
2M

3k

]
,

and

J =
[
M

3
,
2M

3

]
.

Let (m1, m2, …, mk) be a k-tuple of odd integers such that mi ∈ Ik for 1 � i �
k − 1 and mk ∈ J , and such that M = m1 + m2+ � +mk.
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It is clear that the number of such representations is at least (c4M/k)k−1,
where c4 can be taken to be a constant smaller than 1/12, once y (and hence x)
is large enough. Hence, let us choose c4 = 1/13.

Assuming that k = o(y), and using Vinogradov’s Three Primes Theorem
(see, for example, [8]), each one of the numbers mi can be written as a sum of
three odd primes, and the number of such representations mi = pi,1 + pi,2 + pi,3

is

�
m2

i

log3
mi

�
(y

k

)2 1

(log(y/k))3
.

This argument shows that the number L of 3k-tuples of primes

(pi,1, pi,2, pi,3)1�i�k

such that

M =
k

�
i=1

3

�
j=1

pi,j

satisfies

L�
(c5y

k

)3k−1 1

(log(y/k))3k
, (9)

with some positive constant c5.
We now discard those 3k-tuples of primes such that either there exists one

component pi,j|m, or there exist (i1, j1) ≠ (i2, j2) such that pi1,j1 = pi2,j2 . We
count the number of excluded 3k-tuples.

We handle the first case. Let (i0, j0) be a fixed position and let p = pi0,j0 be
a fixed prime factor of m. The first 3k − 2 components (i, j) with (i, j) ≠ (i0, j0)
can each be chosen in at most π (Ik) ways, where π (Ik) denotes the number
of primes in Ik, and once those components have been chosen, the last one is
uniquely determined.

Since (i0, j0) can be chosen in 3k ways and p can be chosen in ω (m) �
2 log log y ways, it follows that the total number U of such possibilities satisfies

U � 6k(log log y)(π (Ik))
3k−2�k log log y

(c6y

k

)3k−2 1

(log(y/k))3k−2 . (10)

Here, we may take c6 to be any constant greater than 1/3 once y (and hence
x) is large enough. Comparing equation (9) and (10), we observe that

U�L

(
c6

c5

)3k−2
k2(log log y)(log(y/k))2

y
= o(U),

where the last estimate above holds provided that k = o(log y).
Hence, assuming that this last condition is fulfilled, it follows that most

of our 3k-tuples of primes constructed in this manner have the property that
none of its components is a divisor of m.

We next count those 3k-tuples such that pi1,j1 = pi2,j2 = p. We see that the
prime p can be chosen in at most π (Ik) ways, and the first 3k − 3 primes pi,j

for the locations (i, j) ≠ (i1, j1) and (i, j) ≠ (i2, j2) can also be chosen in at most
π (Ik) ways each, and once all such components have been chosen, the last one
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is uniquely determined. Since the pairs (i1, j1) and (i2, j2) can be chosen in at
most O(k2) ways, it follows that the total number V of such 3k-tuples satisfies
the inequality

V�k2π (Ik)
3k−2�k2

(c6y

k

)3k−2 1

(log(y/k))3k−2 . (11)

Comparing equations (11) and (9), we see that

V�L

(
c6

c5

)3k−2
k3(log(y/k))2

y
= o(L),

where the last estimate above holds again because k = o(log y).
Hence, we conclude that a positive proportion (in fact, most of them) of

our 3k-tuples of primes have mutually distinct components which do not divide
m. We now consider numbers n of the form n = m Πk

i=1Π3
j=1pi,j.

By the above argument and unique factorization, for fixed m the number
of such integers n is, using (9),

�
1

(3k)!
L�

1
(3k)!

(c5y

k

)3k−1 1

(log(y/k))3k
.

We now use Lemma 1 and vary m in such a way that the integers M = m − β (m)
are all distinct, to get a total W of pairs (n, m), with

W�y1−ε 1
(3k)!

L�
1

(3k)!

(c5y

k

)3k−ε 1

(log(y/k))3k
.

Using Stirling’s formula, we obtain

W�
c3k
7 y3k−ε

k6k+ 1
2 (log(y/k))3k

, (12)

where we can take c7 = c5e/3. It is clear that these n belong to B(x), because

β (n) = β (m) +
k

�
i=1

3

�
j=1

pi,j = m,

and m|n.
Unfortunately, not all integers n which we counted in this way are distinct,

because the same integer n may appear from two distinct values of m. To
bound the number of over-counts, we let t = ω (n). We know that t = 3k + �,
where � = ω (m) � 2 log log y.

We note that m is determined by choosing a subset of 3k prime factors of n.
Hence, the maximal number T of over-counts of the same number n satisfies

T �

(
t

3k

)
=
(

3k + �

3k

)
=
(

3k + �

�

)
= exp{O((log k)(log log y))},

where the last inequality holds provided that � � 2 log log y = o(k).
Thus, using (12), the number of distinct n is at least

W

T
�

c3k
7 y3k−ε

k6k+ 1
2 (log(y/k))3k exp{O((log k)(log log y))}

. (13)
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The largest such integer n does not exceed

y
(y

k

)3k−3
y3 =

y3k+1

k3k−3
:= x. (14)

Thus, by (13),

#B(x) �
y3k+1

k3k−3

ck
7

k3k+7/2y1+ε (log(y/k))3k exp{O ((log k)(log log y))} ,

= x exp{−3k log k − (1 + ε ) log y − 3k log log(y/k)

+O(k + log k log log y)}. (15)

The above formula suggests choosing k in terms of y in such a way that the
main term inside the above exponential is as small as possible.

Thus, we choose k such that k = �k′� with

3k′ log k′ = (1 + ε ) log y.

With this choice, we have

k =
(

1 + ε
3

)
log y

log log y
(1 + o(1)), (16)

and

3k log k + (1 + ε ) log y + 3k log log(y/k) + O(k + log k log log y)

= 3(1 + ε ) log y + O

(
log y

log log y

)
.

To express y in terms of x, we take the logarithm of both sides of equation
(14), thus obtaining

(3k + 1) log y − (3k − 3) log k = log x,

which together with (16) leads to

(1 + ε )
log2

y

log log y
(1 + o(1)) log x,

which gives

log y =

√
1

2(1 + ε )
(1 + o(1))

√
log x log log x. (17)

Combining (15), (16) and (17), we thus get that

#B(x) � x exp
{

− (1 + o(1))
3√
2

√
(1 + ε ) log x log log x

}
,

and letting ε → 0, we get the desired lower bound.

Remark 1. Arguing heuristically, one could say that the probability that
β (n)|n for some integer n which is not a prime power should be approximately
1/β (n), in which case #B(x) should be close to � 2�n�x

n composite

1
β (n) . But this last sum
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was investigated by Xuan [12], who obtained that

�
2�n�x

1
β (n)

= (D + o(1)) �
2�n�x

1
P(n)

for some positive constant D < 1. On the other hand, it was shown by Erdo′′s,
Ivić and Pomerance [4] that

�
2�n�x

1
P(n)

= x exp{− (1 + o(1))
√

2 log x log log x}.

Hence, in view of these estimates and since

�
2�n�x

n prime power

1
β (n)

� �
p�x

⌊
log x

log p

⌋
1
p

= O(log x),

one may conclude that

�
2�n�x

n composite

1
β (n)

= x exp{− (1 + o(1))
√

2 log x log log x}.

Comparing this last estimate with the bounds obtained in Theorem 1, it is
somewhat reassuring to observe that indeed we have c1 = 1/

√
2 <

√
2 < c2 =

3/
√

2.

Remark 2. Theorem 1 suggests that there might exist a constant c such
that the estimate

�
n�x

β (n)|n

1 = x exp
{

− c(1 + o(1))
√

log x log log x

}

holds as x → �. We could not succeed in proving such an estimate, but, in
light of Remark 1, we conjecture that c =

√
2.

Remark 3. There are a few papers in the literature in which the average
prime divisor of a positive integer n has been investigated (see [1] and [3],
for example). This is defined as P∗(n) = β (n)/ω (n). The method of proof of
Theorem 1 can easily be extended to give upper and lower bounds on the
cardinality of the set N (x) = {n � x : n composite and P∗(n)|n}. Note that
P∗(n) is only a rational number, and by the divisibility relation P∗(n)|n we
mean that n/P∗(n) = nω (n)/β (n) is an integer. Clearly, if n/β (n) is an integer,
then nω (n)/β (n) is an integer as well. Hence, #N (x) is at least as large as the
left side of inequality (1). The fact that #N (x) is at most as large as the right
side of inequality (1) follows from an argument similar to the one used in the
proof of Theorem 1. We give no further details.
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