POWERFUL NUMBERS IN SHORT INTERVALS

Jean-Marie De Koninck, Florian Luca and Igor E. Shparlinski

Let $\kappa \geqslant 2$ be an integer. We show that there exist infinitely many positive integers N such that the number of κ-full integers in the interval $\left(N^{\kappa},(N+1)^{\kappa}\right)$ is at least $(\log N)^{1 / 3+o(1)}$. We also show that the $A B C$-conjecture implies that for any fixed $\delta>0$ and sufficiently large N, the interval ($N, N+N^{1-(2+\delta) / \kappa}$) contains at most one κ-full number.

1. Introduction

Let $\kappa>1$ be an integer. An integer $m \geqslant 1$ is called κ-full if $p^{\kappa} \mid m$ holds for all prime factors p of m. For example, κ-powers, that is, numbers m of the form n^{κ}, are κ-full. Usually, for $\kappa=2$ such numbers are called squarefull.

It is clear that for any integer N, the open interval $\left(N^{\kappa},(N+1)^{\kappa}\right)$ does not contain any κ-powers. In this paper, we show that the intervals of the above form can contain arbitrarily many κ-full numbers. This result extends some of the results obtained in [3], where squarefull numbers have been investigated. It is useful to recall that the counting function of the κ-full numbers up to x is of the same order of magnitude as the counting function of the κ-powers (see [1]), thus this difference in their behaviour is based on purely arithmetic reasons.

The proof is an extension of that given in [3] but uses the Roth Theorem instead of a result on continued fractions of some quadratic irrationalities. Alternatively, one can use the fully effective Liouville Theorem (which leads to a marginally weaker but more uniform statement). In fact, even in the case $\kappa=2$ both these approaches lead to a slightly better constant than that of [3].

We recall that the Roth Theorem asserts that for any irrational root α of a monic irreducible polynomial $f(X) \in \mathbb{Q}[X]$ and any $\delta>0$, there exists a constant $C(\alpha, \delta)>0$ such that for any integers r and $s>0$, we have

$$
\left|\alpha-\frac{r}{s}\right|>\frac{C(\alpha, \delta)}{s^{2+\delta}} .
$$

Received 10th May, 2004
During the preparation of this paper, the first author was supported in part by a grant from NSERC. The second author was supported in part by grants SEP-CONACYT 37259-E and 37260-E, and the third author was supported in part by ARC grant DP0211459.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

However, this result is not effective in a sense that no explicit expression for $C(\alpha, \delta)$ is known (see [5, Theorem 2A of Chapter 5]).

We also recall the Dirichlet Theorem which asserts that, for any real numbers $\alpha_{1}, \ldots, \alpha_{m}$ and integer $Q>1$, there exist integers r_{1}, \ldots, r_{m} and $0<s \leqslant Q$ such that

$$
\left|\alpha_{j}-\frac{r_{j}}{s}\right| \leqslant \frac{1}{s Q^{1 / m}}
$$

(see [5, Theorem 1A of Chapter 2]).
We also show that the $A B C$-conjecture implies that for any $\delta>0$ and sufficiently large L, the shorter interval $\left(L, L+L^{1-(2+\delta) / \kappa}\right)$ contains at most one κ-full number.

We also obtain an unconditional (but much weaker) upper bound on the number of integers in short intervals $(L, L+K)$, which are κ-full numbers for at least one $\kappa \geqslant 2$. This complements the result obtained in [4], where the upper bound $\exp \left(40(\log \log L \log \log \log L)^{1 / 2}\right)$ on the number of perfect powers in the interval (L, L $+L^{1 / 2}$) (provided $L \geqslant 16$) is established.

Throughout this paper, we use Vinogradov symbols \gg and \ll as well as Landau symbols O and o with their regular meanings. We recall that the notations $A \ll B$, $B \gg A$ and $A=O(B)$ are all equivalent to the fact that $|A| \leqslant c B$ holds with positive constant c.

2. Short Intervals with Many κ-full Numbers

Theorem 1. For any integer $\kappa \geqslant 2$, there are infinitely many N, such that the open interval $\left(N^{\kappa},(N+1)^{\kappa}\right)$ contains at least

$$
M \geqslant\left(\left(\frac{3}{8}+o(1)\right) \frac{\log N}{\log \log N}\right)^{1 / 3}
$$

κ-full integers.
Proof: Let $1<d_{1}<\ldots<d_{2 \ell}$ be the first 2ℓ squarefree integers greater than 1 , that is, $d_{j}=\pi^{2} j / 6+o(j)$. We also denote

$$
D=\prod_{j=1}^{2 \ell} d_{j}
$$

and remark that $D \leqslant(4 \ell)^{2 \ell}$, provided that ℓ is large enough.
Let $\alpha_{j}=d_{j}^{-1 / \kappa}, j=1, \ldots, 2 \ell$.
We define

$$
R=\left(\kappa 2^{\kappa-1}(4 \ell)^{2 \ell+1 / \kappa}\right)^{2 \ell}
$$

and let q be the smallest integer

$$
q \geqslant R
$$

for which, for some integers r_{j},

$$
\begin{equation*}
\left|\alpha_{j}-\frac{r_{j}}{q}\right| \leqslant \frac{1}{q^{1+1 / 2 \ell}}, \quad j=1, \ldots, 2 \ell \tag{1}
\end{equation*}
$$

We see that

$$
q \leqslant Q
$$

where $Q=R^{2 \ell(1+\delta)} C\left(\alpha_{1}, \delta\right)^{-2 \ell}$. Indeed, otherwise applying the Dirichlet Theorem, we see that

$$
\left|\alpha_{j}-\frac{r_{j}}{s}\right| \leqslant \frac{1}{s Q^{1 / 2 \ell}}, \quad j=1, \ldots, 2 \ell,
$$

for some positive integer $s \leqslant Q$. Due to the minimality condition on q, we have $s \leqslant R$. On the other hand, by the Roth Theorem, we have

$$
\frac{C\left(\alpha_{1}, \delta\right)}{s^{2+\delta}}<\left|\alpha_{1}-\frac{r_{1}}{s}\right| \leqslant \frac{1}{s Q^{1 / 2 \ell}}
$$

Therefore

$$
s>\left(C\left(\alpha_{1}, \delta\right) Q^{1 / 2 \ell}\right)^{1 /(1+\delta)}=R
$$

which is impossible.
We see from (1) that, for $j=1, \ldots, 2 \ell$,

$$
\left|q-d_{j}^{1 / \kappa} r_{j}\right| \leqslant \frac{d_{j}^{1 / \kappa}}{q^{1 / 2 \ell}} \leqslant \frac{(4 \ell)^{1 / \kappa}}{R^{1 / 2 \ell}} \leqslant 1
$$

Therefore,

$$
d_{j}^{1 / \kappa} r_{j}=\alpha_{j}^{-1} r_{j} \leqslant q+1, \quad j=1, \ldots, 2 \ell
$$

We now derive,

$$
\begin{aligned}
\left|q^{\kappa}-d_{j} r_{j}^{\kappa}\right| & =\left|q-d_{j}^{1 / \kappa} r_{j}\right| \sum_{\nu=0}^{\kappa-1} q^{\kappa-1-\nu}\left(d_{j} r_{j}\right)^{\nu} \leqslant \kappa(q+1)^{\kappa-1}\left|q-d_{j}^{1 / \kappa} r_{j}\right| \\
& \leqslant \frac{\kappa(4 \ell)^{1 / \kappa}(q+1)^{\kappa-1}}{R^{1 / 2 \ell}}
\end{aligned}
$$

Putting $n=D q$ we derive

$$
\begin{aligned}
\left|n^{\kappa}-d_{j} D^{\kappa} r_{j}^{\kappa}\right| & \leqslant \frac{\kappa(4 \ell)^{1 / \kappa} D^{\kappa}(q+1)^{\kappa-1}}{R^{1 / 2 \ell}} \\
& \leqslant D^{\kappa-1} q^{\kappa-1} \frac{\kappa(4 \ell)^{2 \ell+1 / \kappa}(1+1 / q)^{\kappa-1}}{R^{1 / 2 \ell}} \\
& =n^{\kappa-1} \frac{\kappa(4 \ell)^{2 \ell+1 / \kappa}(1+1 / q)^{\kappa-1}}{R^{1 / 2 \ell}} \\
& \leqslant n^{\kappa-1} \frac{\kappa 2^{\kappa-1}(4 \ell)^{2 \ell+1 / \kappa}}{R^{1 / 2 \ell}}=n^{\kappa-1}
\end{aligned}
$$

Therefore one of the intervals $\left((n-1)^{\kappa}, n^{\kappa}\right)$ or $\left(n^{\kappa},(n+1)^{\kappa}\right)$ contains at least $M \geqslant \ell$ of the integers $d_{j} D^{\kappa} r_{j}^{\kappa}, j=1, \ldots, 2 \ell$, which are obviously pairwise distinct (because d_{j} is squarefree for all $j=1, \ldots, 2 \ell$), and κ-full. We now have

$$
\begin{aligned}
n & =D q \leqslant D Q=D R^{2 \ell(1+\delta)} C\left(\alpha_{1}, \delta\right)^{-2 \ell} \\
& \leqslant\left(4 \ell / C\left(\alpha_{1}, \delta\right)\right)^{2 \ell}\left(\kappa 2^{\kappa-1}(4 \ell)^{2 \ell+1 / \kappa}\right)^{4 \ell^{2}(1+\delta)} \\
& =\exp \left((8(1+\delta)+o(1)) \ell^{3} \log \ell\right)
\end{aligned}
$$

Hence, since κ is fixed,

$$
\ell^{3} \log \ell \geqslant\left(\frac{1}{8(1+\delta)}+o(1)\right) \log n
$$

which implies that

$$
M \geqslant\left(\left(\frac{3}{8(1+\delta)}\right)^{1 / 3}+o(1)\right)\left(\frac{\log n}{\log \log n}\right)^{1 / 3}
$$

Recalling that δ is arbitrary, the proof is complete.

3. Upper Bounds

We first recall the statement of the $A B C$-conjecture. For any nonzero integer m let

$$
\gamma(m)=\prod_{p \mid m} p
$$

Conjecture 1. For every $\varepsilon>0$ there exists a constant $C(\varepsilon)$ such that for any integers a, b, c with $c=a+b$ and $\operatorname{gcd}(a, b)=1$, the bound

$$
\max \{|a|,|b|,|c|\} \leqslant C(\varepsilon) \gamma(a b c)^{1+\varepsilon}
$$

holds.
Theorem 2. The $A B C$-conjecture implies that if κ and $\delta>0$ are fixed, then there exists L_{0} such that the interval $\left(L, L+L^{1-(2+\delta) / \kappa}\right)$ contains at most one κ-full number for $L>L_{0}$.

Proof: Let $\varepsilon=\delta / \kappa$. Assume that the above interval contains at least two κ-full numbers, say $a<b$. Then $\gamma(a), \gamma(b) \leqslant(2 L)^{1 / \kappa}$ and $c=b-a<L^{1-(2+\delta) / \kappa}$. Applying the $A B C$-conjecture to the equation $c=b-a$, we get

$$
L<b \leqslant C(\varepsilon)\left(2^{2 / \kappa} L^{1-\delta / \kappa}\right)^{1+\varepsilon}=C(\delta / \kappa) 2^{2 / \kappa+2 \delta / \kappa^{2}} L^{1-\delta^{2} / \kappa^{2}}
$$

Hence

$$
L<\left(C(\delta / \kappa) 2^{2 / \kappa+2 \delta / \kappa^{2}}\right)^{\kappa^{2} / \delta^{2}}
$$

which completes the proof.
0
We remark that, unfortunately, the best known results towards the $A B C$-conjecture (see [6]), are not strong enough to produce any nontrivial estimates for κ-full numbers in short intervals.

We now obtain a much weaker but unconditional bound.
Theorem 3. For any positive integers L and K the interval $(L, L+K)$ contains at most $O(K \log \log K / \log K)$ squarefull numbers.

Proof: Let

$$
w=\frac{\log K}{\log \log K}
$$

We separate the squarefull numbers of the interval ($L, L+K$) into two nonintersecting subsets. The set \mathcal{S}_{1} consists of the squarefull numbers which have a prime divisor p with $w \leqslant p \leqslant K$ (and thus are divisible by p^{2}). The set \mathcal{S}_{2} consists of all other squarefull numbers in this interval. Clearly,

$$
\# \mathcal{S}_{1} \leqslant \sum_{w \leqslant p<K}\left(\frac{K}{p^{2}}+1\right) \ll \frac{K}{w \log w}+\frac{K}{\log K} \ll \frac{K}{\log K}
$$

Using the Brun sieve (see [2, Theorem 2.2]), we also derive

$$
\# \mathcal{S}_{2} \ll K \prod_{w \leqslant p \leqslant K}\left(1-\frac{1}{p}\right) \ll \frac{K \log \log K}{\log K}
$$

which completes the proof.

4. Remarks

As we have mentioned, the Roth Theorem is not effective. However, our arguments can be used with the completely explicit Liouville Theorem which asserts that for any irrational root α of a monic irreducible polynomial $f(X) \in \mathbb{Q}[X]$ of degree $\operatorname{deg} f=k \geqslant 2$ and any integers r and $s>0$,

$$
\left|\alpha-\frac{r}{s}\right| \geqslant \frac{c(\alpha)}{s^{k}}
$$

where $c(\alpha)>0$ depends only on α (see [5, Theorem 1A of Chapter 5]). It is easy to see from any standard proof of this inequality that the constant $c(\alpha)$ can be taken to be

$$
c(\alpha)=\left(\Delta \max _{t \in[\alpha-1, \alpha+1]}\left\{1,\left|f^{\prime}(t)\right|\right\}\right)^{-1}
$$

where Δ is the least common multiple of all the denominators of the coefficients of f. For example, when $f(X)=X^{\kappa}-1 / d$ with some positive integers $\kappa \geqslant 2$ and d and $\alpha=d^{-1 / \kappa}$, we can take $c(\alpha)=1 /\left(d \kappa 2^{\kappa-1}\right)$.

Using this result leads to a uniform and explicit version of Theorem 1 with respect to κ (the constant $(3 / 8)^{1 / 3}$ becomes $(3 / 8(\kappa-1))^{1 / 3}$). In particular, there are infinitely many N, such that the number of $\kappa(N)$-full integers in $\left(N^{\kappa(N)},(N+1)^{\kappa(N)}\right)$ is at least $(\log N)^{1 / 3+o(1)}$, where $\kappa(N)$ is any function of N satisfying $\kappa(N)=(\log N)^{o(1)}$, for example. Moreover, the above interval can contain arbitrarily many $\kappa(N)$-full integers, where $\kappa(N)=o\left((\log N)^{1 / 2}\right)$.

References

[1] P. Bateman and E. Grosswald, 'On a theorem of Erdös and Szekeres', Illinois J. Math. 2 (1958), 88-98.
[2] H. Halberstam and H.-E. Richert, Sieve methods (Academic Press, London, 1974).
[3] J.-M. De Koninck and F. Luca, 'Sur la proximité des nombres puissants', Acta Arith. 114 (2004), 149-157.
[4] J.H. Loxton, 'Some problems involving powers of integers', Acta Arith. 46 (1986), 113-123.
[5] W.M. Schmidt, Diophantine approximation (Springer-Verlag, Berlin, 1980).
[6] C.L. Stewart and K.R. Yu, 'On the abc conjecture, II', Duke Math. J. 108 (2001), 169-181.

Départment de Mathématiques
Université Laval
Québec G1K 7P4
Canada
e-mail: jmdk@mat.ulaval.ca

Department of Computing Macquarie University Sydney, NSW 2109
Australia
e-mail: igor@ics.mq.edu.au

Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58180, Morelia

Michoacán
México
e-mail: fluca@matmor.unam.mx

