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Abstract

Let σ(n) denote the sum of the divisors of n and let α be a positive irrational number
such that for each real number κ > 1 there exists a positive constant c = c(κ, α) for
which the inequality ‖αq‖ > c

qκ holds for every positive integer q, where ‖x‖ stands
for the distance between x and the closest integer. Then the function F (n) + ασ(n) is
uniformly distributed modulo 1 for every additive function F (n).
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§1. Introduction

According to a reformulated version of a well known theorem of H. Daboussi (see Daboussi
and Delange [1], [2]), for every additive arithmetical function F (n) and any irrational number
α, the sequence `n := F (n)+αn is uniformly distributed modulo 1. Kátai [4] proved that the
same holds for `n := F (n)+Q(n), where Q(x) := α0 +α1x+α2x

2 + . . .+αkx
k ∈ R[x], and at

least one coefficient among α1, α2, . . . , αk is irrational. Repeating the definition given in [4],
we say that F is the family of those sequences t(n) for which `n := F (n)+ t(n) is uniformily
distributed modulo 1 for every additive function F . Most likely it is true that t(n) := ασ(n)
belongs to F , where σ(n) stands for the sum of the divisors of n. We can prove a somewhat
weaker result, namely when α belongs to a certain class of positive irrational numbers. In
fact, letting ‖x‖ stand for the distance between x and the closest integer, we shall prove the
following results.

Theorem 1. Let α be a positive irrational number such that for each real number κ > 1
there exists a positive constant c = c(κ, α) for which the inequality

‖αq‖ >
c

qκ
(1)

holds for every positive integer q. Then the function t(n) = ασ(n) belongs to F .

Remark. Since the Lebesgue measure of those irrational α for which inequality (1) does
not hold is zero, it follows that the set of irrational numbers for which the conclusion of
Theorem 1 holds is indeed very large.
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Theorem 2. Let h be an integer valued multiplicative function such that h(p) = Q(p) for
every prime p and h(pa) = O(pad) for some fixed number d for every prime p and every
integer a ≥ 2, where

Q(x) = akx
k + ak−1x

k−1 + . . . + a1x + a0, k ≥ 1, ak > 0, aj ∈ Z.

Moreover, let α be a positive irrational number such that for each real number κ > 1 there
exists a positive constant c = c(κ, α) for which the inequality

‖αq‖ >
c

qκ

holds for every positive integer q. Then the function t(n) = αh(n) belongs to F .

§2. Preliminary results

Given any real number ρ, we write e(ρ) for e2πiρ. Then for each real number β, let

Sβ(y) :=
∑

p≤y

e(βp).

Lemma 1. Let y be a large number and assume that

R ≤ q ≤ y/R, 1 ≤ R ≤ y1/4, (a, q) = 1,

∣∣∣∣∣β −
a

q

∣∣∣∣∣ ≤
1

q2
.

Then

Sβ(y) ¿ Y√
R

(log y)16.

Proof. This lemma is essentially due to I.M. Vinogradov. An explicit form and proof can
be found in the book of Montgomery [5] (Corollary 16.3, page 142).

Lemma 2. Assume that α satisfies the conditions of Theorem 1. Then

lim
x→∞

1

x

∑

n≤x

e(ασ(n)) = 0.

Proof. Let ε > 0 be fixed. Writing each integer n ≤ x as n = pm, where P (n) = p is the
largest prime factor of n, we have that if N1 = N1(x) := {n ≤ x : P (n) ≤ xε}, then

lim
ε→0

lim
x→∞

1

x
#N1 = 0.

On the other hand the contribution of those integers n for which P (n)2|n is negligeable. So
let

N2 = N2(x) := {n ≤ x : P (n) > xε, P (n)2 6 |n},
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so that ∑

n∈N2

e(ασ(n)) =
∑

m≤x1−ε

∑

P (m)<p<x/m

e(α(p + 1)σ(m)) =
∑

m≤x1−ε

Σm,

say. Further write

Σm = e(ασ(m))


 ∑

p<x/m

e(ασ(m)p)− ∑

p<P (m)

e(ασ(m)p)


 = e(ασ(m))

(
Σ(1)

m − Σ(2)
m

)
,

say.
Let τ = x/(log x)30. In order to estimate Σ(1)

m , we shall approximate ασ(m) by a rational
number am/qm satisfying

∣∣∣∣∣ασ(m)− am

qm

∣∣∣∣∣ ≤
1

qmτ
, 1 ≤ qm < τ.

If qm > (log x)40, we may apply Lemma 1 and get that

Σ(1)
m ¿ x/m

log2(x/m)
,

while if qm ≤ (log x)40, we have
∣∣∣∣∣α−

am

qmσ(m)

∣∣∣∣∣ ≤
1

qmσ(m)τ
,

so that setting Q := qmσ(m), we have that Q1+ε/2 < τ , which does not hold if x is large.
In any event, it follows that ∑

m≤x1−ε

Σ(1)
m = o(x).

On the other hand, in order to estimate Σ(2)
m , observe that

∑

m≤x1−ε

mP (m)≤x

P (m)

log P (m)
=

∑

p≤x

p

log p

∑

pr≤x1−ε

P (r)≤p

p2r≤x

1 =
∑

p≤x

p

log p

∑

r≤min( x1−ε
p , x

p2 )

P (r)≤p

1

=
∑

p≤xε

p

log p

∑

r≤x1−ε/p
P (r)≤p

1 +
∑

xε<p≤x

p

log p

∑
r≤x/pε

P (r)≤p

1

≤ ∑

p≤xε

p

log p
· x1−ε

p
+

∑

xε<p≤x

p

log p
· x

p2

= x1−ε
∑

p≤xε

1

log p
+ x

∑

xε<p≤x

1

p log p

¿ 1

ε2

x

log2 x
+

1

ε

x

log x
= o(x),
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which implies that ∑

m≤x1−ε

Σ(2)
m = o(x),

thus completing the proof of Lemma 2.

§3. The proof of the theorems

We first prove Theorem 1.
Let F be an arbitrary additive function. We shall prove that, given any arbitrary positive

integer k,

lim
x→∞

1

x

∑

n≤x

e(kF (n)) · e(kασ(n)) = 0.(2)

First observe that if ‖αq‖ >
c(κ, α)

qκ
holds for a certain irrational number α, then the same is

true for hα (where h is an arbitrary fixed positive integer) with some other suitable constant
c(κ, hα). Hence it is sufficient to prove (2) for k = 1. Now let f(n) := e(F (n)) and set

U(x) :=
∑

n≤x

f(n)e(ασ(n)).

We will prove that

lim sup
x→∞

∣∣∣∣∣
U(x)

x

∣∣∣∣∣ = 0.(3)

Let ℘ = {p1, p2, . . . , pR} be a particular set of primes and set

A℘ :=
R∑

j=1

1

pj

, ω℘(n) :=
∑
p|n
p∈℘

1.

Assume that p1 as well as A℘ are large numbers. Then, from the Turan-Kubilius inequality,
we have ∑

n≤x

(ω℘(n)− A℘)2 ≤ cxA℘,(4)

say. Now let
U1(x) =

∑

n≤x

f(n)e(ασ(n))ω℘(n) =
∑

pm≤x
p∈℘

f(pm)e(ασ(pm))

and
U2(x) =

∑
pm≤x
p∈℘

f(p)f(m)e(ασ(p)σ(m)).
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Using (4), we have that

|U1(x)− A℘U(x)| ≤ ∑

n≤x

|ω℘(n)− A℘|(5)

≤

∑

n≤x

1




1/2 
∑

n≤x

|ω℘(n)− A℘|2



1/2

≤ √
c · x ·

√
A℘.

Moreover

|U1(x)− U2(x)| ≤ 2
∑

p2ν≤x
p∈℘

1 ≤ 2x
R∑

i=1

1

p2
i

≤ 2x
A℘

p1

.(6)

We now estimate U2(x) as follows. First write

U2(x) =
∑

m≤x/p1

f(m)Σm, with Σm =
∑

pj≤x/m

f(pj)e(ασ(pj)σ(m)).

Thus
|U2(x)|2 ≤ ∑

m≤x/p1

|f(m)|2 ∑

m≤x/p1

|Σm|2 = S · T,

say. It is clear that

S ¿ x

p1

.

On the other hand, observe that

T =
∑
m

∑

pi,pj≤x/m

f(pi)f(pj)e(α(σ(pi)− σ(pj))σ(m)) = T1 + T2,

where in T1 we sum for m and pi = pj, while

T2 =
∑

pi 6=pj

f(pi)f(pj)
∑

m≤min( x
pi

, x
pj

)

e((α(σ(pi)− σ(pj))σ(m)).

Since condition (1) holds also for α(σ(pi)− σ(pj)) = α(pi − pj), we can apply Lemma 2 and
thus obtain that

T2 = o(x).

Furthermore T1 ≤ xA℘. We may therefore conclude that T ≤ xA℘ + o(x), which implies
that

lim sup
x→∞

|U2(x)|
x

≤ x√
p1

√
A℘.(7)

Thus, collecting (5), (6) and (7), we obtain that for x sufficiently large,

|A℘U(x)| ≤ √
c · x

√
A℘ + 2x

A℘

p1

+ 2
x√
p1

√
A℘,
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which implies that

lim sup
x→∞

|U(x)|
x

≤
√

c√
A℘

+
2

p1

+
2

√
p1

√
A℘

.(8)

Since p1 and A℘ can be chosen arbitrarily large, then (3) holds and the proof of Theorem 1
is complete.

In order to prove Theorem 2, one can follow the same reasoning as that of Theorem 1,
the only difference being that instead of using Lemma 1, one should use Theorem 10 of Hua
[3] .
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