On the multiplicative group generated by shifted binary quadratic forms

J.M. De Koninck and I. Kátai

Édition du 14 octobre 2002

§1. Introduction

Let E be a set of positive integers. We say that E is a set of uniqueness modulo 1 if for each completely additive function $f: \mathbf{N} \rightarrow \mathbf{R} / \mathbf{Z}$ for which $f(e) \equiv 0(\bmod 1)$ for every $e \in E$, we necessarily have that $f(n) \equiv 0 \quad(\bmod 1)$ for each positive integer n. Here and in what follows, we let $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$ and \mathbf{R} stand for the set of positive integers, all integers, rational numbers and real numbers, respectively; also p always stands for a prime number. It is clear that the domain of a completely additive function f can be extended to the multiplicative group of positive rationals, simply by setting

$$
f(m / n)=f(m)-f(n) \quad \text { for each } m, n \in \mathbf{N} .
$$

Let \mathbf{Q}^{*} be the group of positive rationals, and for each positive integer h, let

$$
Q_{h}^{*}:=\left\{\frac{m}{n}: m, n \in \mathbf{N},(m n, h)=1\right\} .
$$

Let E^{*} be the multiplicative group generated by E. It was proved independently by several authors that E is a set of uniqueness mod 1 if and only if $E^{*}=\mathbf{Q}^{*}$; see for instance Indlekofer [5], Hoffman [3], Elliott [4] and Meyer [9]. It is not known whether the set of shifted primes is a set of uniqueness mod 1.

In Kátai [7], it was proved implicitly that the set of "primes + one" enlarged by a suitable finite set of primes is a set of uniqueness mod 1. Elliott [2] proved that the set of primes up to 10^{387} together with the set of shifted primes forms a set of uniqueness mod 1 .

Let D be equal to 4 or 8 or an odd prime. Let $\chi_{D}=\left(\frac{-D}{n}\right)$ be the Kronecker character and $\mathcal{B}(D)$ be the multiplicative semigroup generated by the union of the following four sets:

$$
\{p: p \mid D\}, \quad\left\{r^{2}: r=1,2,3, \ldots\right\}, \quad\left\{p: \chi_{-D}(p)=1\right\}, \quad\{0\}
$$

From here on, we fix D and write χ instead of χ_{D}. Now let

$$
\begin{equation*}
w(n):=\sum_{d \mid n} \chi(d)=\prod_{p^{\alpha} \| n}\left(1+\chi(p)+\ldots+\chi\left(p^{\alpha}\right)\right) . \tag{2.1}
\end{equation*}
$$

It is clear that an integer n coprime to D belongs to $\mathcal{B}(D)$ if and only if $w(n)>0$. Furthermore, if $(n, D)=1$, then it is well known that the number of representations of n by classes of binary quadratic forms with discriminant $-D$ is $\alpha w(n)$, where

$$
\alpha= \begin{cases}2 & \text { if } D>4, \\ 4 & \text { if } D=4, \\ 6 & \text { if } D=3\end{cases}
$$

(see Landau [8]). Assume that A is a positive integer and set

$$
E(D, A):=\{n+A: n \in \mathcal{B}(D)\} .
$$

Let furthermore $\mathcal{H}(D, A)$ be the multiplicative group generated by $E(D, A)$.
In this paper, we give necessary and sufficient conditions under which $\mathcal{H}(D, A)=\mathbf{Q}^{*}$, at least in the case where D is a prime number.

Remarks.

(a) Fehér, Indlekofer and Timofeev [6] investigated the case $D=4$ and proved that $\mathcal{H}(4, A)=\mathbf{Q}^{*}$, if A is the sum of two sqaures.
(b) Indlekofer claimed that he and Timofeev can prove that for every $k \in \mathbf{Q}^{*}$, there exist $n_{1}, n_{2} \in \mathcal{B}(4)$ such that $n_{1}+A=k\left(n_{2}+A\right)$ provided $A>0$.
(c) If $h(-D)=1$, then $D=4,8$ or an odd prime, and $\mathcal{B}(D)$ can be interpreted as the set of those integers which can be written as the values of a binary quadratic form of discriminant $-D$.

§2. Main results

Theorem 1. Let $D>3$ be an arbitrary prime and let A be any given positive integer. Then

$$
\mathcal{H}(D, A)= \begin{cases}\mathbf{Q}_{D}^{*} & \text { if } \chi_{D}(A)=-1 \\ \mathbf{Q}^{*} & \text { otherwise }\end{cases}
$$

Theorem 2. Let $D=4$ and let A be an arbitrary positive integer. Then $\mathcal{H}(4, A)=\mathbf{Q}^{*}$.
Theorem 3. Let $D=8$ and let A be an arbitrary positive integer. Then $\mathcal{H}(8, A)=\mathbf{Q}^{*}$.

§3. Preliminary lemmas

Lemma 0. Let χ be the Kronecker character $\bmod -D$, where $D>0$. Let $U>0$ and $V \neq 0$ be two integers for which there is an arithmetic progression $\ell(\bmod D)$ such that $\chi(\ell)=1$ and such that $t:=U \ell+V$ satisfies $\chi(t)=1$. Moreover, let

$$
a(x):=\sum_{\substack{x<p \leq 2 x \\ p \equiv \ell(\bmod D)}} w(U p+V),
$$

where w is defined by (??). Then $a(x)$ is positive if x is sufficiently large.
This result can easily be obtained by using the Bombieri-Vinogradov mean value theorem in the form

$$
\sum_{k \leq \sqrt{x} /(\log x)^{B+25}} \max _{\ell} \max _{n \leq x}\left|\pi(u, k, \ell)-\frac{\operatorname{li}(x)}{\phi(k)}\right| \ll \frac{x}{\log ^{B} x},
$$

where $\operatorname{li}(x)$ stands for the logarithmic integral, and the "enveloping sieve" given by Hooley (see [4], Chapter 5), which Hooley used to obtain an asymptotic estimate for the number of solutions of the equation $n=p+x^{2}+y^{2}$.

In the following lemmas, we assume that D is an odd prime and $(A, D)=1$.
Lemma 1. Let $k \equiv 1 \quad(\bmod D)$ and $(k, A)=1$. Then $k \in \mathcal{H}(D, A)$.
Lemma 2. Let $k \equiv \ell(\bmod D)$ and $(k \ell, A D)=1$. Then $k / \ell \in \mathcal{H}(D, A)$.
Lemma 3. Let \mathbf{Z}_{D}^{*} be the set of reduced residue classes mod D generated by

$$
\begin{equation*}
\{\nu+A: \nu=0 \text { or } \nu=\text { quadratic residue } \bmod D\} \backslash\{0\}, \tag{3.1}
\end{equation*}
$$

and let \mathcal{T} be a subgroup of \mathbf{Z}_{D}^{*}. Then $\mathcal{T}=\mathbf{Z}_{D}^{*}$.
Lemma 4. Let $\chi(-A)=-1$. Then $\mathcal{H}(D, A) \subseteq \mathbf{Q}_{D}$.
Lemma 5. Let S_{A} be the multiplicative group generated by $E_{1} \cup E_{2}$, where

$$
\begin{aligned}
& E_{1}=\{p+A: \chi(p)=1, p \not \equiv-A \quad(\bmod D)\} \\
& E_{2}=\left\{D^{r}+A: r=1,2,3, \ldots\right\}
\end{aligned}
$$

Then, for every $\nu \in \mathbf{Z}_{D}^{*}, S_{A}$ contains infinitely many integers congruent to $\nu(\bmod D)$, all of which are coprime to A. Moreover, $S_{A} \subseteq \mathcal{H}(D, A)$.

Proof of Lemma 1. In order to prove that $k \in \mathcal{H}(D, A)$, it is sufficient to find $n_{1}, n_{2} \in \mathcal{B}(D)$ such that $n_{1}+A=k\left(n_{2}+A\right)$. Let p run over the set of primes $p \equiv 1(\bmod D)$ (so that $p \in \mathcal{B}(D))$ and consider the sum

$$
a(x):=\sum_{x<p \leq 2 x} w(k p+(k-1) A) .
$$

It is enough to prove that $a(x)$ is positive for some x.
For this, we let $\ell(p):=k p+(k-1) A$ and observe that $\ell(p) \equiv 1(\bmod D)$, so that $\chi\left(\frac{\ell(p)}{d}\right)=\chi(d)$. Consequently, using definition of w given in (??), we have

$$
w(\ell(p))=2 \sum_{\substack{d \mid \ell(p) \\ d<\sqrt{\ell(p)}}} \chi(d)+E_{p},
$$

where $E_{p}=0$ except when $\ell(p)$ is a square, in which case we get that $E_{p}=\chi(\sqrt{\ell(p)})$, that is $\left|E_{p}\right| \leq 1$.

Thus, given a large number B,

$$
\begin{aligned}
a(x)= & \sum_{d \leq \sqrt{x} / \log ^{B} x} 2 \chi(d) \cdot \#\{p \in[x, 2 x]: \ell(p) \equiv 0 \quad(\bmod d)\} \\
& +\sum_{\sqrt{x} / \log ^{B}} \sum_{x<d \leq \sqrt{2 k x+(k-1) A}} 2 \chi(d) \cdot \#\left\{p \in[x, 2 x]: \ell(p) \equiv 0 \quad(\bmod d), d^{2}<\ell(p)\right\}+O(\sqrt{x}) \\
& =\Sigma_{1}+\Sigma_{2}+O(\sqrt{x}) .
\end{aligned}
$$

Using the Bombieri-Vinogradov mean value theorem (stated above), one can obtain that

$$
\Sigma_{1}=2(\operatorname{li}(2 x)-\operatorname{li}(x)) \sum_{d \leq \sqrt{x} / \log ^{B} x} \frac{\chi(d)}{\phi(d D)}+O\left(\frac{x}{\log ^{B_{1}} x}\right)
$$

where B_{1} can be taken arbitrarily large provided B is large enough.
The crucial step is the evaluation of Σ_{2}. This can be done by using Lemma 0 . We shall not go into details, but one can easily deduce from this method that

$$
a(x)=C(D) \frac{2 x}{\log x}+o\left(\frac{x}{\log x}\right),
$$

where $C(D)=\sum_{d=1}^{\infty} \frac{\chi(d)}{\phi(d D)}$, which proves Lemma 1 .
Proof of Lemma 2. Since both $k \ell^{\phi(D)-2}$ and $\ell^{\phi(D)-1}$ are $\equiv 1(\bmod D)$ and are coprime to A, and since they both belong to $\mathcal{H}(D, A)$, it follows that their ratio $k / \ell \in \mathcal{H}(D, A)$.

Proof of Lemma 3. Assume that \mathcal{T} is a proper subgroup of \mathbf{Z}_{D}^{*}. Then $\# \mathcal{T}<D-1$, so that $\# \mathcal{T} \leq(D-1) / 2$. On the other hand, since the set of the generating elements contains $(D-1) / 2$ members, then $\# \mathcal{T}$ must be eqal to $(D-1) / 2$, so that \mathcal{T} must be the subgroup of the quadratic residues $\bmod D$. This means that $\nu+A$ is a quadratic residue if ν is equal to zero or to a quadratic residue, except when $\nu=-A$. (Observe that, in the case $\chi(-A)=-1$, \mathcal{T} always has at least $(D+1) / 2$ elements, so that $\# \mathcal{T}=D-1$, in which case $\mathcal{T}=\mathbf{Z}_{3}^{*}$.) Thus

$$
\begin{equation*}
\sum_{m=0}^{D-1}(\chi(m)+1)(\chi(m+A)+1) \geq 2+4 \cdot \frac{D-3}{2} \tag{3.2}
\end{equation*}
$$

But, since

$$
\sum_{m=0}^{D-1} \chi(m)=\sum_{m=0}^{D-1} \chi(m+A)=0 \quad \text { and } \quad \sum_{m=0}^{D-1} \chi(m) \chi(m+A)=-1,
$$

it follows that the left hand side of (3.2) is $D-1$ and therefore that $D-1 \geq 2+4 \cdot \frac{D-3}{2}$, which is impossible if $D>3$.

So let $D=3$. If $A \equiv 1(\bmod 3)$, then the set $\{0+1(\bmod 3), 1+1(\bmod 3)\}$ generates \mathbf{Z}_{3}^{*}. If $A \equiv-1 \quad(\bmod 3)$, then $(-1) \quad(\bmod 3) \in \mathcal{T}$ and $(-1)^{2} \quad(\bmod 3) \in \mathcal{T}$, so that $\mathcal{T}=\mathbf{Z}_{3}^{*}$.

Proof of Lemma 4. It is enough to show that $(n+A, D)=1$ for every $n \in \mathcal{B}(D)$. Indeed, if $n+A \equiv 0(\bmod D)$, then $\chi(n) \equiv \chi(-A)=1$ and consequently $(n, D)=1$. But $n \in \mathcal{B}(D)$ and $(n, D)=1$ imply that $\chi(n)=1$.

Proof of Lemma 5. These results are direct consequences of Lemma 3.

§4. Proof of Theorem 1

Assume first that $(A, D)=1$. Then it follows from Lemmas $1,2,3,4,5$ that

$$
\mathbf{Q}_{A D}^{*} \subseteq \mathcal{H}(A, D)
$$

Let $A=\pi_{1}^{\alpha_{1}} \pi_{2}^{\alpha_{2}} \ldots \pi_{r}^{\alpha_{r}}$. We shall prove that $\pi_{j} \in \mathcal{H}(A, D)$ for $j=1,2, \ldots, r$, which will imply that

$$
\begin{equation*}
\mathbf{Q}_{D}^{*} \subseteq \mathcal{H}(A, D) \tag{4.1}
\end{equation*}
$$

So let π_{1} be one of the prime divisors of A and write $A=\pi_{1}^{\alpha_{1}} A_{2}$.
Assume first that $\alpha_{1}=1$. Then for $m \in \mathcal{B}(D)$, we have

$$
\mathcal{H}(A, D) \ni \pi_{1}^{2} D m+A=\pi_{1}\left(\pi_{1} D m+A_{2}\right)
$$

Since $\left(\pi_{1} D m+A_{2}, A D\right)=1$, it follows that $\pi_{1} D m+A_{2} \in \mathcal{H}(A, D)$, and so $\pi_{1} \in \mathcal{H}(A, D)$.
For $\alpha_{1}>1$, we consider separately the cases α_{1} odd and α_{1} even.
First assume that $\alpha_{1}=2 \beta+1$, with $\beta \geq 1$. Then we have

$$
\pi_{1}^{2 \beta+2} D m+\pi_{1}^{2 \beta+1} A_{2}=\pi_{1}^{2 \beta+1}\left(\pi_{1} D m+A_{2}\right) \in \mathcal{H}(A, D) .
$$

Since $\left(\pi_{1} D m+A_{2}, A D\right)=1$, we obtain that $\pi_{1} D m+A_{2} \in \mathcal{H}(A, D)$ and consequently that $\pi_{1}^{2 \beta+1} \in \mathcal{H}(A, D)$. Furthermore, if $m \in \mathcal{B}(D)$, then $\pi_{1}^{2} D m+A \in \mathcal{H}(A, D)$ and $\pi_{1}^{2} D m+A=$ $\pi_{1}^{2}\left(D m+\pi_{1}^{2 \beta-1} A_{2}\right)$, whence $\pi_{1}^{2} \in \mathcal{H}(A, D)$ follows by observing that $\left(D m+\pi_{1}^{2 \beta-1} A_{2}, A D\right)=1$. Thus

$$
\pi_{1}=\frac{\pi_{1}^{2 \beta+1}}{\left(\pi_{1}^{2}\right)^{\beta}} \in \mathcal{H}(A, D)
$$

Let us now consider the case $\alpha=2 \beta$ with $\beta \geq 1$. Starting from $m \in \mathcal{B}(D)$,

$$
\mathcal{H}(A, D) \ni \pi_{1}^{2 \beta+2} D m+A=\pi_{1}^{2 \beta}\left(D \pi_{1}^{2} m+A_{2}\right)
$$

$\left(D \pi_{1}^{2} m+A_{2}, A D\right)=1$, it follows that $D \pi_{1}^{2} m+A_{2} \in \mathcal{B}(D)$, and therefore that $\pi_{1}^{2 \beta} \in \mathcal{B}(D)$.
We shall now prove that $\pi_{1}^{2} \in \mathcal{H}(A, D)$. Since we already proved this in the case $\beta=1$, we may assume that $\beta \geq 2$ and consider the integer $\pi_{1}^{2} D+A=\pi_{1}^{2}\left(D+\pi_{1}^{2(\beta-1)} A_{2}\right)$. Since $\pi_{1}^{2} D+A \in \mathcal{H}(A, D), D+\pi_{1}^{2(\beta-1)} A_{2} \in \mathcal{H}(A, D)$, we obtain that $\pi_{1}^{2} \in \mathcal{H}(A, D)$, as claimed.

Finally, we observe that tehre is some $m \in \mathcal{B}(D)$ such that $\pi_{1} \| m D+A_{2}$. This is true if $D m+A_{2} \equiv \pi_{1} \quad\left(\bmod \pi_{1}^{2}\right)$, which defines an arithmetic progression $m \equiv s\left(\bmod \pi_{1}^{2}\right)$, where $S=\left(\pi_{1}-A_{2}\right) D^{-1}\left(\bmod \pi_{1}^{2}\right),\left(s, \pi_{1}\right)=1$. If m is a prime p satisfying $p \equiv s \quad\left(\bmod \pi_{1}^{2}\right)$, $p \equiv 1(\bmod D)$, then it is a suitable choice for $m \in \mathcal{B}(D), \pi_{1} \| D m+A_{2}$.

Hence $D m+A_{2}=\pi_{1} \eta$ with $(\eta, D A)=1$ and $\eta \in \mathcal{H}(A, D)$; furthermore, $\pi_{1}^{2 \beta} D m+A=$ $\pi_{1}^{2 \beta}\left(D m+A_{2}\right)$. Thus $\pi_{1} \in \mathcal{H}(A, D)$ and since π_{1} was an arbitrary prime divisor of A, our claim (4.1) is established.

Let us now investigate whether D belongs to $\mathcal{H}(A, D)$ or not. Since we already proved that it cannot hold if $\chi(-A)=-1$, we may assume that $\chi(-A)=1$. Then $p \equiv-A$
$(\bmod D)$ implies that $p+A \in \mathcal{H}(A, D)$. There are infinitely many primes p such that $D \| p+A$, that is $\frac{p+A}{D}=\eta_{p}$ with $\left(\eta_{p}, D\right)=1$ and $\eta_{p} \in \mathcal{H}(A, D)$, and consequently $D \in \mathcal{H}(A, D)$. Thus the theorem is proved in the case $(A, D)=1$. Hence we shall now assume that $A=D^{r} B$ with $(B, D)=1$ and $r \geq 1$. We shall try to find integers $n_{1}, n_{2} \in \mathcal{B}(D)$ such that $n_{1}+A=D\left(n_{2}+A\right)$, that is $n_{1}-D n_{2}=(D-1) A$. We shall find these by looking for m_{1}, m_{2} 's such that $n_{1}=D^{r} m_{1}, n_{2}=D^{r} m_{2}$, which leads to the equation

$$
\begin{equation*}
m_{1}-m_{2}=(D-1) B \tag{4.2}
\end{equation*}
$$

Let ν run over zero and the quadratic residues $\bmod D$, that is over $\frac{D+1}{2}$ integers, and let $(H, D)=1$. Then the set $\{\nu+H\}$ contains either a quadratic residue or zero. This is true in particular if we choose $H=(D-1) B$. So let ν, μ be such a couple of residues for which

$$
\nu-\mu=(D-1) B, \quad \chi(\nu) \neq-1, \quad \chi(\mu) \neq-1 .
$$

If $\mu \not \equiv 0(\bmod D)$, consider the sum

$$
\begin{equation*}
\sum_{\substack{x<p \leq 2 x \\ p \equiv \mu<p(\bmod D)}} w(p+(D-1) B) . \tag{4.3}
\end{equation*}
$$

If $\mu \equiv 0 \quad(\bmod D)$, then consider the sum

$$
\begin{equation*}
\sum_{\substack{x<p \leq 2 x \\ p \equiv 1=1 \bmod D)}} w(D p+(D-1) B) \tag{4.4}
\end{equation*}
$$

By using the Bombieri-Vinogradov mean value theorem and the evaluating sieve of Hooley mentioned above, one can deduce that both expressions (4.3) and (4.4) are positive provided x is large enough, in which case there exists at least one pair of integers $n_{1}, n_{2} \in \mathcal{B}(D)$ for which

$$
D=\frac{n_{1}+A}{n_{2}+A} .
$$

The proof of Theorem 1 is thus complete.

§5. Proof of Theorem 2

Assume first that A is odd. We shall prove that

$$
\begin{equation*}
k=\frac{n_{1}+A}{n_{2}+A}, \quad n_{1}, n_{2} \in \mathcal{B}(4) \tag{5.1}
\end{equation*}
$$

can be solved if $k \equiv 1 \quad(\bmod 4),(k, A)=1$. Let n_{2} run over the primes $p \equiv 1 \quad(\bmod 4)$ and $n_{1}=k p+(k-1) A$. By using the method of $\S 4$, one can prove that

$$
\sum_{\substack{p<x \\ p \equiv 1 \\(\bmod 4)}} w(k p+(k-1) A)>0
$$

provided x is large enough, in which case (5.1) has a solution.

Hence we can deduce that for $k \equiv \ell \equiv 3(\bmod 4),(k \ell, A)=1$, we have

$$
\begin{equation*}
k / \ell \in \mathcal{H}(4, A), \tag{5.2}
\end{equation*}
$$

simply by repeating the argument used in the proof of Lemma 2.
Since $A+4, A+2 \in \mathcal{H}(4, A)$, there exists at least one $\nu \in \mathcal{H}(4, A)$ for which $\nu \equiv 3$ $(\bmod 4)$ and $(\nu, A)=1$. Hence we obtain as earlier that

$$
\mathbf{Q}_{4 A}^{*} \subseteq \mathcal{H}(4, A)
$$

Let $A=\pi_{1}^{\alpha_{1}} A_{2},\left(A_{2}, \pi_{1}\right)=1, \pi_{1}$ prime. We shall prove that $\pi_{1} \in \mathcal{H}(4, A)$. Since π_{1} is an arbitrary prime divisor of A, it will be true for each prime divisor of A, which implies that

$$
\begin{equation*}
\mathrm{Q}_{4} \subseteq \mathcal{H}(4, A) \tag{5.3}
\end{equation*}
$$

Assume first that $\alpha_{1}=1$. Then $4 \pi_{1}^{2}+A_{2} \pi_{1}=\pi_{1}\left(4 \pi_{1}+A_{2}\right)$ with $\left(4 \pi_{1}+A_{2}, 4 A\right)=1$, whence $\pi_{1} \in \mathcal{H}(4, A)$.

Now consider the case $\alpha_{1}=2 \beta+1, \beta \geq 1$. By setting $4 \pi_{1}^{2}+A_{2} \pi_{1}^{2 \beta+1}=\pi_{1}^{2}\left(4+A_{2} \pi_{1}^{2 \beta-1}\right)$, we obtain that $\pi_{1}^{2} \in \mathcal{H}(4, A)$. Then by considering $4 \pi_{1}^{2 \beta+2}+\pi_{1}^{2 \beta+1} A_{2}=\pi_{1}^{2 \beta+1}\left(4 \pi_{1}+A_{2}\right)$ and observing that $4 \pi_{1}+A_{2} \in \mathcal{H}(4, A)$, it follows that $\pi_{1}^{2 \beta+1} \in \mathcal{H}(4, A)$, and hence that $\pi_{1} \in \mathcal{H}(4, A)$.

Finally, let $\alpha=2 \beta, \beta \geq 1$. Similarly, by choosing the numbers $4 \pi_{1}^{2 \beta+2}+A$ and $4 \pi_{1}^{2}+A$, we first deduce that $\pi_{1}^{2} \in \mathcal{H}(4, A)$.

Arguing as in the proof of Theorem 1, we first prove that there is at least one (actually infinitely many) $m \in \mathcal{B}(4)$ such that $D m+A_{2} \equiv \pi_{1} \quad\left(\bmod \pi_{1}^{2}\right)$. If such an integer m exists, then the integer $\eta_{m}=\frac{D m+A_{2}}{\pi_{1}}$ is coprime to $A D$. Consequently $\eta_{m} \in \mathcal{H}(4, A)$ and furthermore $\pi_{1}^{2 \beta+1} \eta_{m}=D m \pi_{1}^{2 \beta}+A \in \mathcal{H}(4, A)$, whence $\pi_{1}^{2 \beta+1} \in \mathcal{H}(4, A)$, and so $\pi_{1} \in \mathcal{H}(4, A)$.

It remains to prove the existence of such an integer m. To do so, it is enough to observe that there is at least one (actually infinitely many) prime $p \equiv 1(\bmod 4)$ such that $4 p+A_{2} \equiv$ $\pi_{1} \quad\left(\bmod \pi_{1}^{2}\right)$. Since this clearly holds, we have thus established (5.3).

We shall now prove that $2 \in \mathcal{H}(4, A)$.
If $A \equiv 1 \quad(\bmod 4)$, then $2 \| 1+A$ and $1+A \in \mathcal{H}(4, A)$ imply that $2 \in \mathcal{H}(4, A)$.
If $A \equiv 3(\bmod 4)$, then $A=-1+2^{\gamma} B$, with B odd and $\gamma \geq 2$. For every $\varepsilon>\gamma$, the number of primes $p<x$ for which $2^{\varepsilon} \| p+A$ is $(1+o(1)) \operatorname{li}(x) / 2^{\varepsilon-1}$, which means that there exists a prime p_{ε} and an odd integer η_{ε} such that $p_{\varepsilon}+A=2^{\varepsilon} \eta_{\varepsilon}$ with $\eta_{\varepsilon} \in \mathcal{H}(4, A)$. It is obvious that $p_{\varepsilon} \equiv 1(\bmod 4)$ and thus that $p_{\varepsilon}+A \in \mathcal{H}(4, A)$. Hence

$$
2=\frac{2^{\varepsilon+1}}{2^{\varepsilon}}=\frac{p_{\varepsilon+1}+1}{\eta_{\varepsilon+1}} \cdot \frac{\eta_{\varepsilon}}{p_{\varepsilon}+1} \in \mathcal{H}(4, A) .
$$

We have thus proved that $\mathcal{H}(4, A)=\mathbf{Q}^{*}$ if $(A, 2)=1$.
Assume now that $A=2^{\gamma} B$ with B odd and $\gamma \geq 1$. We already proved that $\mathcal{H}(4, B)=\mathbf{Q}^{*}$, that is that each rational number m / n has a representation

$$
\frac{m}{n}=\prod_{j=1}^{r}\left(n_{j}+B\right)^{\varepsilon_{j}}
$$

where $\varepsilon_{j} \in\{-1,1\}$ and $n_{j} \in \mathcal{B}(4)$, and so

$$
\frac{m}{n}=2^{\gamma\left(\varepsilon_{1}+\ldots+\varepsilon_{r}\right)} \prod_{j=1}^{r}\left(2 n_{j}+A\right)^{\varepsilon_{j}} .
$$

To complete the proof of Theorem 2, it is enough to show that $2 \in \mathcal{H}(4, A)$. But this is true if

$$
n_{1}+A=2\left(n_{2}+A\right), \quad n_{1}, n_{2} \in \mathcal{B}(4)
$$

can be solved. By writing $n_{1}=2^{\gamma} m_{1}, n_{2}=2^{\gamma} m_{2}$, it follows that the existence of $m_{1}, m_{2} \in$ $\mathcal{B}(4)$, with $m_{1}-2 m_{2}=B$, would be enough.

Now if $B \equiv 1 \quad(\bmod 4)$, then let m_{2} run over the set $\{2 p: p \equiv 1 \quad(\bmod 4)\}$ and consider the sum

$$
\sum_{\substack{p \leq x \\ p \equiv 1 \\(\bmod 4)}} w(4 p+B),
$$

which is surely positive if x is large enough.
On the other hand, if $B \equiv-1(\bmod 4)$, then let m_{1} run over the set $\{2 p: p \equiv 1$ $(\bmod 4)\}$ and consider the slightly diffrent sum

$$
\sum_{\substack{p \leq x \\ p \equiv 1 \\(\bmod 4)}} w(2 p+B),
$$

which again is surely positive if x is large enough.
This completes the proof of Theorem 2.

§6. Proof of Theorem 3

Since the proof is very similar to that of Theorems 1 and 2 , we shall only give a sketch of it.

Observe that now $D=8$ and

$$
\chi(1)=\chi(3)=1, \quad \chi(5)=\chi(7)=-1 .
$$

Assume first that A is odd. By arguing as earlier, we can deduce that

$$
\mathbf{Q}_{2 A}^{*} \subseteq \mathcal{H}(8, A)
$$

Repeating the argument used before, one can prove that $\pi \in \mathcal{H}(8, A)$ if π is a prime divisor of A. Consequently,

$$
\mathbf{Q}_{2}^{*} \subseteq \mathcal{H}(8, A) .
$$

Since $A+1, A+3 \in \mathcal{H}(8, A)$ and since either $2 \| A+1$ or $2 \| A+3$, we obtain that $2 \in \mathcal{H}(8, A)$, and so

$$
\mathbf{Q}_{4}^{*} \subseteq \mathcal{H}(8, A) .
$$

The theorem is thus proved for A odd. So let $A=2^{\gamma} B$ with B odd and $\gamma \geq 1$. As earlier, we can deduce that each rational number m / n can be written as

$$
\frac{m}{n}=2^{\Gamma(m, n)} \alpha(m, n),
$$

where $\Gamma(m, n)$ is a positive integer depending on m and n, and $\alpha(m, n) \in \mathcal{H}(8, A)$.
Thus it remains to prove that $2 \in \mathcal{H}(8, A)$. For this we try to solve the equation $n_{1}+A=$ $2\left(n_{2}+A\right)$, that is $n_{1}-2 n_{2}=A$. So let $n_{1}=2^{\gamma} m_{1}, n_{2}=2^{\gamma} m_{2}$, that is $m_{1}-2 m_{2}=B$. Let us now choose m_{1} as follows

$$
m_{1}=\left\{\begin{array}{llll}
2 p+B & \text { with } p \equiv 1 & (\bmod 8) \text { if } B \equiv 1 & (\bmod 8), \\
2 p+B & \text { with } p \equiv 3 & (\bmod 8) \text { if } B \equiv 5 & (\bmod 8), \\
8 p+B & \text { with } p \equiv 1 & (\bmod 8) \text { if } B \equiv 3 & (\bmod 8), \\
2 p+B & \text { with } p \equiv 1 & (\bmod 8) \text { if } B \equiv 7 & (\bmod 8) .
\end{array}\right.
$$

Since each of the above choices has at least one solution $m_{1} \in \mathcal{B}(8)$, this completes the proof of Theorem 3.

References

[1] P.D.T.A. Elliott, Arithmetic Functions and Integer Products, Springer-Verlag, 1985.
[2] P.D.T.A. Elliott, On representing integers as products of the $p+1$, Monatsh. Math. $\mathbf{9 7}$ (1984), no. 2, 85-97.
[3] P. Hoffmann, Note on a problem of Kátai, Acta Math. Hung, 45 (1985), 261-262.
[4] C. Hooley, Application of Sieve Methods to the Theory of Nunbers, Cambridge University Press, 1976.
[5] K.-H. Indlekofer, On sets characterixing additive and multiplicative functions, Ill. J. Math. 25 (1981), 251-257.
[6] J. Fehér, K.-H. Indlekofer and N.M. Timofeev, A set of uniqueness for completely additive arithmetic functions, Annales Univ. Sci. Budapest, Sect. Comp. 21 (2002), 57-67.
[7] I. Kátai, On sets characterizing number theoretical functions II. The set of "primes plus one" is a set of uniqueness, Acta Arith. 16 (1969/1970, 1-4.
[8] E. Landau, Vorlesungen über Zahlentheorie. I-III. S. Hirzel, Leipzig. English translation of Vol. I: Chelsea, New York, 1958.
[9] F. Meyer, Ensemble d'unicité pour les fonctions additives. Étude analogue dans le cas des fonctions multiplicatives, Journées de Théorie Analytique et Élémentaire des nombres, Orsay, 2 et 3 juin, 1980. Publications Mathématiques d'Orsay, 50-66.

Jean-Marie De Koninck
Département of mathématiques
Université Laval
Québec G1K 7P4
Canada

Imre Kátai
Computer Algebra Department
Eötvös Loránd University, H-1177
Budapest, Pázmány Péter Sétány I/C
Hungary

Lemma 1. Let A and D be positive integers. If $k \in \mathbf{N}$ is coprime to $D, \ell \equiv k(\bmod D)$, then $k / \ell \in \mathcal{F}(D, A)$.

Proof. First observe that it is enough to prove the result for a general k and corresponding $\ell=k+D$. Indeed, if $\frac{k}{k+D} \in \mathcal{F}(D, A)$, then for $\ell=k+h D$, we have that

$$
\frac{k}{\ell}=\frac{k}{k+D} \cdot \frac{k+D}{k+2 D} \cdot \ldots \cdot \frac{k+(h-1) D}{k+h D} \in \mathcal{F}(D, A)
$$

Hence let k, ℓ be fixed, $l=k+D,(k, \ell)=1$, and assume that X is large. Let us consider the sum

$$
\Sigma_{0}:=\sum r\left(n_{1}\right) r\left(n_{2}\right),
$$

where the summation runs over those $n_{1}, n_{2} \in \mathcal{B}_{d}$ for which $n_{1} \equiv 1 \quad(\bmod D), n_{2} \in[X, 2 X]$ and

$$
\begin{equation*}
k\left(n_{1}+A\right)=\ell\left(n_{2}+A\right) \tag{5.4}
\end{equation*}
$$

holds. We shall prove that $\Sigma_{0}>0$ which will complete the proof of Lemma 1 . In fact we shall prove more, namely that if X is sufficiently large, then $\Sigma_{0}>c X$ with some positive constant c.

Observe that, if (5.4) holds, then $n_{2} \equiv 1(\bmod D)$, and also that

$$
r\left(n_{1}\right)=\sum_{\substack{\delta_{1} \mid n_{1} \\ \delta_{1}<\sqrt{n_{1}}}} \chi\left(\delta_{1}\right), \quad r\left(n_{2}\right)=\sum_{\substack{\delta_{2} \mid n_{2} \\ \delta_{2}<\sqrt{n_{2}}}} \chi\left(\delta_{2}\right),
$$

assuming that n_{1} and n_{2} are not square numbers. Thus Σ_{0} can be written as (neglecting some error term $O(\sqrt{x}))$

$$
\begin{equation*}
\sum_{\substack{\delta_{1}<\sqrt{2 X} \\ \delta_{2}<\sqrt{\frac{k}{\ell}(2 X+a)-A}}} \chi\left(\delta_{1}\right) \chi\left(\delta_{2}\right) N_{X}\left(\delta_{1}, \delta_{2}\right), \tag{5.5}
\end{equation*}
$$

where $N_{X}\left(\delta_{1}, \delta_{2}\right)$ is the smallest of those integers u_{1}, u_{2} for which

$$
\begin{equation*}
(k+D) \delta_{2} u_{2}-k \delta_{1} u_{1}=D A \tag{5.6}
\end{equation*}
$$

and the following conditions hold:

$$
\delta_{1} u_{1} \equiv 1 \quad(\bmod D), \quad \delta_{1} u_{1} \in[X, 2 X], \quad \delta_{1}<u_{1}, \quad \delta_{2}<u_{2} .
$$

If we sum the expression (5.5) only for those δ_{1}, δ_{2} for which $\delta_{1}<\frac{\sqrt{X}}{(\log X)^{B}}$ and $\delta_{2}<\frac{\sqrt{X}}{(\log X)^{B}}$, then it can easily be shown, using sieve theorems, that the error we then introduce is $o(X)$.

Hence let δ_{1}, δ_{2} be fixed, $e:=\operatorname{GCD}\left((k+D) \delta_{2}, k \delta_{1}\right)$. If (5.6) has at least one solution, then $e \mid D A$, in which case $e \mid A$, since $\left(\delta_{1} \delta_{2} k(k+D), D\right)=1$. Therefore it follows that under the above conditions, the number of solutions of (5.6) is

$$
\frac{X e}{D \delta_{1} \delta_{2}(k+D)}+O(1)
$$

which implies that

$$
\Sigma_{0}=\frac{X}{D(k+D)} \sum_{e \mid A} e \sum_{\substack{\delta_{1}, \delta_{2}<\sqrt{X} /(\log) B \\\left((k+D) \delta_{2}, k \delta_{1}\right)=e}} \frac{\chi\left(\delta_{1}\right) \chi\left(\delta_{2}\right)}{\delta_{1} \delta_{2}} .
$$

Lemma 2. Let $(\ell, D)=1, \chi(\ell)=1$. Then $\ell+A \in \mathcal{F}(D, A)$.
Proof. In light of Lemma 1, it is enough to prove that there exits a positive integer $n \equiv \ell$ $(\bmod D)$ for which $r(n)>0$. In order to prove this, we first set

$$
A(X):=\sum_{\substack{n \in[X, 2 X] \\ n \equiv \ell(\bmod D)}} r(n) .
$$

We then have

$$
\begin{aligned}
A(X) & =\sum_{\delta<\sqrt{X /(\log X)^{B}}} \chi(\delta) \sum_{\substack{n \in X X, 2 X] \\
\delta \mid n, n n \ell \ell(\bmod D)}} 1+o(X) \\
& =\frac{X}{D} \sum_{\delta<\sqrt{X} /(\log X)^{B}} \frac{\chi(\delta)}{\delta}+o(X)=\frac{X}{D} L\left(1, \chi_{D}\right)+o(X) .
\end{aligned}
$$

Since we know that $L\left(1, \chi_{D}\right)>0$, the proof of Lemma 2 is complete.
Lemma 3. Let $D>3$ be a prime number and let m be a positive integer not divisible by D. Then $m \in \mathcal{F}(D, A)$.

Proof. Since $Q(0,0)+A=A \in \mathcal{F}(D, A)$, it follows from Lemma 2 that $\nu+A \in \mathcal{F}(D, A)$ if $\nu=0$, or $\nu \in[1, D-1], \chi_{D}(\nu)=1$. The set of these numbers is of size $\frac{D+1}{2}$, and at most one of of its members is $0 \bmod D$.

Now let \mathcal{T} be the subgroup of the set of all reduced residue classes modulo D which is generated by

$$
\{\nu+A, \nu \neq-A, \nu=0 \text { or a quadratic residue }\} .
$$

Then iether $\mathcal{T}=\mathbf{Z}_{D}^{*}$, in which case $\# \mathcal{T}=D-1$ or $\# \mathcal{T} \neq D-1$. In this last case, $\# \mathcal{T} \leq \frac{D-1}{2}$. If $\# \mathcal{T}=\frac{D-1}{2}$, then \mathcal{T} is the group of all the quadratic residues, in which case the residue classes listed above must coincide with the quadratic residues, which implies that

$$
\begin{equation*}
\sum_{m=0}^{D-1}(\chi(m)+1)(\chi(m+A)+1) \geq 2+4 \frac{D-3}{2} \tag{5.7}
\end{equation*}
$$

But $0=\sum_{m=0}^{D-1} \chi(m)=\sum_{m=0}^{D-1} \chi(m+A)$, while $\sum_{m=0}^{D-1} \chi(m) \chi(m+A)=-1$, which means that the left hand side of (5.7) is $D-A$, so that $D-A \geq 2+2(D-3)$, which cannot hold if $D>3$, thus completing the proof of Lemma 3 .

Lemma 4. Let $D=3$. If $A \equiv 1(\bmod 3)$, then

$$
\begin{equation*}
\mathcal{F}(D, A)=\mathbf{Q}_{3}^{*} . \tag{5.8}
\end{equation*}
$$

If $A \not \equiv 1 \quad(\bmod 3)$, then $\mathcal{F}(D, A)=\mathbf{Q}^{*}$.
Proof. Under the stated conditions, the class number is 1 , and the corresponding binary quadratic form can be written as

$$
Q(x, y)=x^{2}+x y+y^{2} .
$$

Assume first that $A \equiv 1(\bmod 3)$. Observe tht $Q(x, y)$ cannot take on values from the arithmetic progression $2(\bmod 3)$, that is $Q(x, y)+A$ is not a multiple of 3 for any $x, y \in \mathbf{N}_{0}$. Thus $\mathcal{F}(3, D) \subset \mathbf{Q}_{3}^{*}$. But $Q(1,0)+A=A+1 \in \mathcal{F}(3, A) ;$ thus, since $A+1 \equiv 2(\bmod 3)$, (5.8) follows from Lemma 3.

If $A \equiv 2(\bmod 3)$, then from $Q(0,0)+A \in \mathcal{F}(3, A)$, and so by Lemma 2 , we have that $\frac{m}{n} \in \mathcal{F}(3, A)$ provided $(m n, 3)=1$. Now let t be a positive integer satisfying

$$
3 \| Q\left(2^{t}, 0\right)+A=2^{2 t}+A
$$

Since $2^{2 t}+A \in \mathcal{F}(3, A)$ and $\left(\frac{2^{2 t}+A}{3}, 3\right)=1$, it follows that $\frac{2^{2 t}+A}{3} \in \mathcal{F}(3, A)$. Consequently, $3 \in \mathcal{F}(3, A)$.

It remains to consider the case when $A \equiv 0(\bmod 3)$. So let $A=3^{\nu} B,(B, 3)=1$. If $\nu \geq 2$, then $Q(1,1)+3^{\nu} B=3\left(1+3^{\nu-1} B\right) \in \mathcal{F}(3, A)$ and since $1+3^{\nu-1} B \in \mathcal{F}(3, A)$, we have that $3 \in \mathcal{F}(3, A)$ and so $\frac{A}{3^{\nu}}=B \in \mathcal{F}(3, A)$. Now if $B \equiv 2(\bmod 3)$, then we have found an integer $\equiv 2(\bmod 3)$ belonging to $\mathcal{F}(3, A)$; therefore all those numbers in the same arithmetic progression also belong to $\mathcal{F}(3, A)$, and we are done.

On the other hand, if $B \equiv 1 \quad(\bmod 3)$, then we first observe that $3^{\nu} \in \mathcal{B}_{3}$, which implies that $3^{\nu}+3^{\nu} B \in \mathcal{F}(3, A)$, whence $B+1(\equiv 2 \quad(\bmod 3)) \in \mathcal{F}(3, A)$, which clears this case as well.

Finally we consider the case $\nu=1, A=3 B$. If $B \equiv 1(\bmod 3)$, then $A, B \in \mathcal{F}(3, A)$ imply that $3 \in \mathcal{F}(3, A)$, and $3 \in \mathcal{B}_{3}, 3+3 B \in \mathcal{F}(3, A)$, and therefore $1+B(\equiv 2(\bmod 3))$ belongs to $\mathcal{F}(3, A)$. We are left to consider the case $B \equiv 2(\bmod 3)$. Since $A \in \mathcal{F}(3, A)$, it follows that B and $1 / 3$ are conjugates. So let $B=2+3^{\alpha} z$, where $\alpha \geq 1$ and $(z, 3)=1$. Since $21 \in \mathcal{B}_{3}, 21=3 A=3^{3}\left(1+3^{\alpha-2} z\right)$ if $\alpha \geq 3$, we have that $21+3 A \in \mathcal{F}(3, A)$, $1+3^{\alpha-2} z \in \mathcal{F}(3, A)$, thus implying that $3^{3} \in \mathcal{F}(3, A)$. Since $A=3 B \in \mathcal{F}(3, A)$, we have that $A^{2}=9 B^{2} \in \mathcal{F}(3, A)$, and since $B^{2} \equiv 1(\bmod 3)$, then $3^{2} \in \mathcal{F}(3, A)$, whence $3=\frac{3^{3}}{3^{2}} \in \mathcal{F}(3, A)$, and so $\frac{A}{3}=B \in \mathcal{F}(3, A)$.

For the case $\alpha=2$, we choose $12 \in \mathcal{B}_{3}$, so that $\mathcal{F}(3, A) \ni 3 B+12=3(4+2+9 z)=$ $3^{2}(2+3 z)$. Since $3^{2} \in \mathcal{F}(3, A)$, we thus have that $2+3 z \in \mathcal{F}(3, A)$.

The final case is $\alpha=1$. Since there exists a prime $p \equiv 7(\bmod 9)$ with $p \in \mathcal{F}(3, A)$ and $3 p \in \mathcal{B}_{3}$, then writing $p=7+9 \lambda$, we have $\mathcal{F}(3, A) \ni 3 p+A=27 \lambda+21+6+9 z=9(3 \lambda+3+z)$.

Assume first that $z \equiv 2 \quad(\bmod 3)$. Since $9 \in \mathcal{F}(3, A)$, it follows that $3(\lambda+1)+z \in \mathcal{F}(3, A)$. But since this number is $\equiv 2(\bmod 3)$, we are done. On the other hand, if $z \equiv 1(\bmod 3)$, then simply observe that $\mathcal{F}(3, A) \ni 3+A=9(1+z)$, and thus since $1+z \equiv 2(\bmod 3)$ and $9 \in \mathcal{F}(3, A)$, we may conclude that $1+z \in \mathcal{F}(3, A)$.

The proof of Lemma 4 is thus complete.

$\S 4$. The proof of Theorem 1

The case $D=3$ was handled by Lemma 4. Hence we may assume that $D>3$. Now observe that Lemma 3 gives that $\mathcal{F}(D, A) \supseteq \mathbf{Q}_{D}^{*}$. We shall first assume that $D \mid A$. Then we clearly have that $A \in \mathcal{F}(D, A)$ since $0 \in \mathcal{B}_{D}$. If $d \| A, A=D B,(B, D)=1$, then $B \in \mathcal{F}(D, A)$, which implies that $D \in \mathcal{F}(D, A)$ and therefore that $\mathcal{F}(D, A)=\mathbf{Q}^{*}$. It is clear that $\mathcal{B}_{D} \ni D$, consequently $D \| D+A$ if $D^{2} \mid A$, whence $1+A / D \in \mathcal{F}(D, A)$, and since $D(1+A / D) \in \mathcal{F}(D, A)$, we conclude that $D \in \mathcal{F}(D, A)$, and therefore that $\mathcal{F}(D, A)=\mathbf{Q}^{*}$.

Assume now that $(A, D)=1$, and $\chi_{D}(-A)=-1$. Then $r(n)=0$ if $n \equiv-A(\bmod D)$. Consequently $(n+A, D)=1$ whenever $r(n)>0$. Thus in this case, $\mathcal{F}(D, A)=\mathbf{Q}_{D}^{*}$.

Assume finally that $\chi_{D}(-A)=1$, and let

$$
\pi_{j}=-A+j D \quad\left(\bmod D^{2}\right) \quad(j=0,1, \ldots, D-1) .
$$

Then each arithmetical progression $\pi_{j}\left(\bmod D^{2}\right)$ contains at least one prime $p_{j}, r_{D}\left(p_{j}\right)>0$, $p_{j}+A \in \mathcal{F}(D, A)$, and for some $j, D \| p_{j}+A$. Therefore $D \in \mathcal{F}(D, A)$ and $\mathcal{F}(D, A)=\mathbf{Q}^{*}$, thus completing the proof of Theorem 1 .

§5. The proof of Theorem 2

Since $0,1,2$, 4 belong to \mathcal{B}_{4}, there is an element in $\mathcal{F}(4, A)$ from the arithmetical progression $3(\bmod 4)$ if $A \equiv-1$ or $1(\bmod 4)$, that is if A is odd. In these cases, $\mathbf{Q}_{2}^{*} \subset \mathcal{F}(4, A)$. If $A=1+4 B$, then $A+1=2(1+2 B) \in \mathcal{F}(4, A)$ and $1+2 B \in \mathbf{Q}_{2}^{*} \subset \mathcal{F}(4, A)$. Therefore $2 \in \mathcal{F}(4, A)$ and thus $\mathcal{F}(4, A)=\mathbf{Q}^{*}$.

We are left to consider the case $A \equiv 3(\bmod 4)$. For this let us write $A=-1+2^{\gamma} B$, $\gamma \geq 2$, B odd. We have $A+1=2^{\gamma} B, B \in \mathcal{F}(4, A), A+1 \in \mathcal{F}(4, A)$, which implies that $2^{\gamma} \in \mathcal{F}(4, A)$. Now $5 \in \mathcal{F}(4, A)$ so that $5+A=4\left(2^{\gamma-2} B+1\right)$. If $\gamma>2$, then $2^{\gamma-2} B+1 \in \mathcal{F}(4, A)$, and consequently $4 \in \mathcal{F}(4, A)$. If γ is odd, then $2^{\gamma-\left[\frac{\gamma}{2}\right] \cdot 2}=2 \in \mathcal{F}(4, A)$. It remains to consider the case where γ is even, say $\gamma=2 \delta$. It is enough to prove that there is an odd exponent ε such that

$$
2^{\varepsilon} \|\left(2^{2 \delta} B-1+u^{2}+v^{2}\right)
$$

for some integers u, v. For this, let $\varepsilon>2 \delta$ and count the number of primes $p \leq w$ for which $2^{\varepsilon} \mid 2^{2 \delta} B-1+p$. In fact, it is easy to show that

$$
\#\left\{p \leq w: p \equiv 1-2^{2 \delta} B \quad\left(\bmod 2^{\varepsilon}\right)\right\}=\left(1+o_{w}(1)\right) \frac{\operatorname{li}(w)}{2^{\varepsilon-1}} \quad(w \rightarrow \infty)
$$

where $\operatorname{li}(w)$ stands for the logarithmic integral. If p is counted in the above set, then $p \equiv 1$ $(\bmod 4)$ and therefore it can be written as $p=u^{2}+v^{2}$. Arguing the same way with $\varepsilon+1$, we obtain that

$$
\begin{aligned}
\#\left\{p \leq w: 2^{\varepsilon} \| p+A\right\} & =\#\left\{p \leq w: 2^{\varepsilon} \mid p+A\right\}-\#\left\{p \leq w: 2^{\varepsilon+1} \mid p+A\right\} \\
& =\left(1+o_{w}(1)\right) \frac{\operatorname{li}(w)}{2^{\varepsilon}} \quad(w \rightarrow \infty)
\end{aligned}
$$

a quantity which is positive if w is sufficiently large. Thus we have that $2^{\varepsilon}, 2^{\varepsilon+1} \in \mathcal{F}(D, A)$ if $\varepsilon>2 \delta$. We may thus conclude that

$$
2=\frac{2^{\varepsilon+1}}{2^{\varepsilon}} \in \mathcal{F}(D, A)
$$

The proof of Theorem 2 is thus complete.

§6. The proof of Theorem 3

Since $D=8$, we must have $Q(x, y)=x^{2}+2 y^{2}$, with corresponding character χ defined by $\chi(1)=\chi(3)=1, \chi(5)=\chi(7)=-1$. Hence $0,1,2,3,4,6,8 \in \mathbf{B}_{8}$.

First we consider the case when A is odd. In this case,

$$
A, A+1, A+2, A+3, A+4, A+6,1 \in \mathcal{F}(8, D)
$$

Now $A, A+2, A+4, A+6(\bmod 8)$ alltogether give a complete reduced residue system \bmod 8, and consequently $\mathcal{F}(8, A) \supseteq \mathbf{Q}_{2}^{*}$. But either $2 \| A+1$ or $2 \| A+3$, whence $2 \in \mathcal{F}(8, D)$.

Now assume that A is even. We consider separately the cases (i) $A=2+8 B$, (ii) $A=6+8 B$, (iii) $A \equiv 4 \quad(\bmod 8)$, and finally (iv) $8 \mid A$.

In case (i), we have that $\mathcal{F}(8, A) \ni A+1 \equiv 3(\bmod 8), \mathcal{F}(8, A) \ni A+3 \equiv 5(\bmod 8)$, and $1 \in \mathcal{F}(8, A)$, so that $\mathbf{Q}_{2}^{*} \subset \mathcal{F}(8, A)$. Furthermore, $A=2(1+4 B)$ and $1+4 B \in \mathcal{F}(8, A)$, so that $2 \in \mathcal{F}(8, A)$, and case (i) is thus taken care of.

In case (ii), $A+1 \equiv 7(\bmod 8), 7 \in \mathcal{F}(8, A), \mathcal{F}(8, A) \ni A=2(3+4 B), \mathcal{F}(8, A) \ni$ $A+8=2(3+4(B+1))$. One of $3+4 B$ or $3+4(B+1) \equiv 7 \quad(\bmod 8)$; therefore $2 \in \mathcal{F}(8, A)$. Thus $3+4 B=\frac{A}{2}, \frac{A+2}{8}=1+B, \frac{A+4}{2}=7+4 B, \frac{A+6}{4}=3+2 B \in \mathcal{F}(8, A)$. If B is odd, then $7+4 B \equiv 3 \quad(\bmod 8)$, thus $1,3,7 \in \mathcal{F}(8, A)$, which implies that $5 \in \mathcal{F}(8, A)$. If B is even, then $A=2(3+4 B)$ so that $3+4 B \equiv 3 \quad(\bmod 8)$ and $3 \in \mathcal{F}(8, A)$. Thus we obtain as above that $\mathcal{F}(8, A)=\mathbf{Q}^{*}$.

In case (iii), $A+1 \equiv 5(\bmod 8), A+3 \equiv 7(\bmod 8)$; thus $1,5,7 \in \mathcal{F}(8, A)$, so that $3 \in \mathcal{F}(8, A)$. Hence $\mathbf{Q}_{2}^{*} \subset \mathcal{F}(8, A)$, and $2 \| A+2$ implies that $2 \in \mathcal{F}(8, A)$, which completes case (iii).

In case (iv), we write $A=2^{\gamma} B$ with $\gamma \geq 3$. Then $A+3 \equiv 3(\bmod 8)$, and $3 \in \mathcal{F}(8, A)$. We now consider separately the cases $\gamma \geq 4$ and $\gamma=3$ with B odd. In the first case, $2+A=2\left(1+2^{\gamma-1} B\right)$, whence $2 \in \mathcal{F}(8, A)$ and therefore $B \in \mathcal{F}(8, A)$. If $B \equiv 5$ or 7 $(\bmod 8)$, then we are done. Since $2^{\nu} \in \mathbf{B}_{D}$ for every ν, then $2^{\nu}+A \in \mathcal{F}(8, A)$. Thus $B, B+1, B+2, B+4 \in \mathcal{F}(8, A)$. If $B \equiv 1(\bmod 8)$, then $B+2 \equiv 3(\bmod 8)$ and
$B+4 \equiv 5(\bmod 8)$, and we are done. If $B \equiv 3(\bmod 8)$, then $B+2 \equiv 5(\bmod 8)$, and we are done as well. It remains to consider the case $A=2^{3} B$ with B odd. Then $2+A=2(1+4 B)$ and $6+A=2(3+4 B)$. Since $Q(x, y)$ takes the values $2^{3}, 2^{4}, 2^{5}, 2^{6}, 3 \cdot 2^{4}$, it takes also the values $2^{3} B, 2^{3}(B+1), 2^{3}(B+2), 2^{3}(B+4), 2^{3}(B+6), 2^{3}(B+8)$. Since one of $B, B+2, B+4, B+6$ is $\equiv 1 \quad(\bmod 8)$ and thus belongs to $\mathcal{F}(8, A)$, we have that $2^{3} \in \mathcal{F}(8, A)$ and so $B, B+2, B+4, B+6 \in \mathcal{F}(8, A)$, which implies that $\mathbf{Q}_{2}^{*} \subset \mathcal{F}(8, A)$. But $2+A \in \mathcal{F}(8, A)$, and since $2 \| 2+A$, it follows that $2 \in \mathcal{F}(8, A)$, thus handling case (iv) and completing the proof of Theorem 3.

JMDK, le 14 octobre 2002; fichier: quadratic3.tex

