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§1. Introduction

Let E be a set of positive integers. We say that F is a set of uniqueness modulo 1 if
for each completely additive function f: N — R/Z for which f(e) =0 (mod 1) for every
e € E, we necessarily have that f(n) =0 (mod 1) for each positive integer n. Here and in
what follows, we let N, Z, Q and R stand for the set of positive integers, all integers, rational
numbers and real numbers, respectively; also p always stands for a prime number. It is clear
that the domain of a completely additive function f can be extended to the multiplicative
group of positive rationals, simply by setting

f(m/n) = f(m) — f(n) for each m,n € N.
Let Q* be the group of positive rationals, and for each positive integer h, let
Q; = {T :m,n € N, (mn,h) =1}.
n

Let E* be the multiplicative group generated by E. It was proved independently by
several authors that F is a set of uniqueness mod 1 if and only if £* = Q*; see for instance
Indlekofer [5], Hoffman [3], Elliott [4] and Meyer [9]. It is not known whether the set of
shifted primes is a set of uniqueness mod 1.

In Kétai [7], it was proved implicitly that the set of “primes + one” enlarged by a suitable
finite set of primes is a set of uniqueness mod 1. Elliott [2] proved that the set of primes up
to 10?7 together with the set of shifted primes forms a set of uniqueness mod 1.

Let D be equal to 4 or 8 or an odd prime. Let xp = (%) be the Kronecker character
and B(D) be the multiplicative semigroup generated by the union of the following four sets:

{p:p|D}, {TQ:T:17273="‘}7 {p:X—D(p>:l}7 {0}

From here on, we fix D and write x instead of xp. Now let

(2.1) w(n) = x(d) = T[] (1+x(p) + ...+ x(0).

din el

It is clear that an integer n coprime to D belongs to B(D) if and only if w(n) > 0. Further-
more, if (n, D) = 1, then it is well known that the number of representations of n by classes
of binary quadratic forms with discriminant —D is aw(n), where

4 if D=4,

2 if D >4,
a:{
6 if D=3
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(see Landau [8]). Assume that A is a positive integer and set
E(D,A):={n+A:ne€B(D)}.

Let furthermore H(D, A) be the multiplicative group generated by E(D, A).
In this paper, we give necessary and sufficient conditions under which H(D, A) = Q*, at
least in the case where D is a prime number.

Remarks.

(a) Fehér, Indlekofer and Timofeev [6] investigated the case D = 4 and proved that
H(4,A) = Q*, if A is the sum of two sqaures.

(b) Indlekofer claimed that he and Timofeev can prove that for every k € Q, there exist
ni, ng € B(4) such that ny + A = k(ny + A) provided A > 0.

(¢) If h(=D) = 1, then D = 4,8 or an odd prime, and B(D) can be interpreted as the
set of those integers which can be written as the values of a binary quadratic form of
discriminant —D.

§2. Main results
Theorem 1. Let D > 3 be an arbitrary prime and let A be any given positive integer. Then

Q" otherwise.

Theorem 2. Let D = 4 and let A be an arbitrary positive integer. Then H (4, A) = Q*.

Theorem 3. Let D = 8 and let A be an arbitrary positive integer. Then H(8, A) = Q*.

§3. Preliminary lemmas

Lemma 0. Let x be the Kronecker character mod —D, where D > 0. Let U > 0 and V # 0
be two integers for which there is an arithmetic progression ¢ (mod D) such that x(¢) =1
and such that t := Ul + V satisfies x(t) = 1. Moreover, let

a(r) = Y wUp+V),

z<p<l2x
p={ (mod D)

where w is defined by (??). Then a(x) is positive if x is sufficiently large.

This result can easily be obtained by using the Bombieri-Vinogradov mean value theorem
in the form

 li(z)
m(u, k, ) )

<

Z max max
n<zx

B
k<\/z/(logz)B+25 log T



where li(x) stands for the logarithmic integral, and the “enveloping sieve” given by Hooley
(see [4], Chapter 5), which Hooley used to obtain an asymptotic estimate for the number of
solutions of the equation n = p + 2 + 2.

In the following lemmas, we assume that D is an odd prime and (A, D) = 1.
Lemma 1. Let k=1 (mod D) and (k,A) =1. Then k € H(D, A).
Lemma 2. Let k=(¢ (mod D) and (kl, AD) =1. Then k/l € H(D, A).

Lemma 3. Let Z}, be the set of reduced residue classes mod D generated by
(3.1) {v+ A:v=0orv= quadratic residue mod D } \ {0},
and let T be a subgroup of Z;,. Then T = Z7,.

Lemma 4. Let x(—A) = —1. Then H(D,A) C Qp.

Lemma 5. Let S, be the multiplicative group generated by E; U E,, where

Ey = {p+A:x(p)=1 p#—-A (mod D)},

E& = {l)r+-f127‘221,2,3w..}.
Then, for every v € Z3,, S, contains infinitely many integers congruent to v (mod D), all
of which are coprime to A. Moreover, Sy C H(D, A).

Proof of Lemma 1. In order to prove that k € H(D, A), it is sufficient to find ny, ny € B(D)
such that ny + A = k(na + A). Let p run over the set of primes p =1 (mod D) (so that
p € B(D)) and consider the sum

a(z):= > wlkp+ (k—1)A).

r<p<2zx

It is enough to prove that a(z) is positive for some x.

For this, we let ¢(p) := kp + (k — 1)A and observe that ¢(p) = 1 (mod D), so that

X(@) = x(d). Consequently, using definition of w given in (??), we have

wlt(p) =2 > x(d)+E,

dle(p)
o)
where E, = 0 except when ¢(p) is a square, in which case we get that £, = x <\/€(p)), that
is |E,| < 1.
Thus, given a large number B,
a() = Y 2x(d)-#{p€[x,22] : {(p) =0 (mod d)}
4<VE ) log? z
+ > 2x(d) - #{p € [2,22] : {(p) =0 (mod d), d* < {(p)} + O(vx)

Vi /logB z<d<y/2kz+(k—1)A
=3 + 3y + O(Vx).



Using the Bombieri-Vinogradov mean value theorem (stated above), one can obtain that

) = 2 (li(2z) — li(x xd) +O< - )
N Il ey

where B; can be taken arbitrarily large provided B is large enough.
The crucial step is the evaluation of 5. This can be done by using Lemma 0. We shall
not go into details, but one can easily deduce from this method that

a(x) = (D)2 +o( v )

log log

x(d)
¢(dD)

Proof of Lemma 2. Since both k*(”)=2 and ¢(*P)~! are =1 (mod D) and are coprime
to A, and since they both belong to H(D, A), it follows that their ratio k/¢ € H(D, A).

where C(D) =) , which proves Lemma 1.
d=1

Proof of Lemma 3. Assume that 7 is a proper subgroup of Z3j,. Then #7 < D — 1, so
that #7 < (D —1)/2. On the other hand, since the set of the generating elements contains
(D —1)/2 members, then #7 must be eqal to (D —1)/2, so that 7 must be the subgroup of
the quadratic residues mod D. This means that v + A is a quadratic residue if v is equal to
zero or to a quadratic residue, except when v = —A. (Observe that, in the case x(—A) = —1,
T always has at least (D + 1)/2 elements, so that #7 = D — 1, in which case T = Z3.)
Thus

32 3 () + Dixlm+ )+ 1) 2244 25,
But, since
z_: x(m) = z_: x(m+A)=0 and z_: x(m)x(m+ A) = —1,

it follows that the left hand side of (3.2) is D — 1 and therefore that D — 1 > 2 + 4 - 23,
which is impossible if D > 3.

Solet D =3. If A=1 (mod 3), then the set {0 +1 (mod3),1+ 1 (mod 3)}
generates Z5. If A= —1 (mod 3), then (—1) (mod 3) € T and (—1)*> (mod 3) € T, so
that 7 = Z3.

Proof of Lemma 4. It is enough to show that (n+ A, D) = 1 for every n € B(D). Indeed, if
n+A=0 (mod D), then y(n) = x(—A) =1 and consequently (n, D) = 1. But n € B(D)
and (n, D) = 1 imply that x(n) = 1.

Proof of Lemma 5. These results are direct consequences of Lemma 3.



§4. Proof of Theorem 1
Assume first that (A, D) = 1. Then it follows from Lemmas 1,2,3,4,5 that

Let A = 7f*my? ... w¢7. We shall prove that m; € H(A, D) for j = 1,2,...,r, which will
imply that
(4.1) Q) CH(A, D).

So let m; be one of the prime divisors of A and write A = w{"* A,.
Assume first that a; = 1. Then for m € B(D), we have

H(A,D) > 7?°Dm + A=m (1 Dm + Ay).

Since (myDm + Ay, AD) = 1, it follows that m Dm + Ay € H(A, D), and so m € H(A, D).
For a; > 1, we consider separately the cases a; odd and «; even.
First assume that a; = 28 + 1, with # > 1. Then we have

W%BJFZDTTL + W%’BHAQ = W%BH (mDm + Az) € H(A, D).

Since (mDm + Ay, AD) = 1, we obtain that m Dm + Ay € H(A, D) and consequently that
77 € H(A, D). Furthermore, if m € B(D), then 72Dm + A € H(A, D) and n2Dm + A =
72(Dm+77" "' Ay), whence 72 € H(A, D) follows by observing that (Dm-+m;" ' Ay, AD) = 1.

Thus
2P+

(7%)”

Let us now consider the case « = 2§ with 5 > 1. Starting from m € B(D),

™ =

€ H(A, D).

H(A, D) > 1" Dm + A = n3” (Dwfm + Ag) :

(D72m + Ay, AD) = 1, it follows that Dr2m + A, € B(D), and therefore that 7;° € B(D).
We shall now prove that 73 € H(A, D). Since we already proved this in the case 8 = 1,
we may assume that 8 > 2 and consider the integer 72D + A = 7% (D + Wf(ﬂ_l)AQ). Since

72D+ A € H(A, D), D+ m%"YA, € H(A, D), we obtain that 72 € H(A, D), as claimed.

Finally, we observe that tehre is some m € B(D) such that m|[[mD + Ay. This is true if
Dm+A; =m  (mod 7%), which defines an arithmetic progression m = s (mod 77}), where
S = (m — Ay)D™t  (mod 7?), (s,m) = 1. If m is a prime p satisfying p = s (mod 73),
p=1 (mod D), then it is a suitable choice for m € B(D), m||Dm + As.

Hence Dm + Ay = mn with (n, DA) = 1 and 5 € H(A, D); furthermore, 73" Dm + A =
7 (Dm + Ay). Thus m € H(A, D) and since 7, was an arbitrary prime divisor of A, our
claim (4.1) is established.

Let us now investigate whether D belongs to H (A, D) or not. Since we already proved
that it cannot hold if x(—A) = —1, we may assume that x(—A) = 1. Then p = —A
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(mod D) implies that p+A € H(A, D). There are infinitely many primes p such that D||p+A,
that is 254 = 5, with (n,, D) = 1 and 5, € H(A, D), and consequently D € H(A, D).
Thus the theorem is proved in the case (A, D) = 1. Hence we shall now assume that
A = D"B with (B,D) = 1 and » > 1. We shall try to find integers ni,ny € B(D) such
that ny + A = D(ny + A), that is ny — Dny = (D — 1)A. We shall find these by looking for

mq, mso’s such that ny = D"mq, no = D"msy, which leads to the equation

(4.2) my —mg = (D —1)B.

Let v run over zero and the quadratic residues mod D, that is over % integers, and let
(H,D) = 1. Then the set {v + H} contains either a quadratic residue or zero. This is true

in particular if we choose H = (D — 1)B. So let v, u be such a couple of residues for which

v—p=D-1)B, x(v)#-1,  x(u#-L

If w20 (mod D), consider the sum

(4.3) > w(p+ (D-1)B).

r<p<l2z
p=p (mod D)

If u=0 (mod D), then consider the sum

(4.4) > w(Dp+(D-1)B).
r<pl2z
p=1 (mod D)
By using the Bombieri-Vinogradov mean value theorem and the evaluating sieve of Hooley
mentioned above, one can deduce that both expressions (4.3) and (4.4) are positive provided

x is large enough, in which case there exists at least one pair of integers ny,ny € B(D) for
which
ny + A

D =
n2—|—A

The proof of Theorem 1 is thus complete.

§5. Proof of Theorem 2
Assume first that A is odd. We shall prove that

A
(5.1) =2 i S mum € B(d)
2

can be solved if k =1 (mod 4), (k, A) = 1. Let ny run over the primes p = 1 (mod 4)
and n; = kp + (k — 1)A. By using the method of §4, one can prove that

S w(kp+ (k—1)A) > 0
p=1 p(<l§0d 4)

provided z is large enough, in which case (5.1) has a solution.
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Hence we can deduce that for k =¢=3 (mod 4), (k¢, A) = 1, we have
(5.2) k/l e H(4,A),

simply by repeating the argument used in the proof of Lemma 2.
Since A +4,A+ 2 € H(4, A), there exists at least one v € H (4, A) for which v = 3
(mod 4) and (v, A) = 1. Hence we obtain as earlier that

Let A = 7' Ay, (Ag,m) = 1, m; prime. We shall prove that m € H(4,A). Since m is an
arbitrary prime divisor of A, it will be true for each prime divisor of A, which implies that

(5.3) Qi CH(4, A).
Assume first that oy = 1. Then 47? + Aomy = 7y (47, + Ay) with (47, + Az, 4A) = 1, whence
T € H(4, A)

Now consider the case a; = 28+ 1, 8 > 1. By setting 472 + Aom2? ™ = 72(4 4+ A1),
we obtain that 72 € H(4, A). Then by considering 471" ? + 71" t1 Ay = 77 (4 + Ay)
and observing that 4m; + Ay € H(4, A), it follows that 77" € H(4, A), and hence that
T € H(4, A)

Finally, let o = 23, 8 > 1. Similarly, by choosing the numbers 47Tfﬁ+2 + A and 472 + A,
we first deduce that 7?2 € H (4, A).

Arguing as in the proof of Theorem 1, we first prove that there is at least one (actually
infinitely many) m € B(4) such that Dm + Ay = m;  (mod 7). If such an integer m exists,
then the integer 1, = 2m+42 is coprime to AD. Consequently 7,, € H(4, A) and furthermore

T
7, = Dmri® + A € H(4, A), whence 737 € H(4, A), and so m € H(4, A).
It remains to prove the existence of such an integer m. To do so, it is enough to observe
that there is at least one (actually infinitely many) prime p =1 (mod 4) such that 4p+ A, =
7 (mod 7%). Since this clearly holds, we have thus established (5.3).

We shall now prove that 2 € H(4, A).

IfA=1 (mod4), then 2||1+ Aand 1+ A € H(4, A) imply that 2 € H(4, A).

If A=3 (mod 4), then A = —1+ 2B, with B odd and v > 2. For every € > ~, the
number of primes p < x for which 2°|[p + A is (1 + o(1))li(x)/2°7!, which means that there
exists a prime p. and an odd integer 7. such that p. + A = 2°n. with n. € H(4,A). It is
obvious that p. =1 (mod 4) and thus that p. + A € H(4, A). Hence

2:25+1:p5+1+1_ n

_cH(4,A).
2¢ Ne+1 De + 1 ( )
We have thus proved that H(4, A) = Q* if (A,2) = 1.
Assume now that A = 27 B with B odd and v > 1. We already proved that H(4, B) = Q*,
that is that each rational number m/n has a representation

m " .
= H(nj+B)E]7

nooo



where ¢; € {—1,1} and n; € B(4), and so

= Ette) [T (2n; + A)F.

J=1

s|3

To complete the proof of Theorem 2, it is enough to show that 2 € H (4, A). But this is true
if
n1+A:2(n2+A), n1, N9 68(4)

can be solved. By writing ny = 27my, ny = 27ms, it follows that the existence of my,my €
B(4), with m; — 2my = B, would be enough.

Nowif B=1 (mod 4), then let my run over theset {2p:p=1 (mod 4)} and consider
the sum

Y. wiép+ B),

p<w
p=1 (mod 4)

which is surely positive if z is large enough.
On the other hand, if B = —1 (mod 4), then let m; run over the set {2p : p = 1
(mod 4)} and consider the slightly diffrent sum

> w2+ B),

pw
p=1 (mod 4)

which again is surely positive if x is large enough.
This completes the proof of Theorem 2.

86. Proof of Theorem 3

Since the proof is very similar to that of Theorems 1 and 2, we shall only give a sketch
of it.
Observe that now D = 8 and

Assume first that A is odd. By arguing as earlier, we can deduce that

Repeating the argument used before, one can prove that = € H(8, A) if 7 is a prime divisor
of A. Consequently,
Q; CH(S,A).

Since A+1, A+3 € H(8, A) and since either 2||A+1 or 2||A+3, we obtain that 2 € H(8, A),
and so

Qi C H(8,A).



The theorem is thus proved for A odd. So let A = 27"B with B odd and v > 1. As earlier,
we can deduce that each rational number m/n can be written as

m_ 2L oy (m, m),
n
where I'(m,n) is a positive integer depending on m and n, and a(m,n) € H(8, A).

Thus it remains to prove that 2 € H(8, A). For this we try to solve the equation n; + A =
2(77,2 + A), that is ny — 277,2 = A. So let ny = 27m1, Ng = 27m2, that is my — 2m2 = B. Let
us now choose m; as follows

2p+ B withp=1 (mod8)if B=1 ( )
2p+ B withp=3 (mod38)if B=5 (mod 8),
8+ B withp=1 (mod38)if B=3 (mod 8),
2p+B withp=1 (mod8)if B=7 (mod8).

mod 8),

Since each of the above choices has at least one solution m; € 3(8), this completes the proof
of Theorem 3.
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Lemma 1. Let A and D be positive integers. If k € N is coprime to D, { =k (mod D),
then k/l € F(D, A).

Proof. First observe that it is enough to prove the result for a general k and corresponding

¢ =k+ D. Indeed, if HLD € F(D, A), then for { = k + hD, we have that

k k  k+D k+(h—1)D

(" k+D k+2D " k+hD
Hence let k, ¢ be fixed, | = k + D, (k,¢) = 1, and assume that X is large. Let us consider

the sum
Yo = Zr(nl)r(ng),

where the summation runs over those ny,ny € By for which ny =1 (mod D), ny € [X, 2X]
and

holds. We shall prove that ¥y > 0 which will complete the proof of Lemma 1. In fact we
shall prove more, namely that if X is sufficiently large, then ¥y > ¢X with some positive
constant c.

Observe that, if (5.4) holds, then no =1 (mod D), and also that

r(n1) = > x(61), r(ng) = Y x(02),

d1lng d2|ng
51 </m1 da<ymz

€ F(D,A).

assuming that n; and ny are not square numbers. Thus ¥y can be written as (neglecting
some error term O(4/x))

(5.5) > X(01)x(02) Nx (01, 02),
51<V2X

S3<q/ E(2X+a)-4

where Ny (d1,02) is the smallest of those integers u, us for which
(5.6) (k + D)dyuy — kdju; = DA
and the following conditions hold:
hup =1 (mod D), duy € [X,2X], & <wuy, b < us.

VX s VX
(log X)B andos < (log X)B’
then it can easily be shown, using sieve theorems, that the error we then introduce is o(X).

Hence let 41,95 be fixed, e := GCD((k + D)dg, kéy). If (5.6) has at least one solution,
then e|DA, in which case e|A, since (d102k(k + D), D) = 1. Therefore it follows that under

the above conditions, the number of solutions of (5.6) is

Xe
Dé105(k + D)

If we sum the expression (5.5) only for those d1, d9 for which d; <

+0(1)
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which implies that

X X(01)x(02)
Yo = e .
0 D(k + D) % 51,52<\/§/:(10gX)B 5152

((k+D)8g,ké1)=c

Lemma 2. Let ((,D) =1, x(¢) =1. Then {+ A € F(D, A).

Proof. In light of Lemma 1, it is enough to prove that there exits a positive integer n = /¢
(mod D) for which r(n) > 0. In order to prove this, we first set

We then have

AX) = Z x(9) Z 1+ o(X)

§<VX/(log X)B sln, ZSIXQ(ild D)
X § X
_ A 3 &JFO(X):fL(LXD)Jro(X).

§<VX/(log X)B D

Since we know that L(1,xp) > 0, the proof of Lemma 2 is complete.

Lemma 3. Let D > 3 be a prime number and let m be a positive integer not divisible by
D. Then m € F(D, A).

Proof. Since Q(0,0) + A=A € F(D, A), it follows from Lemma 2 that v+ A € F(D, A)
ifv=0,orvell,D—1], xp(r) =1. The set of these numbers is of size %, and at most
one of of its members is 0 mod D.
Now let T be the subgroup of the set of all reduced residue classes modulo D which is
generated by
{v+ A, v# —A, v=0 or a quadratic residue}.

Then iether T = Z7%,, in which case #7 = D—1or #7 # D—1. In this last case, #7T < %.
If #T = %, then 7 is the group of all the quadratic residues, in which case the residue
classes listed above must coincide with the quadratic residues, which implies that

(5.7) 3 () + Dlxlm+ 4)+ 1) > 244222

m=0
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But 0 = 270 y(m) = P21 x(m + A), while Y2-1 x(m)x(m+ A) = —1, which means that
the left hand side of (5.7) is D — A, so that D — A > 2 + 2(D — 3), which cannot hold if
D > 3, thus completing the proof of Lemma 3.

Lemma 4. Let D =3. If A=1 (mod 3), then
(5.5) F(D,A)=Q;
If A#1 (mod 3), then F(D,A) = Q*.

Proof. Under the stated conditions, the class number is 1, and the corresponding binary
quadratic form can be written as

Qz,y) = 2" +zy +y°.

Assume first that A = 1 (mod 3). Observe tht Q(x,y) cannot take on values from the
arithmetic progression 2 (mod 3), that is Q(x, y)+ A is not a multiple of 3 for any x,y € N,.
Thus F(3,D) C Qi. But Q(1,0) + A=A+ 1 € F(3,A); thus, since A+1=2 (mod 3),
(5.8) follows from Lemma 3.

If A=2 (mod 3), then from Q(0,0) + A € F(3, A), and so by Lemma 2, we have that
€ F(3,A) provided (mn,3) = 1. Now let ¢ be a positive integer satisfying

3|Q(24,0) + A = 2% + A.

Since 2% + A € F(3, A) and (22t§“A, 3) = 1, it follows that WT’LA € F(3,A). Consequently,
3e€ F(3,A).

It remains to consider the case when A =0 (mod 3). Solet A =3"B, (B,3) = 1. If
v > 2, then Q(1,1) + 3B = 3(1 + 3"'B) € F(3,A) and since 1 + 3""'B € F(3,A), we
have that 3 € F(3,A4) and so & = B € F(3,A). Now if B =2 (mod 3), then we have
found an integer = 2 (mod 3) belonging to F(3, A); therefore all those numbers in the
same arithmetic progression also belong to F(3, A), and we are done.

On the other hand, if B=1 (mod 3), then we first observe that 3" € Bs, which implies
that 3V 4+ 3"B € F(3,A), whence B+1 (=2 (mod 3)) € F(3, A), which clears this case as
well.

Finally we consider the case v =1, A=3B. If B=1 (mod 3), then A, B € F(3, A)
imply that 3 € F(3,A), and 3 € B3, 3+ 3B € F(3,A), and therefore 1 + B (=2 (mod 3))
belongs to F(3,A). We are left to consider the case B =2 (mod 3). Since A € F(3, A),
it follows that B and 1/3 are conjugates. So let B = 2 4 3%z, where a > 1 and (z,3) = 1.
Since 21 € Bs, 21 = 3A = 33(1 + 3°72z2) if @ > 3, we have that 21 + 34 € F(3,4),
1+ 3*2z € F(3,A), thus implying that 3% € F(3,A4). Since A = 3B € F(3,A), we
have that A? = 9B? € F(3,A), and since B> = 1 (mod 3), then 3% € F(3, A), whence
3=2 € F(3,A), and so 4 = B € F(3, A).

For the case v = 2, we choose 12 € Bs, so that F(3,A4) 23B+12=3(4+2+9z) =
32(2 + 32). Since 3% € F(3, A), we thus have that 2 + 32 € F(3, A).

The final case is & = 1. Since there exists a prime p =7 (mod 9) with p € F(3, A) and
3p € Bs, then writing p = 749\, we have F(3, A) 5 3p+A = 27TA+21+6+92 = 9(3A+3+2).
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Assume first that z =2 (mod 3). Since 9 € F(3, A), it follows that 3(A+1)+ 2 € F(3, A).
But since this number is =2 (mod 3), we are done. On the other hand, if z =1 (mod 3),
then simply observe that F(3,A4) 3 3+ A = 9(1 + z), and thus since 1 + z =2 (mod 3)
and 9 € F(3,A), we may conclude that 1 + z € F(3, A).

The proof of Lemma 4 is thus complete.

§4. The proof of Theorem 1

The case D = 3 was handled by Lemma 4. Hence we may assume that D > 3. Now
observe that Lemma 3 gives that F(D,A) 2 Q7. We shall first assume that D|A. Then
we clearly have that A € F(D,A) since 0 € Bp. If d|A, A = DB, (B,D) = 1, then
B € F(D,A), which implies that D € F(D, A) and therefore that F(D,A) = Q*. It is
clear that Bp D, consequently D||D + A if D?|A, whence 1 + A/D € F(D, A), and since
D(1+ A/D) € F(D, A), we conclude that D € F(D, A), and therefore that F(D, A) = Q*.

Assume now that (A, D) =1, and xp(—A) = —1. Then r(n) =0if n=—-A (mod D).
Consequently (n+ A, D) = 1 whenever r(n) > 0. Thus in this case, F(D, A) = Q3.

Assume finally that yp(—A) = 1, and let

mj=—A+jD (mod D? (j=0,1,...,D—1).

Then each arithmetical progression m; (mod D?) contains at least one prime p;, rp(p;) > 0,
p; +Ae F(D,A), and for some j, D|p; + A. Therefore D € F(D, A) and F(D, A) = Q*,
thus completing the proof of Theorem 1.

85. The proof of Theorem 2

Since 0,1, 2,4 belong to By, there is an element in F(4, A) from the arithmetical progres-
sion3 (mod 4)if A=—1orl (mod 4), thatisif A is odd. In these cases, Q5 C F(4, A).
If A=1+4+4B, then A+1=2(1+2B) € F(4,A) and 1 + 2B € Q; C F(4,A). Therefore
2 € F(4,A) and thus F(4,A) = Q*.

We are left to consider the case A =3 (mod 4). For this let us write A = —1 + 27B,
v > 2, Bodd. We have A+ 1 = 2'B, B € F(4,A), A+ 1 € F(4,A), which implies
that 20 € F(4,A). Now 5 € F(4,A) so that 5+ A = 4(222B +1). If v > 2, then
272B+1 € F(4,A), and consequently 4 € F(4, A). If v is odd, then 27312 = 2 € F(4, A).
It remains to consider the case where 7 is even, say v = 2J. It is enough to prove that there
is an odd exponent e such that

2| (2253 142 —1—1}2)

for some integers u,v. For this, let € > 2 and count the number of primes p < w for which
2122 B — 1 + p. In fact, it is easy to show that

li(w)
25—1

#p<w:p=1-2%B (mod 2°)} = (1 + 0,(1)) (w — 00),
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where li(w) stands for the logarithmic integral. If p is counted in the above set, then p = 1
(mod 4) and therefore it can be written as p = u? + v?. Arguing the same way with & + 1,
we obtain that

#p<w:2|p+ A} = #{p<w:2Cp+ A} —H#{p<w: 22 p+ A}

:(Hﬂdnﬂg)

(w — ),
a quantity which is positive if w is sufficiently large. Thus we have that 2°, 27! € F(D, A)
if € > 2. We may thus conclude that

25+1
26

2 =

€ F(D,A).

The proof of Theorem 2 is thus complete.

§6. The proof of Theorem 3

Since D = 8, we must have Q(z,y) = x* + 2y?, with corresponding character y defined
by x(1) = x(3) =1, x(5) = x(7) = —1. Hence 0,1,2,3,4,6,8 € Bs.
First we consider the case when A is odd. In this case,

AA+1,A+2,A+3,A+4,A+6,1€ F(8,D).

Now A, A+2, A+4,A+6 (mod 8) alltogether give a complete reduced residue system mod
8, and consequently F (8, A) O Q3. But either 2||A + 1 or 2||A + 3, whence 2 € F(8, D).

Now assume that A is even. We consider separately the cases (i) A = 2 + 8B, (ii)
A=6+8B, (ili) A=4 (mod 8), and finally (iv) 8| A.

In case (i), we have that F(8, A)2 A+1=3 (mod 8), F(8,A) > A+3=5 (mod 8),
and 1 € F(8, A), so that Q3 C F(8, A). Furthermore, A =2(1+4B) and 1 +4B € F(8, A),
so that 2 € F(8, A), and case (i) is thus taken care of.

In case (ii), A+1 =7 (mod8), 7€ F(8,A), F(8A) 5 A=23+4B), F(8A4) >
A+8=2(3+4(B+1)). Oneof 3+4Bor 3+4(B+1) =7 (mod 8); therefore 2 € F(8, A).
Thus 3+4B =4, &2 =1+ B, 4 =74 4B, 45 =34 2B € F(8, A). If B is odd, then
74+ 4B =3 (mod 8), thus 1,3,7 € F(8, A), which implies that 5 € F(8, A). If B is even,
then A = 2(3+4B) so that 3+4B =3 (mod 8) and 3 € F(8, A). Thus we obtain as above
that F(8,A) = Q*.

In case (iii), A+ 1 =5 (mod8), A+3 =7 (mod 8); thus 1,5,7 € F(8, A), so that
3 € F(8,A). Hence Q5 C F(8,A), and 2||A + 2 implies that 2 € F(8, A), which completes
case (iii).

In case (iv), we write A = 27B with v > 3. Then A+ 3 =3 (mod 8), and 3 € F(8, A).
We now consider separately the cases v > 4 and v = 3 with B odd. In the first case,
2+ A =2(1+27'B), whence 2 € F(8, A) and therefore B € F(8,A). If B=5or 7
(mod 8), then we are done. Since 2 € Bp for every v, then 2 + A € F(8,A). Thus
B,B+1,B+2,B+4¢€ FA). If B=1 (mod8), then B+ 2 =3 (mod 8) and
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B+4 =5 (mod38), and we are done. If B =3 (mod 8), then B+ 2 =5 (mod 8),
and we are done as well. It remains to consider the case A = 23B with B odd. Then
24+ A=2(1+4B) and 6 + A = 2(3+4B). Since Q(x,y) takes the values 23,2425 26 3.2%
it takes also the values 2°B,23(B + 1),23(B + 2),2*(B + 4),23(B + 6),23(B + 8). Since
one of BB+ 2,B+4,B+6is =1 (mod 8) and thus belongs to F(8, A), we have that
23 € F(8,A) and so B,B+2,B+4,B+6 € F(8, A), which implies that Q} C F(8, A). But
2+ A e F(8,A), and since 2||2+ A, it follows that 2 € F(8, A), thus handling case (iv) and
completing the proof of Theorem 3.

JMDK, le 14 octobre 2002; fichier: quadratic3.tex

16



