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and IMRE KATAI (Budapest)

1. Introduction. A positive integer n is said to be a Niven number (or
a Harshad number) if it is divisible by the sum of its decimal digits.

In 1984, Kennedy and Cooper [7] established that the set of Niven num-
bers is of zero density. In 1985, the same authors [1] showed that, given any
¢t > 0, we have N(z) > log’z provided z is sufficiently large, where N(z)
stands for the number of Niven numbers not exceeding z, and in 1988, they
[2] obtained an asymptotic formula for the number of Niven numbers <z
whose sum of digits equals k. In 1991, Vardi [9] proved that, for any given
e >0,

x
(log x) 1/2—¢

and that there exists a positive constant o such that

N(z) <«

T
N> gy

for infinitely many integers z, namely for all sufficiently large z of the form

x = 1010%+n+2 1 and n being positive integers satisfying 10" = 45k + 10.
Recently, De Koninck and Doyon [3] established that, given any fixed

€ >0,

zloglogx

'™ <« N(z) <
logz

b

and conjectured, using a heuristic argument, that, as © — oo,
T 14

1 N(z) = 1)) —/— ith = — log 10.

(1) (z) = (n+0(1)) gz "R 7= 5 loglo

More generally, given an integer ¢ > 2, we shall say that a positive integer
is a g-Niven number if it is divisible by the sum of its digits in base q.
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In this paper, we prove that (1) holds and moreover that, given any base
g = 2, a similar result holds for Ny(z), the number of ¢-Niven numbers not
exceeding z. Hence, our main goal will be to prove the following result.

THEOREM 1. As z — oo,

g—1
) No) = (g +o(0) o with g = LS g 1),
j=1

Theorem 1 will follow from our results on the local distribution of a(n),
the sum of the digits of n, when n runs over an arithmetic progression with
growing modulus k. Similar techniques for the study of the sum of digits

function residue classes have been used by other authors, namely Delange
[4] and Gel’fond [6).

2. Notations and preliminary observations. Let N, Ng, R and C
stand for the set of positive integers, non-negative integers, real numbers
and complex numbers, respectively.

Throughout this paper, let ¢ > 2 be a fixed integer. The g-ary expansion
of a non-negative integer n is defined as the unique sequence €g(n), €1(n), ...

for which
oo

(3) : nzz:ej(n)qj, €i(n) € {0,1,...,q—1}.

§=0
Let a(n) = a4(n) be the sum of the digits of n in base g, that is,
a(n) = e(n) +e1(n) + ...
Given z € R, N € N and z,w € C, we set
4 S(z|z,w) := Z 2™y and Sn(z,w) == S(g" |z, w).

0<n<z
It is clear that
N—-1 g—1 o
(5) Sn(z,w) = (Zzﬂwm).
=0 §=0
Let also
6) Ulzlz,k, D)= Y~ 2™ and Un(z,k,1) = U(g"|z, k,1).
0<n<z
n=l (mod k)

Observe that, using the standard notation e(y) := e*™¥ we have
k—1

(7 U(z|z, k1) = %Ze(—ls/ls)S(xlz,e(s/lﬂ)).

s=0
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Furthermore, if we set

(8) A(zlk,1,t) == #{n <z :n =1 (mod k) and a(n) = t},
then

1 .
9) Ak, 1,t) = (U(ale(£), k, L)e(~t¢) de.

0

A function g : Ng — C is said to be g-multiplicative if 9(0) =1 and

g(m) = [T 9(ei(n)g?)  (n=1,2,..).

Jj=0

Now for a g-multiplicative function g, set M () =M,y(z) =2 0<n<z 9(1).
Given a positive integer z, write

(10) T =big™M 4+ bag™? + ..+ byg,
where N1 > ... > N,, b; € {1,...,q — 1}. Set
Zo =.{Z‘,

T, = bqu2 + ..+ bSqNs,
T = b3qN3 +...+ bsqNS,

N,
ZTs—1 = bsq™®,
zs =10

and
bi—1

&= 9(cd™) (i=1,...,3).

=0
Using these notations, it is easy to observe that
(11) M(z) = &M (q™) + g(brg™) M (x1),
and by iteration,
(12)  M(z) = &M(g™) + g(b1g™)EaM (™) + g(b1g™)g(b2g"2)Es M (¢)
+.. 4 g(b1g™) . g(bs-10™)Esg (bsg™). |
Note that S(z|z,w) is such a function.

3. Preliminary lemmas. For y € R, let ||y|| be the distance of y to
the closest integer. Let & € [0,1) be fixed.

LEMMA 1. Let R € N. Given two coprime positive integers s < k with
(k,q) =1 and k{q — 1, assume that
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S U
(13) e+ 24
Then qf < k/4.
Proof. From (13), it follows that
5 8 s 1
14 Zo%(g—1 < 2 utl} 2 u el
(14) ”kq(q )“_ (§+kq > (§+kq> <
(u=hh+1,...,h+R—-1).

Since k{g~1, the left hand side of (14) is non-zero and therefore it is > 1/k.
Now from (14), we have

<% foru=hh+1,... h+R.

(15) gq““(q—l)H=qH-,§q“<q—1>] (u=hht1,.. b+ R=2),
and therefore
s s 1
16 5 R-1+h/, _ — R-1||S h/ =
(16) ,kq (¢-1)=q 54 (g 1)‘ <1

Hence combining this with our observation that the left hand side of (14)
must be > 1/k, we conclude that

1 S 1
—< |2 - —
< fzee-o] <
that is ¢® < k/4, as claimed.
LEMMA 2. Let A(z|k,l,t) be as in (8) and S(z|z,w) as in (4). Then

A@muw—%A@mqw

<
< Jnax max 1S (|2, e(s/k))|.

Proof. This follows immediately from (9) and (7).
Now for 1 < s < k, set

. hf
JE+4q ?

LEMMA 3. There ezists a constant ¢ = c(q) such that

3 qil e(éh)e (% th)

4=0

Sp = max
0<5<g—1

< g %k,

Proof. This follows immediately from the definition of Sh.

4. Local distribution of a(n) as n runs through a congruence
class | (modk)

4.1. We first consider the case (k,q(q — 1)) = 1.
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THEOREM 2. Assume that (k,q(q — 1)) = 1. Then, for each integer
l€]0,k—1] and t € N, we have

_ logz
< ze Clicgak ,

(17) A@mao—%A@mmo

where c1 = c1(c, q) is a suitable positive constant independent of k, | and t.

Proof. Let z be written as in (10). Then, from (12), we have
|S(zl2,e(s/k))| < a ) |Sn, (2, e(s/k))l.
j=1

To estimate each expression |Sy;, (2, e(s/k))|, we use Lemmas 1-3.
For k = 2,3,4, we set R = 0, while for each k > 5, we set
log(kq/4
R [ og(kq/ )J_
log g
From Lemma 1, we know that
MAX Sy > 1
X —.
h<u<htR  — 8¢

Therefore )
e el < 9 7],
which completes the proof of Theorem 2.

REMARK. It is interesting to observe that the following assertion is also
true:

If (k,q(g—1)) =1, then

‘ log
max Z 2o — 1 Z 22| < pe~Cliogah
lz1=1 n<e k n<z

n=l (mod k)

4.2. We now consider the case (k,q) > 1. Actually we shall reduce this
case to the one of Section 4.1. Indeed, let k = k;ky, where ky is the largest
divisor of k coprime to q and ky = k/ki. Further let h be the smallest
positive integer such that kg |q”. Then the congruence class I (mod k) can
be written as the union of some congruence classes mod k1g", namely

7" /k2
(18) {n:n=1(modk)} = U {n:n=10 (mod k1¢™)}.
j=1

First define l§j ) and léj ) implicitly by
10) = lgj) _*_théj), 0< lgj) <"
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and then write a positive integer n = 1) (mod k1g") as
n= lgj) + ¢"m = lgj) + théj) (mod k1¢™),
which is equivalent to
(19) m =1 (mod ky).
Using this setup, we obtain the following result.
LEMMA 4. We have

" /k2 )
(20) ool eW) S e
B n<e j=1 m<ac/qh
n=l(mod k) mzléj) (mod i)

and
a"/k2 . . .

(21) A(-’Elk},l,t) - Z A<—q_h k17lgj)>t - a(lgj)))
j=1

4.3. We now consider the case k = k; ko, where (k,q) =1, (k1,q—1) =1
and all the prime factors of k9 are divisors of qg—1.

LEMMA 5. We have
k2

(22) Ul k) = 3 eI /k)S(alz, e(r/ha) + Olze™ 155
T=1 .
and .
logz
(23) U(:vlz, k, l) = F U(.’L‘IZ, ko, l) + O(;{;e—cl Iogzk)_
1

Proof. 1t is clear that (23) follows from (22) and (7). Therefore we only
need to prove (22). Recall the representation of U(z|z, k, 1) given by (7). For
each 1 < s < k, write s/k = s*/k*, where (s*,k*) = 1. If k* has a prime
factor which does not divide ks, then arguing as in the proof of Theorem 2,
we obtain 1

1S(z|2, e(s/k))| < ze tTogs,
Therefore, it remains only to consider those s which are multiples of k1, in
which case we simply write s = Tk1, where 7 = 0,1,...,ky — 1, and the
proof is complete.

COROLLARY. If k = kiky with (k,q) =1, (k1,9 — 1) = 1 and all the
prime factors of ky are divisors of ¢ — 1, then

(24) A(zlk,1,t) = ki Azlkg, 1, t) + O(ze ™ Tog% ).
1

4.4. Assume now that the prime divisors of k divide q—1. For each pos-
itive integer m, let x(m) = (m,q — 1) and set K = k/ #(k). Then, repeating
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the argument used above and again using Lemmas 1-3, we can conclude
that

Alzlk,1,t) = %A(wln(k),l,t) + O(we™ogar),

4.5. Assume finally that k|q — 1. Since in this case, we have ¢ =
(mod k) for each v € Ny, it follows that n = (mod k) implies that a(n) =
(mod k). Consequently,

(25) A(z|k, 1,t) = {#{n <z:an) = t}

We now have the proper setup to build the proof of Theorem 1.

1
l

ift =1 (modk),
otherwise.

5. The proof of Theorem 1. Given z, define N, as the unique integer
satisfying ¢™* < & < ¢V=+1 so that N, = [}%g].
Further define
B(z|t) := #{n <z : a(n) = t with ¢|n},
a(zt) == A(x]|1,0,t) = #{n < z : a(n) = t}.
Using Theorem 6, Chapter VII, of V. V. Petrov [8] on local distribution of

sums of identically distributed random variables, and by an easy computa-
tion we obtain the following.

LEMMA 6. Let

-1
~ 13 21
mqu and o?== 32-m2=q12
q“
7=1
Then "
z t—mN, z(log N;) )
26 t) = + 0| ———
e JECC

uniformly in t, where p(y) = (1/v/2r)e~¥"/2 is the density function of the
Gaussian law.

REMARK. For a similar result in a more general setup, see Drmota and
Gajdosik [5].

Now, z being fixed, we define the interval I as follows:

I= N, — , N, + .
[ 2 7% 1og?N, 2 "7 log?N,
A simple probabilistic argument shows that
x
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Therefore, it is clear that

(28) Ny(z) = ;B(“”” +0<m>

Let us factorise each t € I as t = t;t9t3, where (t1,9(g — 1)) = 1, the prime
factors of t3 divide g, and the prime factors of ts3 divide ¢ — 1.

Fixing t € I, let h be the smallest positive integer such that ts | ¢”. Note
that

(29) ¢" < N® for a suitable positive constant c3 = c3(q).

To see this, first observe that ¢, must have a divisor to the h-th power,
and therefore Ny > ta > 2" which means that h < log N;/log 2. Hence
¢ < g8 Na/l82 < Ne: which proves (29).

Using (21), we obtaln

a"/ta .
(30) A(zlt,0,t) = Z A< tlt&lw),t_a(ly))),
where
(D 19 = (ta)tej =19 + 1 (0<19 < ¢,

Using (24), we have
(32) A(qﬁh tts, 19t —a(l@))
- —A( ta, 19, ¢ a(zgf’)) +o< 2% IJ—)
q"

Smce k(t3) divides t and 10, a(l(])) = l(J) (mod k(k3)), IV) = l{j) +th§j)
and ¢" = 1 (mod k(ts)), it follows that

t= a(l?)) = léj) (mod x(t3)).
Therefore the main term on the right hand side of (32) is, because of (25),

1 6ts) (|, 0
n Tt a(qht a(ly”) ).

Consequently, using (30), we obtain
t—a l(]))> + O(ze” T %:E%)

" /ta
(33)  A(a]t,0,1) t?’) qZ (
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Using Lemma, 6, and after observing that
W < ¢ <N,

(34) o) = 0(log 1) = O(1og N,),
lo(61) — p(&2)] < &1 — &),

we find that, for each t € I,

log N,,)3/2
3 t-a?)) =a( 5 t)+ 0[5 Loelely.
(35) (q ( ) qh q" N,
Therefore, using (33),

h 3/2
q"k(t3) T z  (log N)
A = — T T — |-
(36) (z]t,0,t) ; a(qh t) +O<t A
Furthermore, by Lemma 6, we have
x
(37)  |¢"a (2;7 t) - a(a:lt)’

| e(S) - s e(5)
+O<—w‘(10g]<7m)3/2>'

But the expression | ... | on the right hand side of (37) is no larger than the
error term, which implies that

qha<£h t) — a(z|t)
q
Hence, using (36) and (38), we obtain

(39) A(z[t,0,t) = K—(t@ a(z|t) + O (%; (log N$)3/2).

From (28) and (39), we then have, since N, = [logz/log g,

(40)  Ny(z) =Y 2% ~(ts) a(x |t)+0< (logNm)3/2)

t
tel

(38)

T
< E (log Nw)S/Z.

X
N log? N,

2 T
T No(g—1) ; ig)elelt) + O((Iogw)(loglogw)l/z)

2logq

" Togz g-—1 ;m(ﬁ alelt) + O((logm)(loglogm)l/z)'

Since a(z|t) = (1 + o(1))a(x|t + 1) uniformly for ¢ € I, k(t3) = k(t), and
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#(t) is periodic mod ¢ — 1, it follows that

q-—2
() 3 wtsalelt) = — (1+0(1) Y- (1) Y alelt — 1
tel . tel 7=0
-2
= (14+0o(1) Y alalr) - —— 3" lr +5) + Ba)
rel 7=0

where E(z) < Y a(z|s), where this last sum runs over those s such that
|s — I;] < ¢ —1, the I;’s being the endpoints of I, that is, I = [I1, Iy]. Since
max a(z|t) < z/+/logz and since the number of s’s counted in S a(x|s) is
bounded by a multiple of ¢, it follows that

(42) Ez) < Joss

Moreover, observe that, because of (27),

43 —z+0(—2 ).
(43) Za(mlr) Tt <logmloglogw>
rel
Finally, observe that
1 q—2 1 g—1
44 o j) = —— ]
(44) =125 = g el)

is a constant.
Therefore, it follows from (40)—(44) that

2z 1 &
Ny(z) = (1+0(1)) logz (g=12 > k),
=1

which implies (2). The proof of Theorem 1 is thus complete.

6. Final remark. A similar result can be established if one replaces
a(n) by a g-additive function f(n) taking integer values and satisfying
f(bg?) = f(b) for all positive integers 7.
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