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For each integer n ≥ 2, let P(n) denote its largest prime factor. Let S :=
{n ≥ 2 : n does not divide P(n)!} and S(x) := #{n ≤ x : n ∈ S}. Erdős (1991) con-
jectured that S is a set of zero density. This was proved by Kastanas (1994) who
established that S(x) = O(x/ logx). Recently, Akbik (1999) proved that S(x) =
O(xexp{−(1/4)√logx}). In this paper, we show that S(x) = xexp{−(2+o(1))×√

logx log logx}. We also investigate small and large gaps among the elements of
S and state some conjectures.
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1. Introduction. For each integer n ≥ 2, let P(n) denote its largest prime

factor and let

S := {n≥ 2 :n does not divide P(n)!
}
, S(x) := #{n≤ x :n∈ S}. (1.1)

Thus, the first 25 elements of S are

4,8,9,12,16,18,24,25,27,32,36,45,48,49,

50,54,64,72,75,80,81,90,96,98,100,
(1.2)

while using a computer, we easily obtain that S(10)=3, S(100)=25, S(1000)=
127, S(104)= 593, S(105)= 2806, S(106)= 13567, S(107)=67252, and S(108)
= 342022.

In 1991, Erdős [2] challenged his readers to prove that S is a set of zero den-

sity. In 1994, Kastanas [4] proved that result, while K. Ford (see [4]) observed

that S(x)=O(x/ logx). In 1999, Akbik [1] proved that S(x)=O(xexp{−(1/4)
×√logx}).

Our main goal here is to prove that

S(x)= xexp
{
−(2+o(1))

√
logx log logx

}
. (1.3)
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In order to prove (1.3), we establish the following two bounds valid for each

fixed δ > 0:

S(x)� xexp
{
−2(1+δ)

√
logx log logx

}
, (1.4)

S(x)� xexp
{
−2(1−δ)

√
logx log logx

}
. (1.5)

Finally, we investigate small and large gaps among the elements of S and

state some conjectures.

2. The lower bound for S(x). Let δ > 0 be small and fixed. Since every

integer n≥ 2 divisible by the square of its largest prime factor must belong to

S, we have that

S(x)≥
∑
p≤√x

∑
mp2≤x
P(m)≤p

1=
∑
p≤√x

∑
m≤x/p2

P(m)≤p

1=
∑
p≤√x

Ψ
(
x
p2
,p
)
, (2.1)

where Ψ(x,y) := #{n≤ x : P(n)≤y}.
Setting u= logx/logy , we recall Hildebrand’s estimate [3]

Ψ(x,y)= xρ(u)
{

1+O
(

log(u+1)
logy

)}
(2.2)

which holds for

exp
{
(log logx)5/3+ε

}≤y ≤ x, (2.3)

where ε > 0 is any fixed real number, and where ρ stands for Dickman’s func-

tion whose asymptotic behaviour is given by

ρ(u)= exp
{
−u

(
logu+ log logu−1+O

(
log logu

logu

))}
(u �→∞). (2.4)

It follows from this last estimate that if u is sufficiently large, then

logρ(u)≥−(1+δ)u logu. (2.5)

Hence, if we choose r sufficiently large, say r ≥ r0 ≥ 2, then for each y ≤ x1/r ,

we have u= logx/logy ≥ r , thereby guaranteeing the validity of (2.5).
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Therefore, it follows from (2.4) and (2.5) that, with u = log(x/p2)/logp =
logx/logp−2,

logρ(u)≥−(1+δ) logx
logp

log logx
(
u≥ r0

)
(2.6)

and hence (2.1) and (2.2) yield

S(x)� x
∑

e(loglogx)5/3+ε≤p≤x1/r

1
p2e(1+δ)(logx/logp) log logx

= x
∫ x1/r

e(log logx)5/3+ε
dπ(t)

t2 ·e(1+δ)(logx/logt) log logx ,

(2.7)

where π(t) stands for the number of primes not exceeding t. Now, set

Lδ(x) :=
√
(1+δ) logx log logx (x ≥ 3) (2.8)

so that, for any δ1 > 0, we have, for x sufficiently large,

[
Lδ(x),

(
1+δ1

)
Lδ(x)

]⊂
[
(log logx)5/3+ε,

1
r

logx
]
. (2.9)

Using this, it follows from (2.7) that setting J(x) := [eLδ(x),e(1+δ1)Lδ(x)],

S(x)� x
∫
t∈J(x)

dπ(t)
t2 ·e(1+δ)(logx/logt) log logx

> x min
t∈J(x)

(
1

t2 ·e(1+δ)(logx/logt) log logx

)∫
t∈J(x)

dπ(t).
(2.10)

Now, observe that since t/logt < π(t) < 2(t/logt) for t ≥ 11, we have that

∫
t∈J(x)

dπ(t)=π(e(1+δ1)Lδ(x)
)−π(eLδ(x))

>
e(1+δ1)Lδ(x)(
1+δ1

)
Lδ(x)

− e
Lδ(x)

Lδ(x)

� e(1+δ1)Lδ(x)(
1+δ1

)
Lδ(x)

.

(2.11)
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On the other hand, setting v = logt and afterwards w = v/Lδ(x), we have

min
t∈J(x)

(
1

t2 ·e(1+δ)(logx/logt) log logx

)

= min
Lδ(x)≤v≤(1+δ1)Lδ(x)

(
1

e2v+(1+δ)(logx/v) log logx

)

= min
1≤w≤1+δ1

(
1

e2wLδ(x)+(1+δ)(logx/wLδ(x)) log logx

)

= min
1≤w≤1+δ1

(
1

e(2w+1/w)Lδ(x)

)

� 1
e(3+2δ1)Lδ(x)

(2.12)

since 2w+1/w ≤ 2+2δ1+1= 3+2δ1 for each w ∈ [1,1+δ1].
Hence, using (2.11) and (2.12), it follows from (2.10) that

S(x)� x
e(1+δ1)Lδ(x)(
1+δ1

)
Lδ(x)

· 1
e(3+2δ1)Lδ(x)

= x e−(2+δ1)Lδ(x)(
1+δ1

)
Lδ(x)

� xe−2(1+δ1)Lδ(x),

(2.13)

which establishes (1.4) by taking δ1 sufficiently small.

3. The upper bound for S(x). First, we establish that

S(x) <
∑

2≤r<logx/ log2

∑
p<x1/r

Ψ
(
x
pr
,pr

)
. (3.1)

Actually, this inequality is based on a very simple observation; namely, the

fact that if n∈ S, then there exist a prime p and an integer r ≥ 2 such that pr

divides n but does not divide P(n)!, in which case P(n) < pr . Hence, writing

n= prm, we have that P(m)≤ P(n) < pr . These conditions imply that ifn∈ S
and n≤ x, then we have r < logx/ log2, p < x1/r , m<x/pr , and P(m) < pr ,

thus proving (3.1).

We now move to find an upper bound for the inner sum on the right-hand

side of (3.1); namely,
∑
p<x1/r Ψ(x/pr ,pr), uniformly for all r ≥ 2. For this

purpose, we fix r ≥ 2 and separate this sum on p into three distinct sums as

follows:

∑
p<x1/r

Ψ
(
x
pr
,pr

)
= S1(x)+S2(x)+S3(x), (3.2)
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where the sums S1(x), S2(x), and S3(x) run, respectively, in the following

ranges:

p ≤ exp
{
(log logx)2

}
,

exp
{
(log logx)2

}
<p ≤ exp

{
2
√

logx log logx
}
,

exp
{
2
√

logx log logx
}
<p <x1/r .

(3.3)

The first sum is negligible since it is clear that, using the well-known estimate,

Ψ(X,Y)�Xe−(1/2) logX/ logY (X ≥ Y ≥ 2) (3.4)

(see, e.g., Tenenbaum [5, Chapter III.5, Theorem 1]), we get that

S1(x) < exp
{
(log logx)2

}
Ψ
(
x,

logx
log2

exp
{
(log logx)2

})

� xe(−1/2+o(1))(logx/(log logx)2).
(3.5)

The third one is also easily bounded since

S3(x) <
∑

exp{2
√

logx log logx}<p<x1/r

x
pr

� x
∑

p>exp{2
√

logx log logx}

1
p2

� xexp
{
−2
√

logx log logx
}
.

(3.6)

To estimate S2(x), we use essentially the same technique as in the proof of

(1.4).

First, it follows from (2.4) that

logρ(u)≤−u log(u) (3.7)

provided u is sufficiently large. Then, with the same approach as in the proof

of (1.4), we get that, for each fixed integer r ≥ 2,

S2(x)� x
∫ 2
√

logx log logx

1

dv
vr−1ev+logx log logx/v . (3.8)
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Now, set f(v) = v+ logx log logx/v . Since f ′(v) = 1− logx log logx/v2 and

f ′(v) = 0 when v = v0 =
√

logx log logx, it is easy to see that v0 is indeed a

minimum for f . From this, it follows that

v+ logx log logx
v

≥ f (v0
)= 2

√
logx log logx for each v ∈

[
1,2

√
logx log logx

]
.

(3.9)

Using this in (3.8), we conclude that

S2(x)� xexp
{
−2
√

logx log logx
}∫ 2

√
logx log logx

1

dv
vr−1

� x log
(
2
√

logx log logx
)

exp
{
−2
√

logx log logx
}
.

(3.10)

Combining (3.1), (3.2), (3.5), (3.6), and (3.10), we get (1.5).

4. Small and large gaps among elements of S. We can easily show that

there are infinitely many n∈ S such that n+1∈ S. This follows from the fact

that the Pell equation

x2−2y2 = 1 (4.1)

has infinitely many solutions. Indeed, if (x,y) is a solution of (4.1), then by

setting n= 2y2 and n+1= x2, we have that P(n)2|n and P(n+1)2|(n+1), in

which case n does not divide P(n)! and n+1 does not divide P(n+1)!, which

guarantees that n,n+1∈ S. In fact, if T2 stands for the set of those n∈ S such

that n+1 ∈ S and if T2(x) = #{n ≤ x : n ∈ T2}, then it follows easily from

the above that T2(x)� logx. In fact, most certainly, the true order of T2(x)
is much larger than logx, but we could not prove it.

It seems strange that such twin elements of S, that is, pairs of numbersn and

n+1 both in S, are more difficult to count than pairs of numbers n and n+4

both in S. Indeed, if F4 stands for the set of those n ∈ S such that n+4 ∈ S
and if F4(x)= #{n≤ x :n∈ F4}, then we can show that

F4(x)� x1/4

logx
. (4.2)

Indeed, observe that given any prime p, then both numbers n = p4−4p2 =
p2(p2−4)= p2(p−2)(p+2) and n+4= p4−4p2+4= (p2−2)2 belong to S.

Since there are at least π(x1/4) such pairs up to x, estimate (4.2) follows from
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Chebychev’s inequality π(y) � y/ logy . Finally, note that T2(108) = 1175,

while F4(108)= 1261.

More generally, we conjecture that given any positive k ≥ 3, the set Tk :=
{n ∈ S : n+ 1, n+ 2, . . . ,n+ k− 1 ∈ S} is also an infinite set. We could not

prove this to be true, even in the case where k= 3. Note that the only numbers

less than 108 belonging to T3 are 48, 118579, 629693, 1294298, 9841094, and

40692424.

As for large gaps among consecutive elements of S, it follows from the fact

that S is a set of zero density that given any positive integer k, there are infin-

itely many integers n such that the intervals [n,n+k] contain no element of S.

Table 4.1 gives, for each positive integer k, the smallest integer n = n(k) ∈ S
such that bothn andn+100k belong to S, while the open interval (n,n+100k)
contains no element of S.

Table 4.1

100k n=n(k)
100 21025

200 78408

300 369303

400 1250256

500 1639078

100k n=n(k)
600 738606

700 946832

800 8000325

900 5382888

1000 5775000

It is quite easy to show that

n(k)≥ 2500k2−100k+1. (4.3)

Indeed, since all perfect squares belong to S and since (m+1)2−m2 = 2m+
1, it follows that the interval (n,n+2m+1) contains no element of S and,

therefore, that n ≥m2. Hence, given a positive integer k, choose m so that

100k = 2m+2, that is, m = 50k−1. Then, clearly, we have that n(k) ≥m2 =
(50k−1)2, which proves (4.3).

It would also be interesting to obtain a decent upper bound for n(k).
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