ON A THIN SET OF INTEGERS INVOLVING THE LARGEST PRIME FACTOR FUNCTION

JEAN-MARIE DE KONINCK and NICOLAS DOYON

Received 22 April 2002

For each integer $n \ge 2$, let P(n) denote its largest prime factor. Let $S := \{n \ge 2 : n \text{ does not divide } P(n)!\}$ and $S(x) := \#\{n \le x : n \in S\}$. Erdős (1991) conjectured that S is a set of zero density. This was proved by Kastanas (1994) who established that $S(x) = O(x/\log x)$. Recently, Akbik (1999) proved that $S(x) = O(x \exp\{-(1/4)\sqrt{\log x}\})$. In this paper, we show that $S(x) = x \exp\{-(2+o(1)) \times \sqrt{\log x \log\log x}\}$. We also investigate small and large gaps among the elements of S and state some conjectures.

2000 Mathematics Subject Classification: 11B05, 11N25.

1. Introduction. For each integer $n \ge 2$, let P(n) denote its largest prime factor and let

 $S := \{ n \ge 2 : n \text{ does not divide } P(n)! \}, \qquad S(x) := \#\{ n \le x : n \in S \}.$ (1.1)

Thus, the first 25 elements of *S* are

$$\begin{array}{c} 4,8,9,12,16,18,24,25,27,32,36,45,48,49,\\ 50,54,64,72,75,80,81,90,96,98,100, \end{array} \tag{1.2}$$

while using a computer, we easily obtain that S(10) = 3, S(100) = 25, S(1000) = 127, $S(10^4) = 593$, $S(10^5) = 2806$, $S(10^6) = 13567$, $S(10^7) = 67252$, and $S(10^8) = 342022$.

In 1991, Erdős [2] challenged his readers to prove that *S* is a set of zero density. In 1994, Kastanas [4] proved that result, while K. Ford (see [4]) observed that $S(x) = O(x/\log x)$. In 1999, Akbik [1] proved that $S(x) = O(x \exp\{-(1/4) \times \sqrt{\log x}\})$.

Our main goal here is to prove that

$$S(x) = x \exp\left\{-\left(2+o(1)\right)\sqrt{\log x \log\log x}\right\}.$$
(1.3)

In order to prove (1.3), we establish the following two bounds valid for each fixed $\delta > 0$:

$$S(x) \gg x \exp\left\{-2(1+\delta)\sqrt{\log x \log\log x}\right\},\tag{1.4}$$

$$S(x) \ll x \exp\left\{-2(1-\delta)\sqrt{\log x \log\log x}\right\}.$$
 (1.5)

Finally, we investigate small and large gaps among the elements of *S* and state some conjectures.

2. The lower bound for S(x). Let $\delta > 0$ be small and fixed. Since every integer $n \ge 2$ divisible by the square of its largest prime factor must belong to *S*, we have that

$$S(x) \ge \sum_{\substack{p \le \sqrt{x} \\ P(m) \le p}} \sum_{\substack{p \le \sqrt{x} \\ P(m) \le p}} 1 = \sum_{\substack{p \le \sqrt{x} \\ P(m) \le p}} \sum_{\substack{p \le \sqrt{x} \\ P(m) \le p}} 1 = \sum_{\substack{p \le \sqrt{x} \\ P(m) \le p}} \Psi\left(\frac{x}{p^2}, p\right),$$
(2.1)

where $\Psi(x, y) := \#\{n \le x : P(n) \le y\}.$

Setting $u = \log x / \log y$, we recall Hildebrand's estimate [3]

$$\Psi(x, y) = x\rho(u) \left\{ 1 + O\left(\frac{\log(u+1)}{\log y}\right) \right\}$$
(2.2)

which holds for

$$\exp\left\{ (\log\log x)^{5/3+\varepsilon} \right\} \le \gamma \le x,\tag{2.3}$$

where $\varepsilon > 0$ is any fixed real number, and where ρ stands for Dickman's function whose asymptotic behaviour is given by

$$\rho(u) = \exp\left\{-u\left(\log u + \log\log u - 1 + O\left(\frac{\log\log u}{\log u}\right)\right)\right\} \quad (u \to \infty).$$
 (2.4)

It follows from this last estimate that if u is sufficiently large, then

$$\log \rho(u) \ge -(1+\delta)u \log u. \tag{2.5}$$

Hence, if we choose *r* sufficiently large, say $r \ge r_0 \ge 2$, then for each $y \le x^{1/r}$, we have $u = \log x / \log y \ge r$, thereby guaranteeing the validity of (2.5).

1186

ON A THIN SET OF INTEGERS INVOLVING THE LARGEST PRIME ... 1187

Therefore, it follows from (2.4) and (2.5) that, with $u = \log(x/p^2)/\log p = \log x/\log p - 2$,

$$\log \rho(u) \ge -(1+\delta) \frac{\log x}{\log p} \log \log x \quad (u \ge r_0)$$
(2.6)

and hence (2.1) and (2.2) yield

$$S(x) \gg x \sum_{e^{(\log\log x)^{5/3+\varepsilon}} \le p \le x^{1/r}} \frac{1}{p^2 e^{(1+\delta)(\log x/\log p)\log\log x}}$$

$$= x \int_{e^{(\log\log x)^{5/3+\varepsilon}}}^{x^{1/r}} \frac{d\pi(t)}{t^2 \cdot e^{(1+\delta)(\log x/\log t)\log\log x}},$$
(2.7)

where $\pi(t)$ stands for the number of primes not exceeding *t*. Now, set

$$L_{\delta}(x) := \sqrt{(1+\delta)\log x \log\log x} \quad (x \ge 3)$$
(2.8)

so that, for any $\delta_1 > 0$, we have, for *x* sufficiently large,

$$[L_{\delta}(x), (1+\delta_1)L_{\delta}(x)] \subset \left[(\log\log x)^{5/3+\varepsilon}, \frac{1}{r}\log x \right].$$
(2.9)

Using this, it follows from (2.7) that setting $J(x) := [e^{L_{\delta}(x)}, e^{(1+\delta_1)L_{\delta}(x)}]$,

$$S(x) \gg x \int_{t \in J(x)} \frac{d\pi(t)}{t^2 \cdot e^{(1+\delta)(\log x/\log t)\log\log x}}$$

> $x \min_{t \in J(x)} \left(\frac{1}{t^2 \cdot e^{(1+\delta)(\log x/\log t)\log\log x}}\right) \int_{t \in J(x)} d\pi(t).$ (2.10)

Now, observe that since $t/\log t < \pi(t) < 2(t/\log t)$ for $t \ge 11$, we have that

$$\int_{t\in J(x)} d\pi(t) = \pi \left(e^{(1+\delta_1)L_{\delta}(x)} \right) - \pi \left(e^{L_{\delta}(x)} \right)$$
$$> \frac{e^{(1+\delta_1)L_{\delta}(x)}}{(1+\delta_1)L_{\delta}(x)} - \frac{e^{L_{\delta}(x)}}{L_{\delta}(x)}$$
$$\gg \frac{e^{(1+\delta_1)L_{\delta}(x)}}{(1+\delta_1)L_{\delta}(x)}.$$
(2.11)

On the other hand, setting $v = \log t$ and afterwards $w = v/L_{\delta}(x)$, we have

$$\min_{t \in J(x)} \left(\frac{1}{t^2 \cdot e^{(1+\delta)(\log x/\log t)\log\log x}} \right)$$

$$= \min_{L_{\delta}(x) \le v \le (1+\delta_1)L_{\delta}(x)} \left(\frac{1}{e^{2v + (1+\delta)(\log x/v)\log\log x}} \right)$$

$$= \min_{1 \le w \le 1+\delta_1} \left(\frac{1}{e^{2wL_{\delta}(x) + (1+\delta)(\log x/wL_{\delta}(x))\log\log x}} \right)$$

$$= \min_{1 \le w \le 1+\delta_1} \left(\frac{1}{e^{(2w+1/w)L_{\delta}(x)}} \right)$$

$$\gg \frac{1}{e^{(3+2\delta_1)L_{\delta}(x)}}$$
(2.12)

since $2w + 1/w \le 2 + 2\delta_1 + 1 = 3 + 2\delta_1$ for each $w \in [1, 1 + \delta_1]$. Hence, using (2.11) and (2.12), it follows from (2.10) that

$$S(x) \gg x \frac{e^{(1+\delta_1)L_{\delta}(x)}}{(1+\delta_1)L_{\delta}(x)} \cdot \frac{1}{e^{(3+2\delta_1)L_{\delta}(x)}}$$

= $x \frac{e^{-(2+\delta_1)L_{\delta}(x)}}{(1+\delta_1)L_{\delta}(x)}$
 $\gg x e^{-2(1+\delta_1)L_{\delta}(x)}.$ (2.13)

which establishes (1.4) by taking δ_1 sufficiently small.

3. The upper bound for S(x). First, we establish that

$$S(x) < \sum_{2 \le r < \log x / \log 2} \sum_{p < x^{1/r}} \Psi\left(\frac{x}{p^r}, pr\right).$$
(3.1)

Actually, this inequality is based on a very simple observation; namely, the fact that if $n \in S$, then there exist a prime p and an integer $r \ge 2$ such that p^r divides n but does not divide P(n)!, in which case P(n) < pr. Hence, writing $n = p^r m$, we have that $P(m) \le P(n) < pr$. These conditions imply that if $n \in S$ and $n \le x$, then we have $r < \log x / \log 2$, $p < x^{1/r}$, $m < x/p^r$, and P(m) < pr, thus proving (3.1).

We now move to find an upper bound for the inner sum on the right-hand side of (3.1); namely, $\sum_{p < x^{1/r}} \Psi(x/p^r, pr)$, uniformly for all $r \ge 2$. For this purpose, we fix $r \ge 2$ and separate this sum on p into three distinct sums as follows:

$$\sum_{p < x^{1/r}} \Psi\left(\frac{x}{p^r}, pr\right) = S_1(x) + S_2(x) + S_3(x), \tag{3.2}$$

where the sums $S_1(x)$, $S_2(x)$, and $S_3(x)$ run, respectively, in the following ranges:

$$p \le \exp\left\{(\log\log x)^2\right\},$$
$$\exp\left\{(\log\log x)^2\right\}
$$\exp\left\{2\sqrt{\log x \log\log x}\right\} (3.3)$$$$

The first sum is negligible since it is clear that, using the well-known estimate,

$$\Psi(X,Y) \ll Xe^{-(1/2)\log X/\log Y} \quad (X \ge Y \ge 2)$$
(3.4)

(see, e.g., Tenenbaum [5, Chapter III.5, Theorem 1]), we get that

$$S_{1}(x) < \exp\{(\log \log x)^{2}\}\Psi\left(x, \frac{\log x}{\log 2}\exp\{(\log \log x)^{2}\}\right)$$

$$\ll xe^{(-1/2+o(1))(\log x/(\log \log x)^{2})}.$$
(3.5)

The third one is also easily bounded since

$$S_{3}(x) < \sum_{\exp\{2\sqrt{\log x \log \log x}\} < p < x^{1/r}} \frac{x}{p^{r}}$$

$$\ll x \sum_{p > \exp\{2\sqrt{\log x \log \log x}\}} \frac{1}{p^{2}}$$

$$\ll x \exp\left\{-2\sqrt{\log x \log \log x}\right\}.$$
(3.6)

To estimate $S_2(x)$, we use essentially the same technique as in the proof of (1.4).

First, it follows from (2.4) that

$$\log \rho(u) \le -u \log(u) \tag{3.7}$$

provided *u* is sufficiently large. Then, with the same approach as in the proof of (1.4), we get that, for each fixed integer $r \ge 2$,

$$S_2(x) \ll x \int_1^{2\sqrt{\log x \log \log x}} \frac{dv}{v^{r-1} e^{v + \log x \log \log x/v}}.$$
(3.8)

Now, set $f(v) = v + \log x \log \log x/v$. Since $f'(v) = 1 - \log x \log \log x/v^2$ and f'(v) = 0 when $v = v_0 = \sqrt{\log x \log \log x}$, it is easy to see that v_0 is indeed a minimum for f. From this, it follows that

$$v + \frac{\log x \log \log x}{v}$$

$$\geq f(v_0) = 2\sqrt{\log x \log \log x} \quad \text{for each } v \in \left[1, 2\sqrt{\log x \log \log x}\right].$$
(3.9)

Using this in (3.8), we conclude that

$$S_{2}(x) \ll x \exp\left\{-2\sqrt{\log x \log \log x}\right\} \int_{1}^{2\sqrt{\log x \log \log x}} \frac{dv}{v^{r-1}}$$

$$\ll x \log\left(2\sqrt{\log x \log \log x}\right) \exp\left\{-2\sqrt{\log x \log \log x}\right\}.$$
(3.10)

Combining (3.1), (3.2), (3.5), (3.6), and (3.10), we get (1.5).

4. Small and large gaps among elements of *S***.** We can easily show that there are infinitely many $n \in S$ such that $n + 1 \in S$. This follows from the fact that the Pell equation

$$x^2 - 2y^2 = 1 \tag{4.1}$$

has infinitely many solutions. Indeed, if (x, y) is a solution of (4.1), then by setting $n = 2y^2$ and $n+1 = x^2$, we have that $P(n)^2 | n$ and $P(n+1)^2 | (n+1)$, in which case n does not divide P(n)! and n+1 does not divide P(n+1)!, which guarantees that $n, n+1 \in S$. In fact, if T_2 stands for the set of those $n \in S$ such that $n+1 \in S$ and if $T_2(x) = \#\{n \le x : n \in T_2\}$, then it follows easily from the above that $T_2(x) \gg \log x$. In fact, most certainly, the true order of $T_2(x)$ is much larger than $\log x$, but we could not prove it.

It seems strange that such *twin elements* of *S*, that is, pairs of numbers *n* and n + 1 both in *S*, are more difficult to count than pairs of numbers *n* and n + 4 both in *S*. Indeed, if F_4 stands for the set of those $n \in S$ such that $n + 4 \in S$ and if $F_4(x) = \#\{n \le x : n \in F_4\}$, then we can show that

$$F_4(x) \gg \frac{x^{1/4}}{\log x}.$$
 (4.2)

Indeed, observe that given any prime p, then both numbers $n = p^4 - 4p^2 = p^2(p^2-4) = p^2(p-2)(p+2)$ and $n+4 = p^4 - 4p^2 + 4 = (p^2-2)^2$ belong to S. Since there are at least $\pi(x^{1/4})$ such pairs up to x, estimate (4.2) follows from

Chebychev's inequality $\pi(y) \gg y/\log y$. Finally, note that $T_2(10^8) = 1175$, while $F_4(10^8) = 1261$.

More generally, we conjecture that given any positive $k \ge 3$, the set $T_k := \{n \in S : n + 1, n + 2, ..., n + k - 1 \in S\}$ is also an infinite set. We could not prove this to be true, even in the case where k = 3. Note that the only numbers less than 10^8 belonging to T_3 are 48, 118579, 629693, 1294298, 9841094, and 40692424.

As for large gaps among consecutive elements of *S*, it follows from the fact that *S* is a set of zero density that given any positive integer *k*, there are infinitely many integers *n* such that the intervals [n, n+k] contain no element of *S*. Table 4.1 gives, for each positive integer *k*, the smallest integer $n = n(k) \in S$ such that both *n* and n + 100k belong to *S*, while the open interval (n, n+100k) contains no element of *S*.

1	A.	BT	E	4.	1

100k	n = n(k)	100k	n = n(k)
100	21025	600	738606
200	78408	700	946832
300	369303	800	8000325
400	1250256	900	5382888
500	1639078	1000	5775000

It is quite easy to show that

$$n(k) \ge 2500k^2 - 100k + 1. \tag{4.3}$$

Indeed, since all perfect squares belong to *S* and since $(m + 1)^2 - m^2 = 2m + 1$, it follows that the interval (n, n + 2m + 1) contains no element of *S* and, therefore, that $n \ge m^2$. Hence, given a positive integer *k*, choose *m* so that 100k = 2m + 2, that is, m = 50k - 1. Then, clearly, we have that $n(k) \ge m^2 = (50k - 1)^2$, which proves (4.3).

It would also be interesting to obtain a decent upper bound for n(k).

ACKNOWLEDGMENT. This research was supported in part by a grant from the Natural Sciences and Engineering Research Council (NSERC).

REFERENCES

- [1] S. Akbik, On a density problem of Erdős, Int. J. Math. Math. Sci. 22 (1999), no. 3, 655–658.
- [2] P. Erdős, Problem 6674, Amer. Math. Monthly 98 (1991), no. 10, 965.
- [3] A. Hildebrand, On the number of positive integers $\leq x$ and free of prime factors > y, J. Number Theory **22** (1986), no. 3, 289–307.
- [4] I. Kastanas, Solution to Problem 6674, Amer. Math. Monthly 101 (1994), no. 2, 179.

J.-M. DE KONINCK AND N. DOYON

G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cam-[5] bridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995.

Jean-Marie De Koninck: Département de Mathématiques et de Statistique, Université Laval, Québec, Québec, Canada G1K 7P4 E-mail address: jmdk@mat.ulaval.ca

Nicolas Doyon: Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Québec, Canada H3C 3J7

E-mail address: doyon@dms.umontreal.ca

1192