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ON THE SOLUTIONS OF oa(n) = oa(n +£)

J.-M. De Koninck (Québec, Canada)

Abstract.  For each integer n 2 1, let 03(n) = Zdz. We show that
d|n

if a famous conjecture of Schinzel is true, then o3(n) = oy(n + 2) has an

infinite number of solutions. We also examine the solutions of the more

general equation oy(n) = o2(n + £), where £ is a fixed positive integer.

1. Introducj:ion

For each integer n > 1, let oy(n) = Zcﬂ - It is mentioned in the book of
din
R.Guy [1], page 68, that Paul Erdés “doubts that

(1) o2(n) = g3(n + 2)

has infinitely many solutions”. We shall show that if a famous conjecture of
Schinzel often called Hypothesis H is true, then (1) has an infinite number
of solutions. We will also show how to construct such an infinite family of
solutions and provide all 24 solutions < 10°.

We also study the more general equation
(2) 0'2(71) = Uz(n + E),
where £ is a fixed positive integer. In particular, we will show that if £ is odd,

(2) has only a finite number of solutions, while if ¢ is even, a large family of
solutions of (2) can be derived from those of (1).
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2. The case £ odd

Given a positive odd integer £, we will show that
3) o3(n) = oa(n + )

has only a finite number of solutions, and in some cases none at all.
Actually we shall show that, given a fixed odd positive integer £,

(4) o2(n) < oa(n+4£) if n isodd, :
(5) oa(n) > o3(n+£) if n is even and large enough.

First assume n is odd. Define the positive integer o implicitely by

(6) n+£:2a."2t£ with (2“, ”2*;[):1.

The function o3(n) being multiplicative, it follows from (6) that

£ 4o+l _ 1 {
02(n+£) = 0‘2(2&)0'2 (TI,;‘; ) = 3 o2} <n2_z ) >

4o+l 1 fp g
3 22

On the other hand, since n has no even divisors,

> )22§(n+£)2.

n?

32

n2 7!'2
= +...= —n”°,

tpte=3

o2(n) < n? +

2
Since g > —%—, inequality (4) holds indeed for all odd n > 1.

Assume now that n is even and choose « so that

n=2". " with (2“,3) =1.

2¢ 2¢
Then
oile) = (1) = 5 () > = (1) B
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while
(n+9?  (n+4)°
32 + 52

2
oa(n+£) < (n+ ) + +...:%(n+e)2.

b s

2
Since Z— > T and £ is fixed, g-nz > er—(n +£)% if n is large enough, which
proves (5).

Note that it is easy to show that n = 6 is the only solution of (3).

Using a computer one can easily check that (3) has no solution if £ = 3, 9,
15, 27, 33, 35, 39, 45, 51, 57, 69, 75, 81, 87, 93 or 99.

On the other hand, it is easy to show that if (4,6)=(£,7) =1, thenn = 6¢
is a solution of (3). Indeed, since 5(6) = o5(7), we have

o3(n) = 02(68) = 03(6)0a(£) = 02(T)o2(£) = 03(78) = oa(n + £).

3. The case £ =2

We shall first look for odd solutions n of
(7) oa(n) = oa(n + 2)
which satisfy
(8) n = pgq, n+ 2= rs,

where p > ¢ and r < s are odd primes.
It follows from (7) and (8) that

1-{—pz+qz+n2:1—|—7'2-f—.s2+(n+2)2
P+ =r’+s2+4an+4
PP+ ¢ —2pg =1+ 5%+ 2pg+4
P—gqg=7r+s.
Hence we shall look for distinct odd primes p,q,r,s such that
p_q:T+S: p>41
. {

pq+2=rs, r < S.
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For such primes, we must have pg+ 2 = r(p — ¢ — r) = pr — (¢ + r)r, from
which it follows that » > ¢ and hence that

(10) g<r<s.
Now, using pq + 2 = rs and (10), we have

(11) gr+s+g)+2=rs

and therefore 2¢gs + ¢ +2 > g(r + s+ ¢) + 2 = rs, from which we obtain
2¢s5 + (g% +2) — rs > 0 and hence

249 249
A2, T+
S r

r<2q+

1t follows that »2 — 2¢r — (g2 + 2) < 0, which yields
g<r<q+2(¢%+1).
Hence if we set A = r — ¢, we have, using (11),

_(r+e+2  (rH+qq+2 (2q+A)q+2:q+q2+1
T Tr-¢ A T A A2

First consider the case A = 2. In this case,

s=¢+q+1 and p=q+r+s=¢+(@+2)+(*+q+1)=¢*+3q¢+3.
Hence, if we can find infinitely many ¢’s such that

(12) g, ¢+2, ¢*+q+1 and ¢*>+3¢+3 are all primes,

then equation (7) has infinitely many solutions. But it follows from the
following conjecture of Schinzel that there exist infinitely many such quadruples
of primes.

HYPOTHESIS H (A.Schinzel and W .Sierpinski [2]) Let k& > 1 and fi(2),...,
fe(z) be irreducible polynomials with integer coefficients with positive leading
coefficients. Assume that there exists no integer > 1 dividing the products
fi(n) ... fx(n) for all integers n. Then there exist infinitely many positive
integers m such that oll numbers fi(m),..., fr(m) are primes.
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If ¢ = 5, then the prime quadruple (5, 7, 31, 43) yields the solu-
tion n = pg = 43 -5 = 215. The next quadruple of the form (12) is
(1091, 1093, 1191373, 1193557) which provides the solution

n = pg= 11935571091 = 1302170687.

But there are smaller solutions!
Small solutions n = pq of (7) will be obtained if p and ¢ are relatively
small. Since
2
p=q+r+s, r=q+ A and s:q+gA—_7’-2—1,
the size of p will be contained if s is not too large. Hence, searching for solutions

of (7) using a computer, we need to consider those “admissible” values of A
which are big enough to keep 2(¢%? + 1)/A small, but not too big so that

. S . . 20+ 1) .
r = g + A remains small. This will be accomplished if A + s as

small as possible. Clearly this happens if A & ¢v/2. Moreover it is clear that
A must also satisfy ¢ = —1 (mod A/2) which sets the further restriction

it 1. It turns out that A is “admissible” if
A/2

A=22T[ 9" (e=1,2 p=1 (mod4)).

Ala
P25

The first values of A are therefore 2, 10, 26, 34, 50, 122, 130, 202, ...

Besides the even solutions n = 24 and n = 280, we found, using the above
algorithm, 78 solutions of oa(n) = o3(n + 2) below 1012, Below, we give all 24
solutions smaller than 10°.

We believe that, besides n = 24 and n = 280, all solutions of o3(n) =
= 03(n +2) are of the type described in our algorithm, but we could not prove
this.

4. The case of even ¢ > 4

Let £ > 4 be an even integer. It is clear that the method outlined in
Section 3 produces all solutions of (7) of the form n = pq, where p and q are
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24 = 23.3 49436927 = 2843-17389
215 = 5.43 78436511 = 2503-31337
280 = 22.5.7 82842911 = 2903-28537
1079 = 13-83 101014631 = 247340847
947519 = 163-5813 166828031 = 4363-38237
1362239 = 467.2917 225622151 = 4217-53503
2230271 = 463-4817 225757799 = 2801-80599
14939999 = 1279.11681 250999559 = 655338303
19720007 = 457-43151 377129087 = 695954193
32509439 = 1783.18233 554998 751 = 3727148913
45581759 = 827-55117 619606439 = 697788807
45841247 = 607- 75521 846765431 = 7853-1107827

odd distinct primes. Let n = pg be such a solution of o2(n) = ¢y(n + 2), but
which also satisfies (£, n) = (¢,n + 2) = 1. Clearly such a solution exists. We

claim that m = 5" = 5he is a solution of o9(m) = oo(m + £). This follows

immediately from

oa(m) = oy (-;ipq) =0y (g) o2(pg) = 02 (g) oa(pg +2) =
= oy (gpq + e) = oy(m + {).

This shows in particular that o3(n) = oa(n + £), with £ even, has an infinite
number of solutions if o5(n) = o2(n + 2) has an infinite number of solutions.

This shows in particular that if o3(n) = o3(n + 2) has an infinite number
of solutions, then so does 0'2(n) = o3(n + £) for each even integer £ > 4.
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