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On the frequency of k-deficient numbers

By JEAN-MARIE DE KONINCK (Quebec) and IMRE KATAI (Budapest)

Abstract. A number n is said to be k-deficient if o(n) < kn. We prove that,
given k > 1 and a function H(z) satisfying H(z)/(log loglog z - log loglog log z) = too
then, if n is sufficiently large, there is always a k-deficient number between n and
n+ H(n).

§1. Introduction

Let o(n) stand for the sum of the divisors of the positive integer 7.
A number n is called deficient if o(n) < 2n. It is well known that roughly
% of the positive integers are deficient. Using a method developed by
GALAMBOS [2] and KATAI [3], SANDOR [4] proved that if n is sufficiently
large, then there is always a deficient number between n and n + log? n.

Given a real number k > 1, we shall say that a number n is k-deficient
if o(n) < kn. The density of the set of k-deficient numbers exists and
steadily decreases to 0 as k — 1. We shall prove that, given k>1landa

function H(z) satisfying

H
(1) lim ———(f)——— = 400
z—oo logs x - logy T
(where log, z stands for the function logz iterated £ times), then, if n >
no = no(k, H), there is always a k-deficient number between n and n +
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Also, letting

(2) f(n) = Z ! for each n > 2

pin

and given two real numbers 7 > 0 and 0 < § < 1, we shall prove that there
exists a sequence {z,} tending to 4+oo such that

min n) > v=12,...).
Mn%#_;gmgmf() n (v=12,...)

§2. Main results
Theorem 1. Let f be as in (2) and H.= H(z) as in (1), then

Theorem 2. If H = H(z) satisfies (1), then

(4) lim min a(n) =
z—oog<n<z+H N
Thus, given any real number k > 1, there exist ng = no(k) such that,

for all integers n > no, the interval [n,n + H(n)] contains at least one

k-deficient number.

Theorem 3. Given two real numbers n > 0 and 0 < £ < 1, there
exists a sequence {z,} tending to +-oo such that

5 min n) > v=12...).
(5) O S L B )

§3. Preliminary results

e

In this paper, we use the following notations. For each z > e, we
let H = H(z) be a function satisfying (1). Let £ > 0 be arbitrarily small
but fixed throughout the text. For each z > e, we set ¥ = Y(z,e) =
2(log )1/ (1+e),
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l;n:.t.ing; [ be as in (2), we define f;(n), 1 < i < 4, for each integer
1o 2, by

M=o Am=Y 1

pln pln
s <Y
) 1 1
him= 3 2 fm =37
pln pln
H<p<Y p<H

so thil [ o= fy <k fa = fo o+ f3 + fa.

Givon I = H(x) and a real number 6, 0 < § < 1, let
") M = M(5,H) = {n € Jo,a + H] : p(n) > H°},

whero p(n) stands for the smallest prime factor of n. We write #M to de-
note ity cardinality. Finally ¢ stands for a positive constant, not necessarily
the snme at each occurence.

We shall be using the following known estimates, which are all conse-
juonces of the Prime Number Theorem:

(S) II P = e(l“‘f“()(l))m,

P

e 1
(" Lgmloglogx-kc—!-o(l),

P

.
loga’ (here +y is Euler’s constant)

iﬁ;emmn 1. There exists a real number zy such that if z > z,, then
Ja(n) « 26 for all n < 22. -

, Write 2 = p; < py < ... for the sequence of all primes.
n5 2w, let ¢q1,... ,q- be the prime divisors of n which are larger
than Y. "Then, writing s = 7(Y’), we have, using (8),

PID2 - Deq1q2 - Gr < P1D3 ... D5 < 2zE3 Y < 262V
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provided z is large enough. Moreover since psi; < g; for each positive
integer j, we have

(12) DiP2 . Potr < P1D2 -+ Psi - - dr S T
and
L1

( ) ( ) ; Ps+j
Clearly inequality (12) implies that

s+r

Zlogpj <logz + 2Y,

i=1

while it follows from (8) that

r+s
S logp; = (1 + 0(1))Psr-
j=1

Whence, combining these last two relations, we have
(14) pssr < (14 0(1))(logz + 2Y).

Furthermore if follows from (13), (9) and (14) and that

( )_il < a 1 <lo 10gp8+1‘
Fal) = G T TPt ® logY
log(log z + 2Y')

< 2
s log log(2(log z)1/(1+9)) <%

if z is sufficiently large.

Lemma 2. Given 0 < & < & and letting M be as in (7), there exist
two positive constants ¢y = €1 (6) and co = c2(6) such that lims_o c1(8) =
limg_,o c2(6) = 1 and

#M < ca.

" " e (3)

Fl

e A B e
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ProOF. This result follows easily from classical sieve theory, for in-
slance by using Lemma 2.1 of ELLIOTT [1]. O

Lemma 8. Letting fa be as in (6), we have

Proow, If o is sufficiently large, then, using (9),

s sms > ([EEE]-E])

p<n<ze+H H<p<Y p

‘'hen, using the left inequality of (15) followed by (10), we get that, due
to the choice of H(z) given by (1) and denoting by p(z) the quotient

1 log H logY log H

— M E <ch -1

T fa(n) <c H og (1ogH) <K T loglogY
log,

< o(@) logy zlog, 7

1
logs z = ol o(1),

a8 @ = 00, which proves (16). O

Lemma 4. Letting f4 be as in (6), we have

(17) lim —— > fa(n) =0.

D>
s D
p(m)>H"

H
1+ Z ") = 21 + 227
\/FSPSHP
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-say. Applying Lemma 2 to estimate the inner sum of 31, we get, using (11),

-5
202 H H 1 Hl
S ZH p2logH — 5log H H® log H® 5210g2H>

Since it is clear that Xp < eV H, it follows from the left inequality of (15),
that

Zf4(n)<célogﬂ( HS +\/ﬁ)

62log®> H
nEM
1 ~logH
+ =o(1) (z— 00),
< 5H? logH H O
which proves (17). O

§4. Proof of the main results

ProOOF of Theorem 1. Recalling that f =

fo + f3 + fa and using
Lemmas 1, 3 and 4, estimate (3) follows. -0

PROOF of Theorem 2. First observe that, for all n > 2,

a(n) 1 1 1)
—_— L = 1 -—+_-—+...+___
n H(+p p? p*

pe|ln
1 1 1
=exp{ Zlog(1+—+—-§+ +—07>}
pein PP i
1
< exp {225} = exp {Zf(n)},

pln

where we used the fact that log 1—— < 2y for all positive real numbers
Y g _ The result then follows from Theorem 1. O

PROOF of Theorem 3. It is enough to prove that given an arbitrary
large number X, there exists a number z > X and a particular integer 1
satisfying

-2—<n<a: and min f(m) >,

n<mgn+r

T R
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whore 7 = [ 1=£ Jog, 2] + 1.

S0 we %mt with a large number z > X with r defined as above. Then,
using (9), we have

S = Z

p<(1—-§) log z

We now split the sum S into r sums S; in such a way that each subsum S;
i larger than n. Foreach 1 <e <, let p; be the set of primes appearing
in the sum S; and set P; = [[ ¢, p- Using (8), we have that

T
(18) Q= HPZ- = I p<etuRen =gl
. p<(1—§) logx
provided 2 has been chosen large enough. Then consider the system of

COngruences
n=0 (mod Py),

n=—1 (mod Py),

n=—r+1 (mod F).

By the Chinese Remainer Theorem, this system of congruences has a so-
lution ng < Q < z*~¢/2, because of (18)

Since ng + sQ, w1th s=0,1,2,.
us choose s such that

, are all solutions of this system, let

z
§<n:=n0+sQ<x,

wuch a choice being possible because of (18). For such an integer n, we then
have that for each integer m € [n,n+r — 1], we have f(m) 2 > ol P L>
m

, pep
for the appropriate integer 4, thus completing the proof of Theorem 3. [

§5. Final remark

It is clear that one can obtain similar results when f(n) is replaced
by fa(n) = me -& (for a fixed o> 0) and o(n) by oa(n) := 324, d°
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