A New Characteristic of the Identity Function

Jean-Marie De Koninck*

Département de Mathématiques et de Statistique, Université Laval, Québec G1K 7P4, Canada

and

Imre Kátai[†] and Bui Minh Phong

Computer Algebra Department, Eötvös Loránd University, Müzeum krt. 6–8, 1088 Budapest, Hungary

Received March 4, 1996; revised November 5, 1996

In 1992, C. Spiro [7] showed that if f is a multiplicative function such that f(1) = 1 and such that f(p+q) = f(p) + f(q) for all primes p and q, then f(n) = n for all integers $n \ge 1$. Here we prove the following:

THEOREM. Let f be a multiplicative function such that f(1) = 1 and such that

 $f(p+m^2) = f(p) + f(m^2)$ for all primes p and integers $m \ge 1$, (1)

then f(n) = n for all integers $n \ge 1$.

Proof. First we show that

$$f(p^2) = f(p)^2.$$
 (2)

Indeed, using (1) and the fact that f is multiplicative, we have

$$\begin{split} f(p) + f(p^2) &= f(p+p^2) = f(p(1+p)) = f(p) \ f(p+1^2) \\ &= f(p)(f(p)+1) = f(p)^2 + f(p), \end{split}$$

from which (2) follows immediately.

We now show that

$$f(n) = n$$
 for all positive integers $n \le 12$. (3)

* Research partially supported by Grants from NSERC of Canada and FCAR of Québec. [†] Research partially supported by the Hungarian Research Foundation (OTKA). Repeated use of (1) gives f(3) = f(2+1) = f(2) + f(1) = f(2) + 1 and thus f(4) = f(3+1) = f(3) + 1 = f(2) + 2. Then f(6) = f(4) + f(2) = f(2) + 2 + f(2) = 2 + 2f(2), f(7) = f(4) + f(3) = 3 + 2f(2), f(8) = 1 + f(7) = 4 + 2f(2), f(9) = f(4) + f(5) = f(2) + 2 + f(5). Moreover f(11) = f(4) + f(7) = 5 + 3f(2), while also f(11) = f(9) + f(2) = f(4) + f(5) + f(2) = 2 + 2f(2) + f(5). Finally f(12) = f(4) + f(3) = f(11) + 1 = 6 + 3f(2), which implies that (2 + f(2)) + f(3) = 6 + 3f(2), that is 2f(3) + f(6) = 6 + 3f(2) and therefore (2 + 2f(2)) + (2 + 2f(2)) = 6 + 3f(2), from which we deduce that f(2) = 2. It easily follows from this that f(n) = n successively for n = 3, 4, 6, 7, 8, 11, 5, 9, 10, 12. This proves (3).

It is clear that the Theorem will follow if we can prove the following:

If T is an integer such that f(n) = n for all n < T, then f(T) = T. (4)

Because of (3), we can assume that T > 12.

We proceed by contradiction. Hence assume that (4) is false for a certain T > 12, that is that f(n) = n for each positive integer n < T, but that $f(T) \neq T$.

We first show that in such a case, T must be a prime power. Suppose indeed that T is not a prime power. We may thus write T = AB with 1 < A < B < T and (A, B) = 1, in which case we have f(T) = f(AB) =f(A) f(B) = AB = T, a contradiction.

We also show that T cannot be a prime. Assume that it is. Then

$$f(T+1) = f(T) + 1 \neq T+1.$$
 (5)

Clearly T + 1 is composite. Letting $P^*(n)$ denote the largest prime power which divides *n*, then either T + 1 is a prime power or else T + 1 = AB with 1 < A < B < T + 1, (A, B) = 1, $P^*(A) < T$, $P^*(B) < T$. In the former case, since T + 1 is even, we must have $T + 1 = 2^{\beta}$ and thus $T = 2^{\beta} - 1$. It follows from this that

$$f(T+9) = f(2^{\beta} - 1 + 9) = f(2^{\beta} + 8) = f(8(2^{\beta-3} + 1))$$

= f(8) f(2^{\beta-3} + 1) = 8(2^{\beta-3} + 1) = T + 9,

a relation which is contradicted by the fact that

$$f(T+9) = f(T+3^2) = f(T) + f(9) = f(T) + 9 \neq T+9.$$

In this latter case, we have f(T+1) = f(AB) = f(A) f(B) = AB = T+1 which contradicts (5). We also have that T cannot be the square of a prime. In fact, this follows immediately from (2).

We must therefore have that

$$T = q^{\alpha}$$
, with $\alpha \ge 3$ and some prime q.

We also note that α must be an odd number. Indeed, if α is even, then

$$f(q^{\alpha}+q) = f(q(q^{\alpha-1}+1)) = f(q) f(q^{\alpha-1}+1) = q(q^{\alpha-1}+1) = q^{\alpha}+q, \quad (6)$$

while on the other hand

$$f(q^{\alpha}+q) = f(q^{\alpha}) + f(q) = f(q^{\alpha}) + q \neq q^{\alpha} + q,$$

which contradicts (6).

With the help of a computer, we found all those prime powers $r^k \leq 10^6$, with $k \ge 3$, which cannot be written as $r^k = p + m^2$ (p is a prime, m an integer), namely 2⁶, 5⁴, 2¹⁰, 3⁸, 5⁶, 2¹⁴, 3¹⁰, 2¹⁶, 7⁶, 19⁴, 2¹⁸, 23⁴, 3¹², 29⁴ and 31⁴. Using the results established above including the induction hypothesis and the fact that each of these 15 numbers r^k have an even exponent k, it follows that $T > 10^6$.

Our next step is to prove three important lemmas.

LEMMA 1. Assume that $T > 10^6$. Then for all primes $p < T^2/2$, we have f(p) = p.

Proof of Lemma 1. Let p be the smallest prime, if any, for which $f(p) \neq p$ and assume that T , and consider the integers

$$\ell_v = p + v^2$$
 (v = 1, 3, 5, ..., [\sqrt{p}], v odd).

Our plan is to show that there exists an odd integer $v \leq \lceil \sqrt{p} \rceil$ satisfying both $f(\ell_v) = \ell_v$ and $f(v^2) = v^2$. For such a v, it will follow that $f(\ell_v) = \ell_v$ $f(p) + f(v^2) = f(p) + v^2 \neq p + v^2$ since $f(p) \neq p$, thereby contradicting the fact that $f(\ell_v) = \ell_v = p + v^2$, thus establishing the proof that f(p) = p. By definition,

$$\ell_{\nu} < 2p, \tag{7}$$

the inequality being strict because \sqrt{p} is not an integer. Now write

 $\ell_{\nu} = A_{\nu} \cdot B_{\nu},$ where A_{ν} is the largest prime power dividing ℓ_{ν} . (8)

We first look for v's such that $f(\ell_v) = \ell_v$. First consider the case where A_v is a prime. It is clear that we cannot have $A_v \ge p$; indeed, since B_v is even, it would follow from (7) that $2 \leq B_v = \ell_v / A_v < 2p/p = 2$, a non sense. Hence $A_v < p$, in which case $f(A_v) = A_v$ due to the minimal choice of p. If $A_v < T$, then $P^*(B_v) < A_v < T$ and thus $f(\ell_v) = f(A_v) f(B_v) = A_v B_v = \ell_v$. On the other hand, if $T \leq A_v < p$, then $B_v = \ell_v / A_v < 2p/T < T$, which again implies that $f(\ell_v) = f(A_v) f(B_v) = A_v B_v = \ell_v$. On the other hand, if A_v is a prime power, say $A_{\nu} = Q^{\beta}$, with $\beta \ge 2$, then first consider the case where $\beta = 2$: using (7), we have $Q^2 < 2p < T^2$, and thus Q < T. It follows from (2) that $f(Q^2) = f^2(Q) = Q^2$ and thus that $f(A_v) = A_v$ and $f(B_v) = B_v$, from which it follows as above that $f(\ell_v) = \ell_v$. If $\beta \ge 3$, consider the set

$$\mathscr{H} := \{ v : 1 \le v \le \sqrt{p}, v \text{ odd}, A_v = Q^\beta = \text{prime power} \ge T, \beta \ge 3 \}.$$

Observe that, since $p + v^2 \equiv 0 \pmod{Q^{\beta}}$ is a quadratic congruence, it has at most two solutions modulo Q^{β} if Q is odd and at most 4 if Q = 2, and in fact there are no more solutions located in the range $1 \le v \le \lfloor \sqrt{p} \rfloor$ since $\sqrt{p} < T \le Q^{\beta}$.

Rosser and Schoenfeld [6] have shown that $\pi(x)$, the number of prime numbers up to x, satisfies

$$\frac{x}{\log x} < \pi(x) < \frac{x}{\log x} \left(1 + \frac{3}{2\log x}\right) \qquad (x \ge 59)$$

On the other hand, one can verify that

$$\frac{x}{\log x} \left(1 + \frac{3}{2\log x} \right) < (1+\eta) \frac{x}{\log x} \quad \text{with} \quad \eta = \frac{1}{10} \quad (x > 3.3 \times 10^6)$$

and also, using a computer, that

$$\pi(x) < (1+\eta) \frac{x}{\log x} \qquad (10^6 < x < 3.3 \times 10^6).$$

It follows that

$$\frac{x}{\log x} < \pi(x) < (1+\eta) \frac{x}{\log x}, \qquad \eta = \frac{1}{10}, \quad (x > 10^6)$$
(9)

and since the largest integer β such that $Q^{\beta} < p$, for $\beta \ge 3$, satisfies $\beta < \log p/\log Q$, we may thus conclude that

$$\# \mathscr{H} < 4 \sum_{\substack{2^{\beta} < p \\ \beta \ge 3}} 1 + 2 \sum_{\substack{Q^{\beta} < p \\ Q > 2, \beta \ge 3}} 1 < 4 \left(\frac{\log p}{\log 2} - 2 \right) + 2 \left(\pi(p^{1/3}) + \pi(x^{1/4}) \frac{\log p}{\log 3} \right) < 4 \left(\frac{\log p}{\log 2} - 2 \right) + 2(1 + \eta) \left(\frac{3p^{1/3}}{\log p} + \frac{4p^{1/4}}{\log 3} \right).$$
 (10)

Since we have already shown that, if $v \notin \mathcal{H}$, then $f(\ell_v) = \ell_v$, we now look for odd v's not exceeding \sqrt{p} with the property $f(v^2) = v^2$. We call such a v a good v; the other ones being called bad v's. Certainly those v's for which each prime power π^{δ} dividing exactly v is such that $\delta = 1$ or $\pi^{\delta} < \sqrt{T}$ are good. Possible bad v's must therefore have a prime power $\pi^{\delta} \ge \sqrt{T}$ (with $\delta \ge 2$). Hence the number N_{bad} of bad v's up to \sqrt{p} is small, indeed it is

$$N_{bad} < \sum_{\substack{\sqrt{T} \leqslant \pi^{\delta} < T \\ \delta \ge 2}} \left[\frac{\sqrt{p}}{\pi^{\delta}} \right] < \sqrt{p} \sum_{\substack{\sqrt{T} \leqslant \pi^{\delta} < T \\ \bar{\delta} \ge 2}} \frac{1}{\pi^{\delta}}.$$
 (11)

Now, for each integer $\delta \ge 2$, real $R \ge 2$, using Stieltjes integral, then integration by parts and finally (9), we obtain

$$\sum_{\pi^{\delta} > R} \frac{1}{\pi^{\delta}} = \sum_{\pi > R^{1/\delta}} \frac{1}{\pi^{\delta}}$$

$$= \int_{R^{1/\delta}}^{\infty} \frac{d\pi(t)}{t^{\delta}}$$

$$= \frac{\pi(t)}{t^{\delta}} \Big|_{R^{1/\delta}}^{\infty} + \delta \int_{R^{1/\delta}}^{\infty} \frac{\pi(t)}{t^{\delta+1}} dt$$

$$< -\frac{\pi(R^{1/\delta})}{R} + \delta(1+\eta) \int_{R^{1/\delta}}^{\infty} \frac{dt}{t^{\delta} \log t}$$

$$< -\frac{\delta}{R^{1-1/\delta} \log R} + \frac{\delta^{2}(1+\eta)}{(\delta-1) R^{1-1/\delta} \log R}.$$
(12)

Note that in the case $\delta = 2$, we have

$$\sum_{\pi^2 > R} \frac{1}{\pi^2} < -\frac{2}{R^{1/2} \log R} + \frac{4(1+\eta)}{R^{1/2} \log R} = \frac{2+4\eta}{R^{1/2} \log R}.$$

Observe also that, for $\delta \ge 3$, we have

$$-\delta + \frac{\delta^2(1+\eta)}{\delta - 1} < \frac{3}{2} + 2(\delta + 1)\eta.$$
(13)

By treating separately the two cases $\delta = 2$ and $\delta \ge 3$, we have

$$\sum_{\delta \ge 2} \sum_{R < \pi^{\delta} < R^{2}} \frac{1}{\pi^{\delta}} = \sum_{R < \pi^{2} < R^{2}} \frac{1}{\pi^{2}} + \sum_{\delta \ge 3} \sum_{R < \pi^{\delta} < R^{2}} \frac{1}{\pi^{\delta}}$$
$$< \frac{2 + 4\eta}{R^{1/2} \log R} + \sum_{3 \le \delta \le 2 \log R / \log 2} \frac{(3/2) + 2(\delta + 1) \eta}{R^{1 - 1/\delta} \log R}$$
$$< \frac{2 + 4\eta}{R^{1/2} \log R} + \frac{2((3/2) + 8\eta)}{R^{2/3} \log 2}$$

Letting $R = \sqrt{T}$, we obtain

$$\sum_{\delta \ge 2} \sum_{\sqrt{T} < \pi^{\delta} < T} \frac{1}{\pi^{\delta}} < \frac{2(2+4\eta)}{T^{1/4}\log T} + \frac{2((3/2)+8\eta)}{T^{1/3}\log 2}.$$
 (14)

Hence, using (14), inequality (11) can be written as

$$N_{bad} < \sqrt{p} \left(\frac{8 + 16\eta}{p^{1/8} \log p} + \frac{3 + 16\eta}{p^{1/6} \log 2} \right).$$
(15)

Hence, combining (10) and (15), and if $p > 10^6$, it follows that

$$[\sqrt{p}] > N_{bad} + \# \mathscr{H},$$

which proves that there exists at least one odd integer $v \leq \lfloor \sqrt{p} \rfloor$ such that $f(v^2) = v^2$ and $f(\ell_v) = \ell_v = p + v^2$ while $f(\ell_v) = f(p) + f(v^2) = f(p) + v^2$. Hence if $f(p) \neq p$, it would follow that $f(\ell_v) = f(p) + v^2 \neq p + v^2 = f(\ell_v)$, a non sense. The proof of Lemma 1 is thus completed.

LEMMA 2. Let π be a prime and Δ a positive integer such that $\pi^{\Delta} < T$, then

$$f(\pi^{2\Delta}) = \pi^{2\Delta}.$$
 (16)

Proof of Lemma 2. First assume that π is odd. Then, for each prime 2 , set

$$h_p := p + \pi^{2\Delta} = E_p \cdot F_p,$$

where E_p is the highest prime power dividing h_p . Observe that $h_p < \frac{3}{2}T^2$. Clearly, by Lemma 1,

$$f(h_p) = f(p) + f(\pi^{2\Delta}) = p + f(\pi^{2\Delta}).$$
(17)

If $E_p < T$, then $f(h_p) = h_p = p + \pi^{2d}$, an equality which combined with (17) proves (16). Hence assume that $E_p \ge T$.

First consider the case where E_p is a prime with $E_p \ge T$. Clearly $2|F_p$. Since $h_p < \frac{3}{2}T^2$, then $F_p < \frac{3}{2}T$. There are two possibilities:

• $F_p = U \cdot V$, where (U, V) = 1, $1 < P^*(U) < T$ and $1 < P^*(V) < T$, in which case $f(F_p) = F_p$. Therefore $F_p \ge 6$. Since $E_p \le (3T^2/2)/6 = T^2/4$, it follows by Lemma 1 that $f(E_p) = E_p$. This implies that

$$f(h_p) = f(E_p) f(E_p) = E_p F_p = h_p = p + \pi^{24},$$

which combined with (17) proves (16).

• F_p is a prime power, which implies, since F_p is even, that $F_p = 2^{\beta}$ for some integer $\beta \ge 2$ with $T < 2^{\beta} < \frac{3}{2}T$. Then $h_p = Q \cdot 2^{\beta}$ for some prime Q. The number M_T of such p's is

$$M_T < \pi \left(\frac{T^2}{2}; -\pi^{24}, 2^{\beta} \right),$$

where $\pi(x; k, \ell) = \#\{r \le x, r \text{ prime: } r \equiv k \pmod{\ell}\}$. Using the sieve result (see Halberstam and Richert [1], formula (4.10), p. 110)

$$\pi(x; k, \ell) < \frac{3x}{\phi(k) \log(x/k)} \qquad (1 \le k < x, (k, \ell) = 1),$$

we conclude that, since $\phi(2^{\beta}) = 2^{\beta-1} > T/2$,

$$M_T < 3\frac{T^2}{2}\frac{1}{\log(T^2/2\cdot 2^\beta)}\frac{1}{\phi(2^\beta)} < \frac{3T}{\log(T^2/2\cdot (3/2)\ T)} = \frac{3T}{\log\ T/3} < \frac{4T}{\log\ T}.$$
(18)

On the hand, assume that $E_p = Q^{\beta}$ for some prime Q > 2 and integer $\beta \ge 2$ and satisfying $T < Q^{\beta} < \frac{3}{4}T^2$. First consider the case $\beta = 2$; then $Q^2 < \frac{3}{4}T^2$, that is Q < T and therefore f(Q) = Q, in which case $f(Q^2) = f^2(Q) = Q^2$, and since $F_p < T$, $f(F_p) = F_p$, implying that $f(h_p) = h_p = p + \pi^{2A}$, which combined with (17) implies (16). For $\beta \ge 3$, count the number N_T of those primes $p \le T^2/2$ such that $Q^{\beta} | p + \pi^{2A}$, $Q^{\beta} > T$ and $\beta \ge 3$. This number N_T satisfies

$$N_T < \frac{3}{2} T^2 \sum_{\substack{T < Q^{\beta} < 3T^2/4 \\ \beta \ge 3}} \frac{1}{Q^{\beta}},$$

which, in view of (12) and (13) and observing that β runs in the range $3 \le \beta < 3 \log T$, gives

$$N_T < \frac{3}{2} T^2 \cdot \frac{33}{T^{2/3}}.$$
 (19)

Using (18) and (19), and if T is large enough, we certainly have that

$$\pi\left(\frac{T^2}{2}\right) > \frac{1}{2} \frac{T^2/2}{\log(T^2/2)} > M_T + N_T,$$

which implies that there exists at least one prime $p < T^2/2$ satisfying $f(h_p) = h_p$, in which case, as we saw above, (16) follows.

It remains to consider the case $\pi = 2$. Then, for each prime p satisfying $2 and <math>p \equiv 2 \pmod{3}$, define h_p as above, noticing that (17) is still valid. If $E_p < T$, then $f(h_p) = h_p = p + 2^{2A}$, an equality which combined with (17) proves (16). Hence assume that $E_p \ge T$. We now analyse separately two possibilities: E_p is not a power of 3, or else it is. In the first case, we must have $3 | F_p$ and thus $E_p < \frac{3}{2}T^2/3 = T^2/2$ which implies that $E_p = Q^\gamma$ with $\gamma \ge 2$. If $\gamma = 2$, then $E_p = Q^2$ with Q < T, in which case $f(E_p) = f(Q^2) = f(Q)^2 = Q^2$ and since $F_p < T$, we have $f(F_p) = F_p$ and therefore $f(h_p) = h_p = p + 2^{2A}$, which combined with (17) implies (16). For $\gamma \ge 3$, we proceed as above and obtain that the number N_T of those primes $p \le T^2/2$ such that $Q^\gamma | p + 2^{2A}$, $Q^\gamma > T$ and $\gamma \ge 3$, satisfies (19).

On the other hand, if $E_p = 3^{\gamma} \ge T$ for some $\gamma \ge 3$, we then have $p + 2^{24} = 3^{\gamma}F_p$. Let γ_0 be the smallest integer satisfying $3^{\gamma_0} > T$. But the number M_T of primes p satisfying $3^{\gamma_0} | p + 2^{24}$ is

$$M_T < \pi \left(\frac{T^2}{2}; -2^{2\Delta}, 3^{\gamma_0} \right),$$

and as previously we obtain that

$$M_T < \frac{4T}{\log T}$$

Now, since (see McCurley [4]) $\theta(x; 2, 3) := \sum_{p \le x, p \equiv 2 \pmod{3}} \log p \ge 0,49042x$ holds for $x \ge 3761$, it follows that $(\log x) \pi(x; 2, 3) > 0,49x$ in the same range. Hence it is enough to prove that

$$\frac{0,49T^2/2}{\log(T^2/2)} > \frac{99}{2} T^{2-2/3} + \frac{4T}{\log T} \qquad (T \ge 10^6).$$

$$0, 245 > \frac{50}{T^{2/3}} \log\left(\frac{T^2}{2}\right) + \frac{4\log(T^2/2)}{T\log T} \qquad (T \ge 10^6).$$
(20)

But the right hand side of (20) is certainly non increasing for $T \ge 10^6$ and, on the other hand in that range,

$$\frac{50}{T^{2/3}}\log\left(\frac{T^2}{2}\right) < 50\,\frac{\log 10^{12}}{10^4} = \frac{6}{100}\log 10 < 0,\,14$$

while

$$\frac{4\log(T^2/2)}{T\log T} < \frac{8}{T} < \frac{1}{10^5},$$

thereby proving (20). This ends the proof of Lemma 2.

As will be seen below, a crucial element in the proof of the Theorem rests on the fact that, given an odd prime q, there exists a prime number $p < q^3$ such that (-p/q) = 1. Better results exist concerning the size of the smallest prime quadratic residue modulo q. However, these results either involve non-effective constants or effective constants which are very large. Hence we state and prove the following lemma.

LEMMA 3. Let q be an odd prime. Then there exists at least one prime $p < q^3$ such that (-p/q) = 1.

Proof. Clearly if $q \equiv 3 \pmod{4}$, the result follows easily. Since the result is true for q = 3, we may assume that $q \equiv 1 \pmod{4}$. On the other hand, since q = 5 satisfies the conclusion, we may also assume that $q \ge 13$. To prove the lemma, we assume that the conclusion is false, that is that (p/q) = -1 for all primes $p < q^3$.

First define the real character $\chi(n) = (n/q)$ and the L-series $L(s, \chi) = \sum_{n=1}^{\infty} \chi(n)/n^s$, and let

$$W := \max_{u < v} \left| \sum_{u \leq n \leq v} \chi(n) \right|.$$

It is known (see Polya [5]) that

$$W \leqslant \sqrt{q} \log q. \tag{21}$$

Further set

$$f(n) := \prod_{\pi^{\alpha} \parallel n} (1 + \chi(\pi) + \chi(\pi^2) + \dots + \chi(\pi^{\alpha})) = \sum_{d \mid n} \chi(d)$$

Observe that f is a multiplicative function and that, if $f(n) \neq 0$, then for each $\pi < q^3$, $\pi \neq q$, $\pi^{\gamma} \parallel n$ implies that γ is even.

Given an integer x, let $S = S(x) = \sum_{n \leq x} f(n)$. We write S as follows:

$$S = \sum_{d \leqslant x} \chi(d) \left[\frac{x}{d} \right] = \sum_{d \leqslant x} \chi(d) \frac{x}{d} - \sum_{d \leqslant x} \chi(d) \left\{ \frac{x}{d} \right\} = E - J,$$

say. Furthermore write E as

$$E = x \sum_{d=1}^{\infty} \frac{\chi(d)}{d} - x \sum_{d>x} \frac{\chi(d)}{d} = xL(1,\chi) - x \sum_{d>x} \frac{\chi(d)}{d}$$
(22)

and define

$$S_x(v) := \sum_{x < n < v} \chi(n)$$

We have

$$\sum_{d>x} \frac{\chi(d)}{d} = \int_x^\infty \frac{1}{u} \mathrm{d} S_x(u) = \frac{S_x(u)}{u} \Big|_x^\infty + \int_x^\infty \frac{S_x(u)}{u^2} \mathrm{d} u$$
$$= 0 + \int_x^\infty \frac{S_x(u)}{u^2} \mathrm{d} u < \int_x^\infty W \frac{\mathrm{d} u}{u^2} < \frac{W}{x}.$$

So far, we have thus established, in view of (22), that

$$|E - xL(1,\chi)| < W. \tag{23}$$

To estimate J, we let y < x (y will be determined later) and write

$$J = \sum_{d \leq y} \chi(d) \left\{ \frac{x}{d} \right\} + \sum_{m} L_{m},$$

where in L_m we sum over those d > y such that $\lfloor x/d \rfloor = m$. From this it follows that

$$|J| \leq y + \sum_{m \leq (x/y)} |L_m|.$$
⁽²⁴⁾

Now let $I_m = \{d > y : [x/d] = m\}$, and let d_0 be the smallest $d \in I_m$ and d_1 be the largest $d \in I_m$. We write

$$L_m = \sum_{d \in I_m} \chi(d) \left(\frac{x}{d} - \frac{x}{d_1} \right) + \left\{ \frac{x}{d_1} \right\} \sum_{d \in I_m} \chi(d) = A + B,$$

say. First

$$A = \int_{d_1}^{d_0} \left(\frac{x}{u} - \frac{x}{d_1}\right) \mathrm{d} S_{d_1}(u)$$

= $S_{d_1}(u) \left(\frac{x}{u} - \frac{x}{d_1}\right) \Big|_{d_1}^{d_0} - x \int_{d_1}^{d_0} \frac{S_{d_1}(u)}{u^2} \mathrm{d} u \leqslant W + Wx \left(\frac{1}{d_0} - \frac{1}{d_1}\right) \leqslant 2W.$

From this estimate and the fact that $B \leq W$, it follows that $L_m \leq 3W$. Using this estimate, (24) becomes

$$|J| < y + 3W\frac{x}{y}.$$
(25)

We now set $x = q^3$, in which case and in view of the remark made above on f, we may write S as

$$S = \#\{n: n^2 \leq q^3\} + \#\{n: n^2 q \leq q^3\} = [q^{3/2}] + q.$$
(26)

It follows from (23), (25) and (26) that

$$|L(1,\chi) q^{3}| \leq q + W + y + 3W \frac{x}{y} + q^{3/2}.$$
(27)

We now look for an optimal choice for y, namely one for which y = 3W(x/y), which means that $y = \sqrt{3Wx}$. Hence, from (27), we get

$$|L(1,\chi) q^3| \leq q + W + 2\sqrt{3} q^{3/2} \sqrt{W} + q^{3/2},$$

which implies using (21) that

$$|L(1,\chi)| < \frac{2\sqrt{3}\sqrt{\log q}}{q^{5/4}}.$$
(28)

We now look for a lower bound for $L(1, \chi)$ which will contradict (28). First observe that, since $q \equiv 1 \pmod{4}$, it follows that $(-1)^{(q-1)/2} = 1$ and hence that

$$\chi(n) = \left(\frac{n}{q}\right) = \left(\frac{q}{n}\right).$$

This implies that, as is mentioned in Davenport [1], the discriminant q is positive.

On the other hand, from the Dirichlet class number formula, we have that

$$h(q) = \frac{\sqrt{q}}{\log \varepsilon} L(1, \chi),$$

where h(q) is the class number of the field $\mathbb{Q}(\sqrt{q})$ with discriminant q (>0) and where $\varepsilon = \frac{1}{2}(t_0 + u_0\sqrt{q})$ is the smallest solution (with $t_0 > 0$ and $u_0 > 0$) of the Pell equation $t^2 - qu^2 = 4$. Since $\varepsilon > \frac{1}{2}(1 + \sqrt{q})$ and since h(q) is an integer ≥ 1 , it follows that

$$L(1,\chi) \ge \frac{\log \varepsilon}{\sqrt{q}} > \frac{\log\{\frac{1}{2}(1+\sqrt{q})\}}{\sqrt{q}},$$

which contradicts (28), since we have assumed that $q \ge 13$.

This ends the proof of Lemma 3.

We may now complete the proof of the Theorem.

For the moment, let us assume that q is odd, and let p be a prime smaller than q^3 such that (-p/q) = 1. Clearly, if q > 3, one can show that such a prime exists by Lemma 3. It means in particular that there exists $u_0 \in [1, q/2]$ such that

$$-p \equiv u_0^2 \pmod{q}$$
.

One can then show that, for each $\alpha \ge 2$, there exists an integer $v_p \in [1, q^{\alpha}/2]$ such that

$$-p \equiv v_p^2 \pmod{q^{\alpha}}.$$
 (29)

If q = 3, then (29) has a solution for $\alpha = 2$, and then consequently for each $\alpha \ge 2$. Hence, in any case, there exists an integer m_p such that

$$v_p^2 + p = m_p q^{\alpha}. \tag{30}$$

First we note that

$$m_p < q^{\alpha}. \tag{31}$$

This is true because

$$m_p < \left(\frac{q^{2\alpha}}{4} + q^{\alpha}\right) \frac{1}{q^{\alpha}} = \frac{q^{\alpha}}{4} + 1 < q^{\alpha}.$$

Then write

$$(q^{\alpha} - v_{p})^{2} + p = q^{2\alpha} - 2q^{\alpha}v_{p} + v_{p}^{2} + p$$

= $q^{2\alpha} - 2q^{\alpha}v_{p} + m_{p}q^{\alpha}$
= $q^{\alpha}(q^{\alpha} - 2v_{p} + m_{p}) = M_{p}q^{\alpha}$, (32)

say. Similarly it can be shown that

 $M_p < q^{\alpha}$.

Observing that it follows from (30) and (32) that

$$M_p q^{\alpha} - m_p q^{\alpha} = q^{\alpha} (q^{\alpha} - 2v_p),$$

that is

$$M_p - m_p = q^{\alpha} - 2v_p$$

and hence, since $(q, v_p) = 1$, we obtain that at least one of m_p or M_p is coprime to q.

If $(m_p, q) = 1$, then

$$f(m_p q^{\alpha}) = f(p) + f(v_p^2).$$
(33)

Similarly, if $(M_p, q) = 1$, then

$$f(M_p q^{\alpha}) = f(p) + f((q^{\alpha} - v_p)^2).$$
(34)

By hypothesis, we have f(p) = p, and, because of (31), we have that $f(m_p) = m_p$. Since v_p and $q^{\alpha} - v_p$ are smaller than *T*, then by Lemma 2, we have $f(v_p^2) = v_p^2$, and similarly, if (33) holds,

$$f((q^{\alpha} - v_p)^2) = (q^{\alpha} - v_p)^2.$$

Assume that (33) holds, then, since we assumed that $f(q^{\alpha}) \neq q^{\alpha}$, we have

$$f(m_p q^{\alpha}) = f(m_p) f(q^{\alpha}) = m_p f(q^{\alpha}) \neq m_p q^{\alpha},$$

which contradicts the fact that

$$f(m_p q^{\alpha}) = f(p) + f(v_p^2) = p + v_p^2 = m_p q^{\alpha}.$$

This implies that $f(q^{\alpha}) = q^{\alpha}$, as we wanted to establish.

To complete the proof of the Theorem, it remains to consider the case q=2. We know that -7 is a quadratic residue modulo 2^{α} and therefore that for each $\alpha > 3$, there exists $v_{\alpha} \in [0, 2^{\alpha-1}]$ such that $7 + v_{\alpha}^2 \equiv 0 \pmod{2^{\alpha}}$,

and consequently, $7 + (v_{\alpha} + 2^{\alpha-1})^2 \equiv 0 \pmod{2^{\alpha}}$. Define m_{α} and M_{α} by $7 + v_{\alpha}^2 = m_{\alpha} 2^{\alpha}$, and $7 + (v_{\alpha} + 2^{\alpha-1})^2 = M_{\alpha} 2^{\alpha}$. We easily deduce from these two equations that

$$M_{\alpha} - m_{\alpha} = v_{\alpha} + 2^{\alpha - 2}$$

It follows from this relation and the fact that 2 does not divide v_{α} that v_{α} cannot both be even or odd at the same time, it follows that one of m_{α} or M_{α} is odd, that is that we either have $(m_{\alpha}, 2) = 1$ or $(M_{\alpha}, 2) = 1$, and the rest of the proof can thus be handled similarly as for the case "q odd" and we thus omit it.

REFERENCES

- H. Davenport, "Multiplicative Number Theory," Lectures in Advanced Mathematics, Markham, Chicago, 1967.
- 2. H. Halberstam and H. E. Richert, "Sieve Methods," Academic Press, New York, 1974.
- 3. G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," 4th ed., Clarendon Press, Oxford, 1960.
- 4. K. S. McCurley, Explicit estimates for $\theta(x; 3, \ell)$ and $\psi(x; 3, \ell)$, *Math. Comp.* **42** (1984), 287–296.
- G. Polya, Über die Verteilung der quadratischen Reste und Nichtreste, Göttinger Nachr. (1918), 116–141.
- J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, *Illinois J. Math.* 6 (1962), 64–94.
- 7. C. Spiro, Additive uniqueness sets for arithmetic functions, J. Number Theory 42 (1992), 232-246.