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In 1992, C. Spiro [7] showed that if f is a multiplicative function such
that f (1)=1 and such that f ( p+q)= f ( p)+ f (q) for all primes p and q,
then f (n)=n for all integers n�1. Here we prove the following:

Theorem. Let f be a multiplicative function such that f (1)=1 and such
that

f ( p+m2)= f ( p)+ f (m2) for all primes p and integers m�1, (1)

then f (n)=n for all integers n�1.

Proof. First we show that

f ( p2)= f ( p)2. (2)

Indeed, using (1) and the fact that f is multiplicative, we have

f ( p)+ f ( p2)= f ( p+ p2)= f ( p(1+ p))= f ( p) f ( p+12)

= f ( p)( f ( p)+1)= f ( p)2+ f ( p),

from which (2) follows immediately.
We now show that

f (n)=n for all positive integers n�12. (3)
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Repeated use of (1) gives f (3)= f (2+1)= f (2)+ f (1)= f (2)+1 and
thus f (4)= f (3+1)= f (3)+1= f (2)+2. Then f (6)= f (4)+ f (2)=
f (2)+2+ f (2)=2+2f (2), f (7)= f (4)+ f (3)=3+2f (2), f (8)=1+f (7)=
4+2f (2), f (9)= f (4)+ f (5)= f (2)+2+ f (5). Moreover f (11)= f (4)+
f (7)=5+3f (2), while also f (11)= f (9) + f (2) = f (4) + f (5) + f (2) =
2+2f (2)+f (5). Finally f (12)= f (4) f (3)= f (11)+1=6+3f (2), which
implies that (2+ f (2)) f (3)=6+3f (2), that is 2f (3)+ f (6)=6+3f (2) and
therefore (2+2f (2))+(2+2f (2))=6+3f (2), from which we deduce that
f (2)=2. It easily follows from this that f (n)=n successively for n=3, 4, 6,
7, 8, 11, 5, 9, 10, 12. This proves (3).

It is clear that the Theorem will follow if we can prove the following:

If T is an integer such that f (n)=n for all n<T, then f (T)=T. (4)

Because of (3), we can assume that T>12.
We proceed by contradiction. Hence assume that (4) is false for a certain

T>12, that is that f (n)=n for each positive integer n<T, but that
f (T ){T.

We first show that in such a case, T must be a prime power. Suppose
indeed that T is not a prime power. We may thus write T=AB with
1<A<B<T and (A, B)=1, in which case we have f (T )= f (AB)=
f (A) f (B)=AB=T, a contradiction.

We also show that T cannot be a prime. Assume that it is. Then

f (T+1)= f (T )+1{T+1. (5)

Clearly T+1 is composite. Letting P*(n) denote the largest prime power
which divides n, then either T+1 is a prime power or else T+1=AB with
1<A<B<T+1, (A, B)=1, P*(A)<T, P*(B)<T. In the former case,
since T+1 is even, we must have T+1=2; and thus T=2;&1. It follows
from this that

f (T+9)= f (2;&1+9)= f (2;+8)= f (8(2;&3+1))

= f (8) f (2;&3+1)=8(2;&3+1)=T+9,

a relation which is contradicted by the fact that

f (T+9)= f (T+32)= f (T )+ f (9)= f (T )+9{T+9.

In this latter case, we have f (T+1)= f (AB)= f (A) f (B)=AB=T+1
which contradicts (5). We also have that T cannot be the square of a
prime. In fact, this follows immediately from (2).

We must therefore have that

T=q:, with :�3 and some prime q.
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We also note that : must be an odd number. Indeed, if : is even, then

f (q:+q)= f (q(q:&1+1))= f (q) f (q:&1+1)=q(q:&1+1)=q:+q, (6)

while on the other hand

f (q:+q)= f (q:)+ f (q)= f (q:)+q{q:+q,

which contradicts (6).
With the help of a computer, we found all those prime powers rk�106,

with k�3, which cannot be written as rk= p+m2 ( p is a prime, m an
integer), namely 26, 54, 210, 38, 56, 214, 310, 216, 76, 194, 218, 234, 312, 294

and 314. Using the results established above including the induction
hypothesis and the fact that each of these 15 numbers rk have an even
exponent k, it follows that T>106.

Our next step is to prove three important lemmas.

Lemma 1. Assume that T>106. Then for all primes p<T 2�2, we have
f ( p)= p.

Proof of Lemma 1. Let p be the smallest prime, if any, for which
f ( p){p and assume that T<p<T 2�2, and consider the integers

l&= p+&2 (&=1, 3, 5, ..., [- p], & odd).

Our plan is to show that there exists an odd integer &�[- p] satisfying
both f (l&)=l& and f (&2)=&2. For such a &, it will follow that f (l&)=
f ( p)+ f (&2)= f ( p)+&2{p+&2 since f ( p){p, thereby contradicting the
fact that f (l&)=l&= p+&2, thus establishing the proof that f ( p)= p.

By definition,

l&<2p, (7)

the inequality being strict because - p is not an integer. Now write

l&=A& } B& , where A& is the largest prime power dividing l& . (8)

We first look for &'s such that f (l&)=l& . First consider the case where A&

is a prime. It is clear that we cannot have A&�p; indeed, since B& is even,
it would follow from (7) that 2�B&=l&�A&<2p�p=2, a non sense. Hence
A&<p, in which case f (A&)=A& due to the minimal choice of p. If A&<T,
then P*(B&)<A&<T and thus f (l&)= f (A&) f (B&)=A&B&=l& . On the
other hand, if T�A&<p, then B&=l&�A&<2p�T<T, which again implies
that f (l&)= f (A&) f (B&)=A&B&=l& . On the other hand, if A& is a prime
power, say A&=Q;, with ;�2, then first consider the case where ;=2:
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using (7), we have Q2<2p<T 2, and thus Q<T. It follows from (2) that
f (Q2)= f 2(Q)=Q2 and thus that f (A&)=A& and f (B&)=B& , from which it
follows as above that f (l&)=l& . If ;�3, consider the set

H :=[& : 1�&�- p, & odd, A&=Q;=prime power�T, ;�3].

Observe that, since p+&2#0 (mod Q;) is a quadratic congruence, it has at
most two solutions modulo Q; if Q is odd and at most 4 if Q=2, and in
fact there are no more solutions located in the range 1�&�[- p] since
- p<T�Q;.

Rosser and Schoenfeld [6] have shown that ?(x), the number of prime
numbers up to x, satisfies

x
log x

<?(x)<
x

log x \1+
3

2 log x+ (x�59).

On the other hand, one can verify that

x
log x \1+

3
2 log x+<(1+')

x
log x

with '=
1

10
(x>3.3_106)

and also, using a computer, that

?(x)<(1+')
x

log x
(106<x<3.3_106).

It follows that

x
log x

<?(x)<(1+')
x

log x
, '=

1
10

, (x>106) (9)

and since the largest integer ; such that Q;< p, for ;�3, satisfies ;<
log p�log Q, we may thus conclude that

*H<4 :

;�3
2;< p

1+2 :

Q>2, ;�3
Q;< p

1

<4 \log p
log 2

&2++2 \?( p1�3)+?(x1�4)
log p
log 3+

<4 \log p
log 2

&2++2(1+') \3p1�3

log p
+

4p1�4

log 3+. (10)
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Since we have already shown that, if & � H, then f (l&)=l& , we now look
for odd &'s not exceeding - p with the property f (&2)=&2. We call such a
& a good &; the other ones being called bad &'s. Certainly those &'s for which
each prime power ?$ dividing exactly & is such that $=1 or ?$<- T are

good. Possible bad &'s must therefore have a prime power ?$�- T (with
$�2). Hence the number Nbad of bad &'s up to - p is small, indeed it is

Nbad< :

$�2
- T�?$<T _

- p
?$ &<- p :

$� �2
- T�? $<T

1
?$ . (11)

Now, for each integer $�2, real R�2, using Stieltjes integral, then
integration by parts and finally (9), we obtain

:
? $>R

1
?$= :

?>R 1�$

1
?$

=|
�

R 1�$

d?(t)
t$

=
?(t)
t$ }

�

R1�$
+$ |

�

R 1�$

?(t)
t$+1 dt

<&
?(R1�$)

R
+$(1+') |

�

R 1�$

dt
t$ log t

<&
$

R1&1�$ log R
+

$2(1+')
($&1) R1&1�$ log R

. (12)

Note that in the case $=2, we have

:
?2>R

1
?2<&

2
R1�2 log R

+
4(1+')

R1�2 log R
=

2+4'
R1�2 log R

.

Observe also that, for $�3, we have

&$+
$2(1+')

$&1
<

3
2

+2($+1) '. (13)
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By treating separately the two cases $=2 and $�3, we have

:
$�2

:
R<? $<R2

1
?$= :

R<? 2<R 2

1
?2+ :

$�3

:
R<?$<R 2

1
?$

<
2+4'

R1�2 log R
+ :

3�$�2 log R�log 2

(3�2)+2($+1) '
R1&1�$ log R

<
2+4'

R1�2 log R
+

2((3�2)+8')
R2�3 log 2

Letting R=- T, we obtain

:
$�2

:
- T<? $<T

1
?$<

2(2+4')
T 1�4 log T

+
2((3�2)+8')

T 1�3 log 2
. (14)

Hence, using (14), inequality (11) can be written as

Nbad<- p \ 8+16'
p1�8 log p

+
3+16'

p1�6 log 2+. (15)

Hence, combining (10) and (15), and if p>106, it follows that

[- p]>Nbad+*H,

which proves that there exists at least one odd integer &�[- p] such that
f (&2)=&2 and f (l&)=l&= p+&2 while f (l&)= f ( p)+ f (&2)= f ( p)+&2.
Hence if f ( p){p, it would follow that f (l&)= f ( p)+&2{p+&2= f (l&), a
non sense. The proof of Lemma 1 is thus completed.

Lemma 2. Let ? be a prime and 2 a positive integer such that ?2<T,
then

f (?22)=?22. (16)

Proof of Lemma 2. First assume that ? is odd. Then, for each prime
2< p<T 2�2, set

hp := p+?22=Ep } Fp ,

where Ep is the highest prime power dividing hp . Observe that hp< 3
2 T 2.

Clearly, by Lemma 1,

f (hp)= f ( p)+ f (?22)= p+ f (?22). (17)
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If Ep<T, then f (hp)=hp= p+?22, an equality which combined with (17)
proves (16). Hence assume that Ep�T.

First consider the case where Ep is a prime with Ep�T. Clearly 2 | Fp .
Since hp< 3

2T 2, then Fp< 3
2T. There are two possibilities:

v Fp=U } V, where (U, V)=1, 1<P*(U)<T and 1<P*(V)<T, in
which case f (Fp)=Fp . Therefore Fp�6. Since Ep�(3T 2�2)�6=T 2�4, it
follows by Lemma 1 that f (Ep)=Ep . This implies that

f (hp)= f (Ep) f (Ep)=EpFp=hp= p+?22,

which combined with (17) proves (16).

v Fp is a prime power, which implies, since Fp is even, that Fp=2; for
some integer ;�2 with T<2;< 3

2T. Then hp=Q } 2; for some prime Q.
The number MT of such p's is

MT<? \T2

2
; &?22, 2;+ ,

where ?(x ; k, l)=*[r�x, r prime: r#k (mod l)]. Using the sieve result
(see Halberstam and Richert [1], formula (4.10), p. 110)

?(x ; k, l)<
3x

,(k) log(x�k)
(1�k<x, (k, l)=1),

we conclude that, since ,(2;)=2;&1>T�2,

MT<3
T 2

2
1

log(T 2�2 } 2;)
1

,(2;)
<

3T
log(T 2�2 } (3�2) T)

=
3T

log T�3
<

4T
log T

.

(18)

On the hand, assume that Ep=Q; for some prime Q>2 and integer ;�2
and satisfying T<Q;< 3

4 T 2. First consider the case ;=2; then Q2< 3
4T 2,

that is Q<T and therefore f (Q)=Q, in which case f (Q2)= f 2(Q)=Q2,
and since Fp<T, f (Fp)=Fp , implying that f (hp)=hp= p+?22, which
combined with (17) implies (16). For ;�3, count the number NT of those
primes p�T 2�2 such that Q; | p+?22, Q;>T and ;�3. This number NT

satisfies

NT<
3
2

T 2 :

;�3
T<Q;<3T 2�4

1
Q; ,
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which, in view of (12) and (13) and observing that ; runs in the range
3�;<3 log T, gives

NT<
3
2

T 2 }
33

T 2�3 . (19)

Using (18) and (19), and if T is large enough, we certainly have that

? \T 2

2 +>
1
2

T 2�2
log(T 2�2)

>MT+NT ,

which implies that there exists at least one prime p<T 2�2 satisfying
f (hp)=hp , in which case, as we saw above, (16) follows.

It remains to consider the case ?=2. Then, for each prime p satisfying
2< p<T 2�2 and p#2 (mod 3), define hp as above, noticing that (17) is
still valid. If Ep<T, then f (hp)=hp= p+222, an equality which combined
with (17) proves (16). Hence assume that Ep�T. We now analyse
separately two possibilities: Ep is not a power of 3, or else it is. In the first
case, we must have 3 | Fp and thus Ep< 3

2T 2�3=T 2�2 which implies that
Ep=Q# with #�2. If #=2, then Ep=Q2 with Q<T, in which case
f (Ep)= f (Q2)= f (Q)2=Q2 and since Fp<T, we have f (Fp)=Fp and
therefore f (hp)=hp= p+222, which combined with (17) implies (16). For
#�3, we proceed as above and obtain that the number NT of those primes
p�T 2�2 such that Q# | p+222, Q#>T and #�3, satisfies (19).

On the other hand, if Ep=3#�T for some #�3, we then have
p+222=3#Fp . Let #0 be the smallest integer satisfying 3#0>T. But the
number MT of primes p satisfying 3#0 | p+222 is

MT<? \T 2

2
; &222, 3# 0+ ,

and as previously we obtain that

MT<
4T

log T
.

Now, since (see McCurley [4]) %(x ; 2, 3) :=� p�x, p#2 (mod 3) log p�
0, 49042x holds for x�3761, it follows that (log x) ?(x ; 2, 3)>0, 49x in
the same range. Hence it is enough to prove that

0, 49T 2�2
log(T 2�2)

>
99
2

T 2&2�3+
4T

log T
(T�106).
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This clearly holds if

0, 245>
50

T 2�3 log \T 2

2 ++
4 log(T 2�2)

T log T
(T�106). (20)

But the right hand side of (20) is certainly non increasing for T�106 and,
on the other hand in that range,

50
T 2�3 log \T 2

2 +<50
log 1012

104 =
6

100
log 10<0, 14

while

4 log(T 2�2)
T log T

<
8
T

<
1

105 ,

thereby proving (20). This ends the proof of Lemma 2.

As will be seen below, a crucial element in the proof of the Theorem rests
on the fact that, given an odd prime q, there exists a prime number p<q3

such that (&p�q)=1. Better results exist concerning the size of the smallest
prime quadratic residue modulo q. However, these results either involve
non-effective constants or effective constants which are very large. Hence
we state and prove the following lemma.

Lemma 3. Let q be an odd prime. Then there exists at least one prime
p<q3 such that (&p�q)=1.

Proof. Clearly if q#3 (mod 4), the result follows easily. Since the result
is true for q=3, we may assume that q#1 (mod 4). On the other hand,
since q=5 satisfies the conclusion, we may also assume that q�13. To
prove the lemma, we assume that the conclusion is false, that is that
( p�q)=&1 for all primes p<q3.

First define the real character /(n)=(n�q) and the L-series L(s, /)=
��

n=1 /(n)�ns, and let

W :=max
u<v } :

u�n�v

/(n)}.
It is known (see Polya [5]) that

W�- q log q. (21)
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Further set

f (n) := `
? : & n

(1+/(?)+/(?2)+ } } } +/(?:))= :
d | n

/(d ).

Observe that f is a multiplicative function and that, if f (n){0, then for
each ?<q3, ?{q, ?# & n implies that # is even.

Given an integer x, let S=S(x)=�n�x f (n). We write S as follows:

S= :
d�x

/(d )_x
d&= :

d�x

/(d )
x
d

& :
d�x

/(d ) {x
d==E&J,

say. Furthermore write E as

E=x :
�

d=1

/(d )
d

&x :
d>x

/(d )
d

=xL(1, /)&x :
d>x

/(d )
d

(22)

and define

Sx(v) := :
x<n<v

/(n).

We have

:
d>x

/(d )
d

=|
�

x

1
u

d Sx(u)=
Sx(u)

u }
�

x
+|

�

x

Sx(u)
u2 d u

=0+|
�

x

Sx(u)
u2 du<|

�

x
W

du
u2 <

W
x

.

So far, we have thus established, in view of (22), that

|E&xL(1, /)|<W. (23)

To estimate J, we let y<x ( y will be determined later) and write

J= :
d�y

/(d ) {x
d=+:

m

Lm ,

where in Lm we sum over those d>y such that [x�d]=m. From this it
follows that

|J |�y+ :
m�(x�y)

|Lm |. (24)
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Now let Im=[d>y : [x�d]=m], and let d0 be the smallest d # Im and d1

be the largest d # Im . We write

Lm= :
d # Im

/(d ) \x
d

&
x
d1++{ x

d1= :
d # Im

/(d)=A+B,

say. First

A=|
d 0

d1 \
x
u

&
x
d1+ d Sd1

(u)

=Sd 1
(u) \x

u
&

x
d1+ }

d 0

d1

&x |
d0

d 1

Sd1
(u)

u2 du�W+Wx \ 1
d0

&
1
d1+�2W.

From this estimate and the fact that B�W, it follows that Lm�3W. Using
this estimate, (24) becomes

|J |<y+3W
x
y

. (25)

We now set x=q3, in which case and in view of the remark made above
on f, we may write S as

S=*[n : n2�q3]+*[n : n2q�q3]=[q3�2]+q. (26)

It follows from (23), (25) and (26) that

|L(1, /) q3|�q+W+ y+3W
x
y

+q3�2. (27)

We now look for an optimal choice for y, namely one for which y=
3W (x�y ), which means that y=- 3Wx. Hence, from (27), we get

|L(1, /) q3|�q+W+2 - 3 q3�2
- W+q3�2,

which implies using (21) that

|L(1, /)|<
2 - 3 - log q

q5�4 . (28)

We now look for a lower bound for L(1, /) which will contradict (28).
First observe that, since q#1 (mod 4), it follows that (&1)(q&1)�2=1 and
hence that

/(n)=\n
q+=\q

n+ .
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This implies that, as is mentioned in Davenport [1], the discriminant q is
positive.

On the other hand, from the Dirichlet class number formula, we have
that

h(q)=
- q
log =

L(1, /),

where h(q) is the class number of the field Q(- q) with discriminant q
(>0) and where == 1

2 (t0+u0 - q) is the smallest solution (with t0>0 and
u0>0) of the Pell equation t2&qu2=4. Since => 1

2 (1+- q) and since h(q)
is an integer �1, it follows that

L(1, /)�
log =

- q
>

log[ 1
2 (1+- q)]

- q
,

which contradicts (28), since we have assumed that q�13.
This ends the proof of Lemma 3.
We may now complete the proof of the Theorem.
For the moment, let us assume that q is odd, and let p be a prime

smaller than q3 such that (&p�q)=1. Clearly, if q>3, one can show that
such a prime exists by Lemma 3. It means in particular that there exists
u0 # [1, q�2] such that

&p#u2
0 (mod q).

One can then show that, for each :�2, there exists an integer vp #
[1, q:�2] such that

&p#v2
p (mod q:). (29)

If q=3, then (29) has a solution for :=2, and then consequently for each
:�2. Hence, in any case, there exists an integer mp such that

v2
p+ p=mpq:. (30)

First we note that

mp<q:. (31)

This is true because

mp<\q2:

4
+q:+ 1

q:=
q:

4
+1<q:.
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Then write

(q:&vp)2+ p=q2:&2q:vp+v2
p+ p

=q2:&2q:vp+mpq:

=q:(q:&2vp+mp)=Mpq:, (32)

say. Similarly it can be shown that

Mp<q:.

Observing that it follows from (30) and (32) that

Mpq:&mp q:=q:(q:&2vp),

that is

Mp&mp=q:&2vp

and hence, since (q, vp)=1, we obtain that at least one of mp or Mp is
coprime to q.

If (mp , q)=1, then

f (mpq:)= f ( p)+ f (v2
p). (33)

Similarly, if (Mp , q)=1, then

f (Mp q:)= f ( p)+ f ((q:&vp)2). (34)

By hypothesis, we have f ( p)= p, and, because of (31), we have that
f (mp)=mp . Since vp and q:&vp are smaller than T, then by Lemma 2, we
have f (v2

p)=v2
p , and similarly, if (33) holds,

f ((q:&vp)2)=(q:&vp)2.

Assume that (33) holds, then, since we assumed that f (q:){q:, we have

f (mpq:)= f (mp) f (q:)=mp f (q:){mpq:,

which contradicts the fact that

f (mpq:)= f ( p)+ f (v2
p)= p+v2

p=mpq:.

This implies that f (q:)=q:, as we wanted to establish.
To complete the proof of the Theorem, it remains to consider the case

q=2. We know that &7 is a quadratic residue modulo 2: and therefore
that for each :>3, there exists v: # [0, 2:&1] such that 7+v2

: #0 (mod 2:),
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and consequently, 7+(v:+2:&1)2#0 (mod 2:). Define m: and M: by
7+v2

:=m: 2:, and 7+(v:+2:&1)2=M:2:. We easily deduce from these
two equations that

M:&m:=v:+2:&2.

It follows from this relation and the fact that 2 does not divide v: that v:

cannot both be even or odd at the same time, it follows that one of m: or
M: is odd, that is that we either have (m: , 2)=1 or (M: , 2)=1, and the
rest of the proof can thus be handled similarly as for the case ``q odd'' and
we thus omit it.
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