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Abstract

Several asymptotic formulas are proved for arithmetic sums, which involve the
largest prime factor of an integer and certain large additive functions. All the
functions are defined on a set of primes having density δ (0 < δ < 1) in the set of
all primes.

1 Introduction

Let Q be a set of primes such that there exists some constant δ satisfying 0 < δ < 1 and

(1.1) π(x,Q) :=
∑

p≤x, p∈Q
1 = δLix+O

(
x

logB x

)
.

Here and later p denotes primes, Lix =
∫ x
2

dt
log t

, and B is a constant satisfying B > 2.

It is possible to treat the case when one assumes only B > 1 in (1.1) (see R. Warlimont
[14]), but as in [3] and [11] we find it sufficient to assume B > 2 in (1.1). In fact, the
present work may be considered as a continuation of the first author’s work [3] and the
second author’s [11]. All the relevant notation from these papers will be retained here.
We define P (n,Q) as

(1.2) P (n,Q) =
{

max{p : p|n ∧ p ∈ Q} if (n,Q) > 1,
0 otherwise,

where (n,Q) > 1 (resp. (n,Q) = 1) means that n has a prime factor (resp. has no
prime factor) from Q. Thus P (n,Q) is the largest prime factor of n belonging to Q, and
analogously we define the k-th largest prime factor of n belonging to Q as

(1.3) Pk(n,Q) =

{
P
(

n
P1(n,Q)...Pk−1(n,Q)

, Q
)

if Ω(n,Q) ≥ k,

0 otherwise,

if k ≥ 2, where P1(n,Q) ≡ P (n,Q) and

(1.4) Ω(n,Q) =
∑

pα‖n, p∈Q
α

is the total number of prime factors of n belonging to Q, while

(1.5) ω(n,Q) =
∑

p|n, p∈Q
1
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is the number of distinct prime factors of n belonging to Q. Here as usual pα‖n means
that pα divides n, but pα+1 does not. The functions defined by (1.2)-(1.5) are the
analogues of the classical functions

P (n) = max{p : p|n}, Pk(n) =

{
P
(

n
P1(n)...Pk−1(n)

)
if Ω(n) ≥ k,

0 otherwise,

if k ≥ 2, and
Ω(n) =

∑
pα‖n

αp, ω(n) =
∑
p|n

1.

Likewise in [11] we defined large additive functions

(1.6) β(n,Q) =
∑

p|n, p∈Q
p, B(n,Q) =

∑
pα‖n, p∈Q

αp,

and β(n,Q) = B(n,Q) = 0 if (n,Q) = 1. The functions in (1.6) are the analogues of
the large additive functions

β(n) =
∑
p|n
p, B(n) =

∑
pα‖n

αp,

for which there exists an extensive literature (e.g. see the monograph [4] and the papers
[1], [5], [7], [8], [12], [15], where references to other works may be found).

In [3] the first author proved

(1.7)
∑
n≤x

′ 1

P (n,Q)
=

(
η(Q) +O

(
1

log log x

))
x

(log x)δ
,

where η(Q) is a positive constant depending on Q (i.e. δ) which may be written down in
closed form. In general

∑′
n≤x 1/f(n) denotes the sum over n not exceeding x for which

f(n) 6= 0, so that ∑
n≤x

′ 1

P (n,Q)
=

∑
n≤x, (n,Q)>1

1

P (n,Q)
.

Several results involving β(n,Q) and B(n,Q) were established by the second author [11].
For instance, it was proved that

(1.8)
∑
n≤x

β(n,Q) =
∑
j≤B

δAjx
2

logj x
+O

(
x2

logB x

)

with explicitly given constants Aj,

∑
n≤x

(B(n,Q)− β(n,Q)) = δx log log x+ E(Q) + x
∑
j≤B

Ej(Q)

logj x
+O

(
x

logB x

)
,(1.9)

∑
n≤x

′ 1

B(n,Q)− β(n,Q)
= A(Q)x+O

(
x

1
2 log x

)
(A(Q) > 0),(1.10)
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and

(1.11)
∑
n≤x

′B(n,Q)

β(n,Q)
= x+O

(
x log log x

(log x)δ

)
,

where the constants in (1.9) and (1.10) are effectively computable, and in view of (1.9)
it is seen that (1.8) remains valid if β(n,Q) is replaced by B(n,Q). Moreover it was
conjectured in [11] that

(1.12)
∑
n≤x

′ 1

β(n,Q)
=

(
η1(Q) +O

(
1

log log x

))
x

(log x)δ
,

and

(1.13)
∑
n≤x

′ 1

B(n,Q)
=

(
η2(Q) +O

(
1

log log x

))
x

(log x)δ
,

with 0 < η2(Q) ≤ η1(Q) ≤ η(Q), where η(Q) is the constant appearing in (1.7). It is the
aim of this paper to establish the asymptotic formulas (1.12) and (1.13), and to prove
some other results involving the functions β(n,Q), B(n,Q) and Pk(n,Q).

2 Statement of results

K. Alladi and P. Erdős [2] proved that, for any fixed k ≥ 2,

(2.1)
∑

2≤n≤x

Pk(n)

P (n)
= (1 + o(1))ak

x

(log x)k−1
(x→∞),

where the ak’s are effectively computable positive constants. Thus the asymptotic be-
haviour of the sum in (2.1) changes with k. However all the sums of Pk(n,Q)/P (n,Q)
are of the same order of magnitude, which shows a completely different behaviour. Our
result is contained in

Theorem 1. For any fixed integer k ≥ 2 we have, with a suitable constant Ck(δ) > 0,

(2.2)
∑

n≤x, (n,Q)>1

Pk(n,Q)

P (n,Q)
=

(
Ck(δ) +O

(
1

log log x

))
x

(log x)δ
.

Actually it will transpire from the proof that

(2.3) Ck(δ) = C(Q)
∞∑
m=1

1

m

∑
p1≥P (m)
p1∈Q

`Q(p1)
∑
p2≥p1
p2∈Q

1

p2

. . .
∑

pk−1≥pk−2
pk−1∈Q

1

pk−1

∑
pk≥pk−1
pk∈Q

1

p2
k

,
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where C(Q) is the constant appearing in Lemma 4, `Q(y) is given by (3.8), and p1, p2,
. . . , pk denote primes. The multiple series in (2.3) is easily seen to be convergent by the
prime number theorem, Lemma 6 and Lemma 2. The method of proof of Theorem 1
may be used to treat some other arithmetic sums, such as

(2.4)
∑

n≤x, Ω(n,Q)≥m

Pk(n)

Pm(n)
,

where k > m ≥ 1 are fixed integers. Also this method may be used to treat two sums
related to the sum in (1.11). We shall prove

Theorem 2. There exist constants 0 < D1(δ) < D2(δ) such that

(2.5)
∑

n≤x, (n,Q)>1

β(n,Q)

P (n,Q)
= x+

(
D1(δ) +O

(
1

log log x

))
x

(log x)δ
.

and

(2.6)
∑

n≤x, (n,Q)>1

B(n,Q)

P (n,Q)
= x+

(
D2(δ) +O

(
1

log log x

))
x

(log x)δ
.

The explicit expressions for D1(δ) and D2(δ) will be given in the proof. The next
result establishes the asymptotic formulas (1.12) and (1.13). This is

Theorem 3. There exist constants 0 < η2(Q) < η1(Q) such that

(2.7)
∑

n≤x, (n,Q)>1

1

β(n,Q)
=

(
η1(Q) +O

(
1

log log x

))
x

(log x)δ

and

(2.8)
∑

n≤x, (n,Q)>1

1

B(n,Q)
=

(
η2(Q) +O

(
1

log log x

))
x

(log x)δ
.

The asymptotic formulas (2.7) and (2.8) display the difference in behaviour of β(n)
(resp. B(n)) and β(n,Q) (resp. B(n,Q)), since it is known that

(2.9)
∑

2≤n≤x

1

β(n)
= x exp

{
−(2 log x log log x)1/2 +O

(
(log x log log log x)1/2

)}
.

The asymptotic formula (2.9), which remains true if β(n) is replaced by B(n) or P (n),
was proved in [10], and then sharpened in [12] and [8]. This is analogous to the difference
in behaviour between the sum of reciprocals of P (n) and P (n,Q), as noted in [3] and
[11]. The difference in behaviour between P (n) and P (n,Q) is also reflected in the
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asymptotic behaviour of two further arithmetic sums which contain the logarithms of
these functions. The results are

Theorem 4. There exists an effectively computable constant B such that

(2.10)
∑

2≤n≤x

1

n logP (n)
= eγ log log x+B +O

(
1

log x

)
,

where γ is Euler’s constant.

Theorem 5. There exists an effectively computable constant F (Q) > 0 such that

(2.11)
∑

n≤x, (n,Q)>1

1

n logP (n,Q)
=

(
F (Q) +O

(
1

log log x

))
log1−δ x.

Theorem 4 sharpens a result of De Koninck - Sitaramachandrarao [6], who obtained

∑
2≤n≤x

1

n logP (n)
= eγ log log x+O(1);

their paper contains a discussion on earlier results on this problem. Perhaps the bound
for the error term in (2.10) is of the correct order of magnitude.

3 The necessary lemmas

This section is devoted to the lemmas needed in the sequel.

Lemma 1. For 2 ≤ y ≤ x we have uniformly

(3.1) ψ(x, y) =
∑

n≤x, P (n)≤y
1� x exp

(
− log x

2 log y

)
,

while for exp
(
(log log x)5/3+ε

)
≤ y ≤ x we have the asymptotic formula

(3.2) ψ(x, y) = xρ(u)

{
1 +O

(
log(u+ 2)

log y

)}
, u =

log x

log y
,

where the error term is uniform. The Dickman - de Bruijn function ρ(u) is the continuous
solution of the equation uρ′(u) = −ρ(u − 1) with the initial condition ρ(u) = 1 for
0 ≤ u ≤ 1. It satisfies

(3.3) ρ(u) = exp{−u(log u+ log log u+O(1))}.
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These are standard results on ψ(x, y), to be found e.g. in G. Tenenbaum [13].

Lemma 2. For ξ > 1 fixed, ∑
n>x

1

n(logP (n))ξ
�ξ

1

logξ−1 x
.

Proof. By partial summation the above sum may be written as

∑
p

1

p logξ p

∑
m>xp
P (m)≤p

1

m
=

∑
p

1

p logξ p

ψ(x
p
, p)
x
p

+
∫ ∞
x/p

ψ(t, p)

t2
dt


= Σ1 + Σ2,

where in Σ1 summation is over p ≤
√
x, and in Σ2 over p >

√
x. Then using (3.1) we

obtain, after change of variable log t
log p

= u, log x
log v

= y,

Σ1 �
∑
p≤
√
x

1

p logξ p

(
e−

log x
2 log p +

∫ ∞
x/p

e−
log t
2 log p

dt

t

)

�
∑
p≤
√
x

1

p logξ−1 p
e−

log x
2 log p =

∫ √x
2

1

v logξ v
e−

log x
2 log v dv +Oξ

(
1

logξ−1 x

)

=
1

logξ−1 x

(∫ log x/ log 2

2
yξ−2e−y/2 dy +Oξ(1)

)
�ξ

1

logξ−1 x
,

where we used the prime number theorem in the form

(3.4) π(x) =
∑
p≤x

1 = Lix+ ∆(x), ∆(x) = O
(
xe−
√

log x
)
.

The trivial estimate ψ(x, y) ≤ x gives

Σ2 =
∑
p>
√
x

1

p logξ p

ψ(x
p
, p)
x
p

+
∫ ∞
x/p

ψ(t, p)

t2
dt


�ξ

1

logξ x
+

∑
p>
√
x

1

p logξ p

(∫ p

x/p

dt

t
+
∫ ∞
p

ψ(t, p)

t2
dt

)

�ξ
1

logξ−1 x
+

∑
p>
√
x

1

p logξ p

∫ ∞
p

ψ(t, p)

t2
dt.

Finally by Lemma 1 the last sum is

�
∑
p>
√
x

1

p logξ p

∫ ∞
p

e−
log t
2 log p

dt

t
�

∑
p>
√
x

1

p logξ−1 p
�ξ

1

logξ−1 x
.
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Remark. By elaborating the method of proof given above, it can be shown that there
exists κ(ξ) > 0 such that

∑
n>x

1

n(logP (n))ξ
=

κ(ξ)

logξ−1 x
+O

(
(log log x)2ξ

logξ x

)
.

Lemma 3. If p(n) is the smallest prime factor of an integer n ≥ 2, then uniformly for
2 ≤ y ≤ x

(3.5)
∑

n≤x, p(n)>y

1� x

log y
.

This is a well-known sieve bound. For a thorough discussion of estimates for the sum
in (3.5) the reader is referred to G. Tenenbaum [13].

Lemma 4. There is a positive constant C(Q) such that

(3.6)
∑

n≤x, (n,Q)=1

1 =

(
C(Q) +O

(
1

log log x

))
x

(log x)δ
.

This is Lemma 5 of De Koninck [3], and follows from the work of Goldston - McCurley
[9].

Lemma 5. If 2 ≤ y ≤ elogα x for some 0 < α < 1, then uniformly

(3.7)
∑

n≤x, (n,Q)>1, p(n)>y

1 =

(
C(Q) +O

(
1

log log x

))
`Q(y)

x

(log x)δ
,

where C(Q) is the constant appearing in (3.6), and

(3.8) `Q(y) =
∏

p≤y, p6∈Q

(
1− 1

p

)
.

This follows, in the special case when y ≤ elogα x, from Lemma 7 of [3].

Lemma 6. If `Q(y) is given by (3.8), then there is a positive constant νQ such that

(3.9) `Q(y) =

(
νQ +O

(
1

log y

))
logδ−1 y.
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This is Lemma 8(i) of [3]. One has

log `Q(y) =
∑

p≤y, p 6∈Q
log

(
1− 1

p

)
(3.10)

= −
∑

p≤y, p 6∈Q

1

p
−
∑
m≥2

1

m

∑
p≤y, p6∈Q

1

pm

=
∑

p≤y, p∈Q

1

p
−
∑
p≤y

1

p
−

∑
m≥2, p∈Q

1

mpm
+O

(
1

y

)

=
∫ y

3/2

dπ(t, Q)

t
− log log y +D(Q) +O

(
1

log y

)

with some constant D(Q). If we use (1.1) and integration by parts to evaluate the above
integral, then we obtain (3.9) by exponentiating (3.10).

4 Proof of Theorem 1 and Theorem 2

We pass now to the proof of Theorem 1. A detailed proof will be given only for the case
k = 2, and it will be indicated how to treat the general case, which is merely technically
more complicated than the case k = 2. In evaluating

S(x) :=
∑

n≤x, (n,Q)>1

P2(n,Q)

P (n,Q)

first note that the integers n for which P (n,Q) = P (n) contribute � x/ log x, which
follows from (2.1). If P (n,Q) < P (n) and n contains at least two prime factors p, q ∈ Q,
then n may be uniquely written as

(4.1) n = mpqr, P (m) ≤ p ≤ q; p, q ∈ Q, (r,Q) = 1, p(r) > p, P (r) = P (n) > q.

Hence we have

(4.2) S(x) =
∑

mpqr≤x, P (m)≤p≤q; p,q∈Q
(r,Q)=1, p(r)>p, P (r)>q

p

q
+O

(
x

log x

)
.

Trivially in (4.2) we need to consider only p and q for which

(4.3)
p

q
≥ 1

log x
,

and we shall show now that we may consider only those m for which

(4.4) m ≤ e(log x)α (δ < α < 1).
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Namely from Lemma 3 and Lemma 2 (with ξ = 2) we have∑
mpqr≤x, P (m)≤p≤q; p,q∈Q

(n,Q)=1, p(r)>p, P (r)>q, m≥elogα x

p

q
≤

∑
e(log x)

α≤m≤x

∑
P (m)≤p≤q

p

q

∑
r≤ x

mpq
, p(r)>p

1

� x
∑

e(log x)
α≤m≤x

1

m

∑
p≥P (m)

1

log p

∑
q≥p

1

q2

� x
∑

m≥e(log x)α

1

m(logP (m))2
� x

(log x)α
,

which is absorbed by the error term in Theorem 1 if δ < α < 1. Likewise we may
suppose that

(4.5) p ≤ e(log x)α (δ < α < 1),

since by the preceding argument we obtain∑
mpqr≤x, P (m)≤p≤q; p,q∈Q
(r,Q)=1, p(r)>p, P (r)>q

m≤e(log x)α, p>e(log x)α

p

q
� x

∑
m≤e(log x)α

1

m

∑
p>e(log x)

α

1

p log2 p
� x

(log x)α
.

In the portion of the sum in (4.2) for which the conditions (4.3)-(4.5) hold we have

mpq ≤ mp2 log x ≤ e3(log x)α log x,

hence for these m, p and q we have

(4.6)
1

log
(

x
mpq

) =
1

log x

(
1 +O

(
log(mpq)

log x

))
=

1

log x

(
1 +O

(
(log x)α−1

))
.

Further the condition P (r) > q may be omitted, since by using Lemma 1 we obtain

∑
m≤e(log x)α

∑
P (m)≤p≤e(log x)α

p
∑

p≤q≤p log x

1

q

∑
r≤ x

mpq
, P (r)≤q

1(4.7)

� x
∑

m≤e(log x)α

1

m

∑
P (m)≤p≤e(log x)α

∑
p≤q≤p log x

1

q2
e−

log(x/mpq)
2 log q ,

and by (4.6)

log(x/mpq)

log q
≥ 1

2

log x

log q
≥ 1

2

log x

log p+ log log x
≥ 1

3
(log x)1−α.

Hence the contribution of the left-hand side of (4.7) is

� x exp
(
−1

6
(log x)1−α

) ∑
m≤e(log x)α

1

m

∑
P (m)≤p≤e(log x)α

1

p log p
� x exp

(
− 1

10
(log x)1−α

)
,
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which is negligible. Finally by using Lemma 5 and (4.6) we obtain
(4.8)
S(x) =

∑
m≤e(log x)α

∑
P (m)≤p≤e(log x)α

p∈Q

p
∑

p≤q≤p log x
p∈Q

1

q

∑
r≤ x

mpq
P (r)≤q

1
∑

r≤x/(mpq)
(r,Q)=1, p(r)>p

1 +O

(
x

(log x)α

)

=

(
C(Q) +O

(
1

log log x

))
x

(log x)δ
∑

m≤e(log x)α

1

m

∑
P (m)≤p≤e(log x)α

p∈Q

`Q(p)
∑

p≤q≤p log x
q∈Q

1

q2
+O

(
x

(log x)α

)

=

(
C(Q) +O

(
1

log log x

))
C ′(δ)

x

(log x)δ
,

where

C ′(δ) =
∞∑
m=1

1

m

∑
p≥P (m)
p∈Q

`Q(p)
∑
q≥p
q∈Q

1

q2
.

This follows since, by using Lemma 2 and Lemma 6, we obtain,∑
m≤e(log x)α

1

m

∑
P (m)≤p≤e(log x)α

p∈Q

`Q(p)
∑

p≤q≤p log x
q∈Q

1

q2

=
∑

m≤e(log x)α

1

m

∑
P (m)≤p≤e(log x)α

p∈Q

`Q(p)
∑
q≥p
q∈Q

1

q2
+O

(
1

log x

)

=
∑

m≤e(log x)α

1

m

∑
p≥P (m)
p∈Q

`Q(p)
∑
q≥p
q∈Q

1

q2
+O

 ∑
m≤elogα x

1

m

∑
p>elogα x

1

p(log p)2−δ

+O

(
1

log x

)

= C ′(δ) +O

 ∑
m>e(log x)

α

1

m

∑
p≥P (m)

1

(log p)1−δ

∑
q≥p

1

q2

+O
(
(log x)α(δ−1)

)

= C ′(δ) +O

 ∑
m>e(log x)

α

1

m(logP (m))2−δ

+O
(
(log x)α(δ−1)

)
= C ′(δ) +O

(
(log x)α(δ−1)

)
.

Theorem 1 for k = 2 follows then from (4.8) with C2(δ) = C(Q)C ′(δ).
To treat the general sum

Sk(x) :=
∑

n≤x, (n,Q)>1

Pk(n,Q)

P (n,Q)
(k ≥ 3, Ω(n,Q) ≥ k)

one proceeds similarly as in the case k = 2. Again we may suppose that P (n,Q) < P (n)
in view of (2.1). If n has at least k prime factors from Q (otherwise Pk(n,Q) = 0 by
definition) then we may write n uniquely as
(4.9)
n = mp1p2 . . . pkr, P (m) ≤ p1 ≤ . . . ≤ pk; p1 ∈ Q, . . . , pk ∈ Q; (r,Q) = 1, p(r) > p1, P (r) > pk.
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Furthermore we may suppose that

(4.10)
p1

pk
≥ 1

log x
, m ≤ elogα x, p1 ≤ elogα x (δ < α < 1),

using the same arguments that were used in the case k = 2. Likewise the condition
P (r) > pk may be discarded, and from (4.9) and (4.10) we shall obtain

Sk(x) = O

(
x

(log x)α

)

+
∑

m≤elogα x

∑
P (m)≤p1≤elog

α x

p1∈Q

p1

∑
p1≤p2≤p1 log x

p2∈Q

. . .
∑

pk−1≤pk≤p1 log x

pk∈Q

1

pk

∑
r≤x/(mp1...pk)

(r,Q)=1, p(r)>p1

1.

To evaluate the innermost sum we apply Lemma 5 with x replaced by x/(mp1 . . . pk)
and y = p1, which is possible in view of (4.10) and p1 ≤ p2 ≤ . . . ≤ pk. The ensuing
estimations are performed as in the case k = 2. Theorem 1, with Ck(δ) given by (2.3),
readily follows.

We turn now to Theorem 2. We shall prove only (2.6), since the proof of (2.5) is
quite similar. If U(x) is the sum appearing in (2.6), then

U(x) =
∑

n≤x, (n,Q)>1

1 +
∑

n≤x, (n,Q)>1

B(n,Q)− P (n,Q)

P (n,Q)
= U1(x) + U2(x),

say. By using Lemma 4 we immediately obtain

U1(x) = [x]−
∑

n≤x, (n,Q)=1

1 = x−
(
C(Q) +O

(
1

log log x

))
x

(log x)δ
,

so it remains to evaluate U2(x). From (2.1) we have

∑
n≤x, (n,Q)>1
P (n,Q)=P (n)

B(n,Q)− P (n,Q)

P (n,Q)
≤

∑
2≤n≤x, (n,Q)>1

P2(n,Q) + Ω(n,Q)P3(n,Q)

P (n)
� x

log x
,

since for n ≥ 2 and k ≥ 1

Pk(n,Q) ≤ Pk(n), Ω(n,Q) ≤ Ω(n) ≤ log n

log 2
.

For the remaining n counted by U2(x) the decomposition (4.1) holds, since the sum is
non-zero only if n has at least two prime factors from Q. Thus we have

(4.11) U2(x) =
∑

mpqr≤x
P (m)≤p≤q; p,q∈Q

(r,Q)=1, p(r)>p, P (r)>q

p+B(m,Q)

q
+O

(
x

log x

)
,
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since
B(n,Q)− P (n,Q) = B(mpq,Q)− q = p+B(m,Q)

by the additivity of B(n,Q) (see (1.6)). We may suppose that the condition (4.3) holds,
since ∑

mpqr≤x, p,q∈Q
P (m)≤p≤q, p/q≤1/ log x
(r,Q)=1, p(r)>p, P (r)>q

p+B(m,Q)

q
≤

∑
mpqr≤x, p,q∈Q

P (m)≤p≤q, p/q≤1/ log x
(r,Q)=1, p(r)>p, P (r)>q

p(1 + Ω(m))

q

≤ 1

log x

∑
n≤x

Ω(n)� x log log x

log x
.

We may also assume that (4.4) holds. Namely we have, for any fixed c > 1, that the
contribution of the sum in (4.11) for which m > elogα x is

�
∑

elogα x<m≤x
Ω(m)

∑
p≥P (m)

p
∑
q≥p

1

q

∑
r≤ x

mpq
, (r,Q)=1, p(r)>p

1

� x
∑

elogα x<m≤x

Ω(m)

m

∑
p≥P (m)

1

log p

∑
q≥p

1

q2
� x

∑
elogα x<m≤x

Ω(m)

m log2 P (m)

= x
∑

elogα x<m≤x

Ω(m)

m1/c
· 1

m(c−1)/c log2 P (m)
� x

∑
m≤x

Ωc(m)

m

1/c ∑
m>elogα x

1

m(logP (m))
2c
c−1


c−1
c

� x(log x)
1−α−αc

c log log x.

Here we used Lemma 3, Hölder’s inequality, Lemma 2 with ξ = 2c
c−1

, and the elementary
estimate ∑

n≤x
Ωc(n)�c x(log log x)c

if c is an integer. Since α < δ < 1 and

lim
c→∞

1− α− αc
c

= −α,

it follows that the above contribution is certainly � x(logδ x log log x)−1 if c is a suffi-
ciently large integer. Similarly we may assume that (4.5) holds, since the contribution
of p > elogα x is

� x
∑

m≤elogα x

Ω(m)

m

∑
p≥elogα x

1

p log2 p
� x logα x log log x · (log x)−2α =

x log log x

(log x)α
,

and that the condition P (r) > q may be omitted. Thus following the method of proof
of Theorem 1 we obtain, by using Lemma 5,

U2(x) =
∑

m≤elogα x

∑
P (m)≤p≤elogα x

p∈Q

(p+B(m,Q))
∑

p≤q≤p log x
q∈Q

1

q

∑
r≤x/(mpq)

(r,Q)=1, p(r)>q

1 +O

(
x

(log x)δ log log x

)
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=
C(Q)x

(log x)δ
∑

m≤elogα x

∑
P (m)≤p≤elogα x

p∈Q

(p+B(m,Q))`Q(p)
∑

p≤q≤p log x
q∈Q

1

q2
+O

(
x

(log x)δ log log x

)

=

(
D′2(δ) +O

(
1

log log x

))
x

(log x)δ
,

where

(4.12) D′2(δ) = C(Q)
∞∑
m=1

∑
p≥P (m), p∈Q

(p+B(m,Q))`Q(p)
∑

q≥p, q∈Q

1

q2
.

Hence we obtain

U(x) = x+

(
D′2(δ)− C(Q) +O

(
1

log log x

))
x

(log x)δ
,

which proves (2.6) with D2(δ) = D′2(δ)−C(Q). In proving (2.5) we shall encounter ω(m)
instead of Ω(m), which is harmless since ω(m) ≤ Ω(m). The only change is that, as
β(n,Q) counts the sum of distinct prime factors of n which belong to Q, in the analogue
of (4.11) we shall suppose that P (m) < p < q, as the cases when P (m) = p, p = q will
make a negligible contribution. Hence the constant analogous to D′2(δ) of (4.12) will be

D′1(δ) = C(Q)
∞∑
m=1

∑
p>P (m), p∈Q

(p+ β(m,Q))`Q(p)
∑

q>p, q∈Q

1

q2
,

which will clearly give 0 < D1(δ) < D2(δ) in Theorem 2. The essential reason why the
method of proof of Theorem 1 could be extended to yield Theorem 2 is that one encoun-
ters Ω(m) at various places in the estimations (coming from B(m,Q) ≤ Ω(m)P (m,Q)).
Since Ω(m) has average and normal order equal to log logm, all the estimates are only
affected by this factor which is small and therefore harmless.

5 Proof of Theorem 3

We shall prove (2.7) only, since the proof of (2.8) is similar. We have

∑
n≤x, (n,Q)>1

1

β(n,Q)
=

∑
n≤x, (n,Q)>1
P (n,Q)<P (n)

1

β(n,Q)
+

∑
n≤x, (n,Q)>1
P (n,Q)=P (n)

1

β(n,Q)
(5.1)

=
∑

n≤x, (n,Q)>1
P (n,Q)<P (n)

1

β(n,Q)
+O

(
x

log x

)

= T (x) +O

(
x

log x

)
,
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say, since (2.9) holds with P (n) in place of β(n). If n is counted by T (x), then n can be
written uniquely as

(5.2) n = mr, (r,Q) = 1, p(r) > P (m) ∈ Q.

Therefore we have

(5.3) T (x) =
∑

m≤x, P (m)∈Q

1

β(m,Q)

∑
r≤x/m, (r,Q)=1, p(r)>P (m)

1 = T1(x) + T2(x),

say, where in T1(x) we havem ≤ elogα x (δ < α < 1), and in T2(x) we have elogα x < m ≤ x.
By using Lemma 3, Lemma 2 and

β(m,Q) ≥ P (m) ≥ logP (m)

if P (m) ∈ Q, we obtain that
(5.4)

T2(x)� x
∑

m>elogα x, P (m)∈Q

1

mβ(m,Q) logP (m)
� x

∑
m>elogα x

1

m log2 P (m)
� x

(log x)α
.

Now applying Lemma 5 we have

T1(x) =
∑

m≤elogα x, P (m)∈Q

1

β(m,Q)

∑
r≤x/m, (r,Q)=1, p(r)>P (m)

1(5.5)

=
C(Q)x

(log x)δ

(
1 +O

(
1

log log x

)) ∑
m≤elogα x, P (m)∈Q

`Q(P (m))

mβ(m,Q)

=

C(Q)
∞∑

m=2, P (m)∈Q

`Q(P (m))

mβ(m,Q)
+O

(
1

log log x

) x

(log x)δ

by repeating the argument used in the estimation of T1(x). Thus we obtain from (5.1),
(5.3), (5.4) and (5.5) that (2.7) holds with

η1(Q) = C(Q)
∞∑

m=2, P (m)∈Q

`Q(P (m))

mβ(m,Q)
.

Likewise we obtain (2.8) with

η2(Q) = C(Q)
∞∑

m=2, P (m)∈Q

`Q(P (m))

mB(m,Q)
,

and 0 < η2(Q) < η1(Q) holds in view of (1.10).
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6 Proof of Theorem 4 and Theorem 5

If we can establish, for x ≥ 2,

(6.1)
∑

2≤n≤x

1

logP (n)
=

eγx

log x
+R(x), R(x) = O

(
x

log2 x

)
,

then by partial summation (6.1) readily implies (2.10) with

B =
∫ ∞

2
R(t)

dt

t2
− eγ log log 2.

To prove (6.1) note that∑
2≤n≤x

1

logP (n)
=

∑
p≤x

1

log p
ψ(
x

p
, p)

=

∑
p≤L

+
∑

L<p≤
√
x

+
∑

√
x<p≤x

 1

log p
ψ(
x

p
, p) = S1 + S2 + S3,

say, where

L := exp

(
log x

(log log x)2

)
.

From (3.1) of Lemma 1 we have

(6.2) S1 � x
∑
p≤L

1

p log p
e−

log x
2 log p ≤ xe−

1
2

(log log x)2
∑
p

1

p log p
� x

log2 x
,

since
∑
p 1/(p log p) converges. In the range L < p ≤

√
x in S2 we may use the asymptotic

formula (3.2) to evaluate ψ(x
p
, p). We obtain

(6.3) S2 = x
∑

L<p≤
√
x

1

p log p
ρ

(
log x

log p
− 1

)
+O

x ∑
L<p≤

√
x

log
(

log x
log p

+ 1
)

p log2 p
ρ

(
log x

log p
− 1

) .
By using (3.3) and (3.4) it is seen that the contribution of the O-term in (6.3) is

� x
∑

L<p≤
√
x

log
(

log x
log p

+ 1
)

p log2 p
e−( log x

log p
−1) log( log x

log p
−1)

= x
∫ √x
L+0

log
(

log x
log t

+ 1
)

t log2 t
e−( log x

log t
−1) log( log x

log t
−1)dπ(t)

= x
∫ √x
L

log
(

log x
log t

+ 1
)

t log3 t
e−( log x

log t
−1) log( log x

log t
−1)dt+O

(
x

log2 x

)

=
x

log2 x

∫ (log log x)2

2
u log(u+ 1)e−(u−1) log(u−1)du+O

(
x

log2 x

)
� x

log2 x
,
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after the substitution log x
log t

= u. Similarly, substituting log x
log t
− 1 = v, the main term in

(6.3) equals

x
∫ √x
L+0

1

t log t
ρ

(
log x

log t
− 1

)
dπ(t) = x

∫ √x
L

ρ

(
log x

log t
− 1

)
dt

t log2 t

−x
∫ √x
L+0

∆(t) d

(
1

t log t
ρ

(
log x

log t
− 1

))
+O

(
x

log2 x

)

=
x

log x

∫ (log log x)2−1

1
ρ(v) dv +O

(
x

log2 x

)

=
(eγ − 1)x

log x
+O

(
x

log2 x

)

Here we used (3.4), ρ(u) = 1 for 0 ≤ u ≤ 1, ρ′(u) = −ρ(u−1)
u
� e−u and

(6.4)
∫ ∞

0
ρ(v) dv = eγ.

For a proof of the well-known relation (6.4), see e.g. G. Tenenbaum [13]. Incidentally
(6.4) follows in an elementary way if we compare our proof of Theorem 3 with the
elementary derivation of Theorem 1.2 of De Koninck - Sitaramachandrarao [6]. Hence
we obtain

(6.5) S1 + S2 =
(eγ − 1)x

log x
+O

(
x

log2 x

)
.

Lastly we have, since ψ(x, y) = [x] for y ≥ x,

S3 =
∑

√
x<p≤x

1

log p
ψ(
x

p
, p) =

∑
√
x<p≤x

1

log p

[
x

p

]
=

∑
m≤
√
x

∑
√
x<p≤x/m

1

log p
.

From the prime number theorem we obtain

∑
p≤y

1

log p
=

y

log2 y
+O

(
y

log3 y

)
,

which yields

S3 =
∑

m≤
√
x

 x

m log2
(
x
m

) +O

 x

m log3
(
x
m

)
+O

( √
x

log2 x

)(6.6)

=
∑

m≤
√
x

x

m log2
(
x
m

) +O

(
x

log2 x

)
= x

∫ √x
1

dt

t log2
(
x
t

) +O

(
x

log2 x

)

= x
∫ x

√
x

du

u log2 u
+O

(
x

log2 x

)
=

x

log x
+O

(
x

log2 x

)
.
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The asymptotic formula (6.1) follows then from (6.5) and (6.6).
To prove Theorem 4 we shall prove

(6.7)
∑

n≤x, (n,Q)>1

1

logP (n,Q)
=

(
D(Q) +O

(
1

log log x

))
x

(log x)δ
,

where

(6.8) D(Q) = C(Q)
∞∑

m=2, P (m)∈Q

`Q(P (m))

m logP (m)
,

and C(Q), `Q(y) are as in Lemma 5. By partial summation Theorem 4 follows from
(6.7) with F (Q) = D(Q)/(1− δ). Let δ < α < 1. Then we have

∑
n≤x, (n,Q)>1

1

logP (n,Q)
=

∑
n≤x, (n,Q)>1
P (n,Q)<P (n)

P (n,Q)≤elogα x

1

logP (n,Q)
+O

(
x

(log x)α

)

= Σ0 +O

(
x

(log x)α

)
,

say. Here we used the bound∑
n≤x, (n,Q)>1
P (n,Q)=P (n)

1

logP (n,Q)
≤

∑
2≤n≤x

1

logP (n)
� x

log x
,

which is a trivial consequence of (6.1). If n is counted by
∑

0, then n can be uniquely
written as

n = mr, P (m) ∈ Q, (r,Q) = 1, p(r) > P (m),

since P (m) = P (n,Q) < P (n) = p(r). Thus

Σ0 =
∑

m≤x, P (m)∈Q
P (m)≤elogα x

1

logP (m)

∑
r≤x/m, (r,Q)=1
p(r)>P (m)

1 = Σ1 + Σ2,

say, where in Σ1 we have m ≤ K := elogβ x (α < β < 1), and in Σ2 we have K < m ≤ x.
By (3.1) of Lemma 1 we obtain

Σ2 ≤ x
∑

K<m≤x
P (m)≤elogα x

1

m logP (m)
= x

∑
p≤elogα x

1

p log p

∑
K
p <n≤

x
p

P (n)≤p

1

n

= x
∑

p≤elogα x

1

p log p

(
ψ(t, p)

t

∣∣∣xp
K
p

+
∫ x

p

K
p

ψ(t, p)
dt

t2

)

� x
∑

p≤elogα x

1

p log p

(
e−

logK
2 log p +

∫ x
p

K
p

e−
log t
2 log p

dt

t

)

� x
∑

p≤elogα x

1

p
e−

logK
2 log p � xe−

1
2

logβ−α x
∑

p≤elogα x

1

p
� x

(log x)δ log log x
,
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since β > α and
∑
p≤x

1
p
� log log x. In Σ1 we evaluate the inner sum by applying

Lemma 5 to obtain

S1 =

(
C(Q) +O

(
1

log log x

))
x

(log x)δ
∑

m≤elogβ x, P (m)∈Q
P (m)≤elogα x

`Q(P (m))

m logP (m)

=

(
D(Q) +O

(
1

log log x

))
x

(log x)δ
,

where D(Q) is given by (6.8). This proves (6.7), but to justify the last equality above
we proceed as follows. From Lemma 6 and Lemma 2 we obtain

(6.9)
∑

m>X, P (m)∈Q

`Q(P (m))

m logP (m)
�

∑
m>X

1

m log2−δ P (m)
� 1

log1−δX
.

Hence setting

Y = exp
(
(log log x)

1
1−δ
)

and using (6.9) we have

∑
m≤elogβ x, P (m)∈Q

P (m)≤elogα x

`Q(P (m))

m logP (m)

=
∑

m≤Y, P (m)∈Q
P (m)≤elogα x

`Q(P (m))

m logP (m)
+O

(
1

log1−δ Y

)

=
∑

m≤Y, P (m)∈Q

`Q(P (m))

m logP (m)
+O

(
1

log log x

)

=
∞∑

m=2, P (m)∈Q

`Q(P (m))

m logP (m)
+O

(
1

log log x

)
,

since P (m) > elogα x is impossible if m ≤ Y . This completes the proof of Theorem 4.

References
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