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Riassunto. Si investigano formule asintotiche che riguardano
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1 Introduction

Given a function f : R+ → R+, one is often interested in obtaining its

average value on the positive integers, say by estimating
1

x

∑
n≤x

f(n). It is

common to obtain that, as x→∞,

(1.1)
∑
n≤x

f(n) = (C + o(1))xf(x).

However, this formula certainly does not hold for all functions f : R+ →
R+. It does however hold for a large class of so-called “regularly varying
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functions”. A regularly varying function f is a continuous function for which
there exists ρ > 0 (called the index of f) such that

(1.2) lim
x→∞

f(cx)

f(x)
= xρ, for all c > 0.

We shall denote the set of all regularly varying functions by <. We shall also
denote by L the set of slowly varying functions, namely those functions in <
for which the index ρ = 0. It is easy to show that if f ∈ <, then there exists
L ∈ L such that f(x) = xρL(x), with ρ being the index of f .

As is shown in Theorem 1 below, if f ∈ < with index ρ > −1, then (1.1)
is satisfied with C = 1

ρ+1
.

Given an arithmetical function g defined by

g(n) =
∑
p|n
f(p),

where f ∈ < with index ρ > 0, one can show (see Theorem 2 below) that

(1.3)
∑
n≤x

g(n) = (1 + o(1))Cx
f(x)

log x
,

with C =
ζ(1 + ρ)

1 + ρ
.

Theorems 1 and 2 stated in section 2 are called abelian theorems.
Is the converse of these theorems true? In other words, given a function f

which satisfies (1.1) for a certain constant C > 0, is it true that f ∈ <? And
given an arithmetical function g(n) =

∑
p|n f(p) satisfying (1.3), is it true that

f ∈ <? These kinds of results are called tauberian theorems. We shall prove
that, under certain conditions, each of these two tauberian results is true.
The first of these is contained in Theorem 3, whose proof is given in section
3. The other result is Theorem 4, which is really a consequence of Theorem
5 and Theorem 6. These two results, which seem to be of independent
interest, are of a fairly general nature. As is usually the case, tauberian
theorems are more difficult than the corresponding abelian theorems. They
involve a certain so-called tauberian condition, which enables one to make
the appropriate deduction. In our case this will be, crudely speaking, the
property that the function in question is nondecreasing.

In what follows we have used, whenever possible, standard notation. In
particular, the letters X,X0, X1, . . . denote large positive constants, not nec-
essarily the same ones at each occurence.
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2 Abelian theorems

Theorem 1. Let f : R+ → R+, f ∈ < with index ρ > −1. Then, as
x→∞, (1.1) holds with C = 1

ρ+1
.

Proof. Consider first the case ρ > 0 and let f(x) = xρL(x), where L ∈ L.
Because L is slowly varying, it is known (see Seneta [4]) that there exist two
functions K(x) and η(x) and two real numbers K > 0 and x0 > 0 such that

L(x) = K(x)e
∫ x
x0

η(t)
t
dt
,

with limx→∞K(x) = K and limx→∞ η(x) = 0. The sum in (1.1) is therefore∑
n≤x0

nρL(n) +
∑

x0<n≤ x
A

nρL(n) +
∑

x
A
<n≤x

nρL(n) = S1 + S2 + S3,

say, where A > 0 is a large constant. Trivially, S1 = O(1). Set

L(x) = Ke
∫ x
x0

η(t)
t
dt
.

Then L(x) ∼ L(x) as x → ∞, and L(x) is differentiable. Since ρ > 0,
η(x)→ 0 as x→∞, we have that

L ′(x) = xρ−1L(x)(ρ+ η(x)) > 0

for x ≥ x1, which implies that L(x) is increasing for x ≥ x1. But

(2.1)
∑

x1<n≤x
F (n) =

∫ x

x1

F (t) dt+O(F (x)),

if F (x) is positive, continuous and increasing for x ≥ x1. Therefore with
F (x) = xρL(x), we obtain

S2 = O(1) +
∑

x1<n≤ x
A

nρL(n)� 1 +
∑

x1<n≤ x
A

F (n)

=
∫ x/A

x1

F (t) dt+O(F (x)) = (1 + o(1))
(
x

A

)ρ+1 L
(
x
A

)
ρ+ 1

+O
((

x

A

)ρ
L
(
x

A

))

= (1 + o(1))
(
x

A

)ρ+1 L
(
x
A

)
ρ+ 1

+O
((

x

A

)ρ
L
(
x

A

))

� xρ+1

Aρ+1
L(x)
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since L
(
x
A

)
∼ L(x) as x→∞ and for α > −1,

(2.2)
∫ x

x1

tαL(t) dt ∼ xα+1

α + 1
L(x)

by a classical result of J. Karamata (see BGT [2], prop. 1.5.8). Now using
the Uniform Convergence Theorem (see Bartle [1], p. 67), (2.1) and (2.2),
we have

S3 = (1 + o(1))
∑

x
A
<n≤x

nρL(n) ∼
∫ x

x/A
tρL(t) dt

=

(∫ x

x1

−
∫ x/A

x1

)
tρL(t) dt

= (1 + o(1))
xρ+1L(x)

ρ+ 1
− (1 + o(1))

(
x

A

)ρ+1 L
(
x
A

)
ρ+ 1

=
(
1 + o(1) +O(A−ρ−1)

) xρ+1L(x)

ρ+ 1
.

Thus combining the preceeding estimates we obtain

∑
n≤x

f(n) =
(
1 + o(1) +O(A−ρ−1)

) xρ+1L(x)

ρ+ 1
.

Since A > 0 may be chosen arbitrarily large, (1.1) follows for ρ > 0.
We have treated first the case ρ > 0, since this condition ensures both

f(x)→∞ as x→∞ and the monotonicity of xρL(x). In the case ρ = 0, it
may already happen that f(x) = L(x)→∞, but L(x) is not monotonic. An
example is given by

L(x) = L(x) = exp

{∫ x

2

η(t)

t
dt

}
, η(x) =

1− sinx2 − 1/x

log x
.

For this reason we reduce the remaining case −1 < ρ ≤ 0 to the previous
one, by setting f0(x) = xf(x), so that f0 ∈ < with index ρ0 = ρ+ 1 > 0; and
we may use (1.1) with f replaced by f0. Partial summation gives then

∑
n≤x

f(n) =
∑
n≤x

f0(n)

n
=

1

x

∑
n≤x

f0(n)

+
∫ x

1

∑
n≤t

f0(n)

 dt

t2
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=
1

x
(1 + o(1))

xρ+2L(x)

ρ+ 2
+
∫ x

X0

(1 + o(1))
tρ+2L(t)

t2(ρ+ 2)
dt+O(1)

= (1 + o(1))
xρ+1L(x)

ρ+ 2
+ (1 + o(1))

xρ+1L(x)

(ρ+ 2)(ρ+ 1)

= (1 + o(1))
xρ+1L(x)

ρ+ 1
,

where (2.2) was used. This completes the proof of Theorem 1.

Theorem 2. Let f ∈ < with index ρ > 0, then

∑
n≤x

∑
p|n
f(p) = (1 + o(1))Cx

f(x)

log x
,

with C =
ζ(1 + ρ)

1 + ρ
.

Proof. See De Koninck – Ivić [3].

3 Tauberian theorems

Theorem 3. Let f : [1,+∞[→ R+ be a continuous function such that
limx→∞ f(x) = +∞. Assume that, as x→∞,

(3.1)
∑
n≤x

f(n) = (1 + o(1))Cxf(x)

for some C > 0. Then f ∈ < with index ρ = 1
C
− 1 if any of the following

conditions is satisfied:

(i) f(x) is nondecreasing for x ≥ x0;

(ii) f ′(x) is continuous for x ≥ x1 and∫ x

x1

ψ(t)f ′(t) dt = o
(∫ x

x1

f(t) dt
)

as x→∞, where ψ(x) = x− [x]− 1
2
;

(iii) f ′(x) is continuous for x ≥ x1 and, as x→∞,

f ′(x) = o(f(x)).



Regularly varying functions 6

Proof. Suppose (i) holds. Then by (2.1)

∑
n≤x

f(n) =
∫ x

x0

f(t) dt+O(f(x)),

whence on comparison with (3.1) we find that∫ x

x0

f(t) dt = (1 + o(1))Cxf(x) (x→∞).

Then by J. Karamata’s well known theorem (see Theorem 1.6.1 of BGT [2]),
it follows that f(x) is regularly varying with index ρ = 1

C
− 1.

Since (iii) trivially implies (ii), it suffices to consider (ii). For this we use
the familiar Euler-MacLaurin summation formula in the form∑

a<n≤b
f(n) =

∫ b

a
f(t) dt− ψ(b)f(b) + ψ(a)f(a) +

∫ b

a
ψ(t)f ′(t) dt.

Using (3.1) and (ii), we obtain

(C + o(1))xf(x) = (1 + o(1))
∫ x

x1

f(t) dt+
∫ x

x1

f ′(t)ψ(t) dt

= (1 + o(1))
∫ x

x1

f(t) dt,

whence the conclusion of the theorem follows as in the previous case.

We turn now to the Tauberian converse of (1.3). Our result is

Theorem 4. Let f : [2,+∞[→ R+ be a differentiable function. Assume that
there exists a constant C > 0 such that, as x→∞,

(3.2)
∑
n≤x

∑
p|n
f(p) = (1 + o(1))Cx

f(x)

log x
,

and denote by ρ the unique positive solution of the equation

(3.3) C =
ζ(1 + ρ)

1 + ρ
.

If f(x)/ log x is nondecreasing, then f(x) = xρ+o(1) as x→∞. If f(x)/(xρ log x)
is nondecreasing, then f ∈ < with index ρ.
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First of all if f(x)/ log x is nondecreasing, so is f(x). Hence by Lemma 2
the asymptotic formula (3.2) may be replaced by

(3.4)
∫ x

2

f(v)

log v

[
x

v

]
dv = (1 + o(1))Cx

f(x)

log x
(x→∞).

The conclusion that f(x) = xρ+o(1) follows then, with F (x) = f(x)/ log x,
from the following

Theorem 5. Let F : [2,+∞[→ R+ be a continuous, nondecreasing function.
Assume that there exists a constant C > 0 such that, as x→∞,

(3.5)
∫ x

2
F (v)

[
x

v

]
dv = (C + o(1))xF (x),

and denote by ρ be the unique positive solution of (3.3). Then, as x→∞,

(3.6) F (x) = xρ+o(1).

Theorem 5 is of a fairly general nature, but it falls short of establishing
that F ∈ < with index ρ. If we set L(x) = F (x)x−ρ, it is seen (defining
appropriately F (x) for 1 ≤ x ≤ 2, if necessary) that (3.5) reduces to

(3.8)
∫ x

1
L(v)

[
x

v

]
vρ dv = (C + o(1))xL(x) (x→∞).

Hence the conclusion of Theorem 5 is equivalent to the assertion that L(x) =
xo(1), namely that x−ε �ε L(x) �ε xε for any given ε > 0. However,
L(x) = xo(1) is still far from L ∈ L. Another way to look at (3.8) is to make
the change of variable v = x/u. Then (3.8) becomes a special case of

(3.9)
∫ x

1
L(
x

u
)h(u) du = (1 + o(1))L(x)

∫ ∞
1

h(u) du (x→∞)

with h(u) = [u]u−ρ−2. However, (3.9) holds if L(x) is slowly varying and h(u)
is a Riemann integrable function such that 0 < h(u) � u−c for some c > 1.
This is not difficult to show directly, and follows for example from Lemma 1
of J.P. Tull [5]. What we need therefore, to deduce from (3.8) that L ∈ L, is
a tauberian converse of (3.9). This is contained in
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Theorem 6. Let L : [1,+∞[→ R+ be a continuous function, nondecreasing
or nonincreasing for sufficiently large x. If (3.9) holds for some Riemann
integrable function h(u) such that 0 < h(u) � u−c for some c > 1, then
L ∈ L.

Hence from (3.4) and Theorem 6 (with L(x) = f(x)/(xρ log x)) the second
conclusion of Theorem 4, comes from the use of Lemma 2, and could be
perhaps weakened.

Our main task is therefore to prove Theorem 5 and Theorem 6. It will
turn out that the proof of the former is the one that is complicated, and
necessitates several lemmas. These will be proved in section 4, while the
proofs of Theorem 5 and Theorem 6 will be given in section 5.
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4 Preliminary results

In this section we shall state and prove the necessary lemmas.

Lemma 1. Let f be as in Theorem 4 and moreover assume that it is a
nondecreasing function. If 0 < ε < 1 is given, then for x ≥ X = X(ε),

(4.1) x
1

C+1
(1−ε) ≤ f(x) ≤ x

1
C

(1+ε).

Proof. Clearly (3.2) is equivalent to

(4.2)
∑
p≤x

f(p)

[
x

p

]
∼ C

xf(x)

log x
(x→∞).

Write

(4.3)
∑
p≤x

f(p)

[
x

p

]
= x

∑
p≤x

f(p)

p
−
∑
p≤x

f(p)

(
x

p
−
[
x

p

])
= S1(x)− S2(x),

say. Because of (4.3), we have that (4.2) is equivalent to

(4.4) S1(x)− S2(x) ∼ C
xf(x)

log x
.

Note that, given ε1 > 0, there exists X1 > 0 such that, if x ≥ X1,

(4.5) 0 ≤ S2(x) ≤
∑
p≤x

f(p) ≤ f(x)
∑
p≤x

1 ≤ (1 + ε1)
xf(x)

log x
.

Combining (4.4) and (4.5), we get that, if x ≥ X2 (> X1), then

(C − ε1)
xf(x)

log x
≤ S1(x) ≤ S2(x) + (1 + ε1)C

xf(x)

log x
,

that is,

(4.6) (C − ε1)
xf(x)

log x
≤ S1(x) ≤ (1 + ε1)(C + 1)

xf(x)

log x
.

Using the prime number theorem in the form

π(x) =
∫ x

2

dt

log t
+R(x),
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with R(x) = O
(
xe−
√

log x
)

, we have that

S1(x)

x
=
∑
p≤x

f(p)

p
=
∫ x

2−0

f(t)

t
dπ(t) =

∫ x

2

f(t)

t log t
dt+

∫ x

2−0

f(t)

t
dR(t);

integrating the last integral by parts and using the fact that R(t)� te−
√

log t

and that f ′(t) ≥ 0, it follows that

S1(x) ∼ x
∫ x

2

f(t)

t log t
dt.

Hence

(4.7) (1− ε1)x
∫ x

2

f(t)

t log t
dt ≤ S1(x) ≤ (1 + ε1)x

∫ x

2

f(t)

t log t
dt,

provided x > X3 (> X2). Combining (4.6) and (4.7), we get that

(1− ε1)x
∫ x

2

f(t)

t log t
dt ≤ (1 + ε1)(C + 1)

xf(x)

log x
,

that is,

(4.8)
∫ x

2

f(t)

t log t
dt ≤ (1 + ε1)(C + 1)

(1− ε1)

f(x)

log x
.

Similarly, we get that

(4.9)
∫ x

2

f(t)

t log t
dt ≥ (C − ε1)

(1 + ε1)

f(x)

log x
.

We may combine (4.8) and (4.9) to get

(4.10) (C − ε2)
f(x)

log x
≤ f̂(x) ≤ (C + 1 + ε2)

f(x)

log x
,

where

f̂(x)
def
=
∫ x

2

f(t)

t log t
dt.

Using (4.10), we get

(4.11) f̂ ′(x) =
f(x)

x log x
≥ f̂(x) log x

C + 1 + ε2

1

x log x
=

f̂(x)

(C + 1 + ε2)x
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and

(4.12) f̂ ′(x) =
f(x)

x log x
≤ f̂(x) log x

C − ε2

1

x log x
=

f̂(x)

(C − ε2)x
.

Hence, successively, we have

1

C + 1 + ε2

1

x
≤ f̂ ′(x)

f̂(x)
≤ 1

C − ε2

1

x
,

1

C + 1 + ε3

log x ≤ log f̂(x) ≤ 1

C − ε3

log x,

x
1

C+1+ε3 ≤ f̂(x) ≤ x
1

C−ε3 .(4.13)

Using once more the inequalities in (4.11) and (4.12), we get, by (4.13), that

1

C + 1 + ε2

x
1

C+1+ε3 ≤ f̂(x)

C + 1 + ε2

≤ f(x)

log x
≤ f̂(x)

C − ε2

≤ 1

C − ε2

x
1

C−ε3 ,

which proves Lemma 1.

Lemma 2. Let f be as in Lemma 1. Then, as x→∞,

(4.14)
∑
p≤x

f(p)

[
x

p

]
= (1 + o(1))

∫ x

2
f(t)

[
x

t

]
dt

log t
+O

(
xf(x)e−

√
log x

)
.

Proof. Let x ≥ 2. We have

∑
p≤x

f(p)

[
x

p

]
=

∫ x

2−0
f(t)

[
x

t

]
dπ(t)

=
∫ x

2
f(t)

[
x

t

]
dt

log t
+
∫ x

2−0
f(t)

[
x

t

]
dR(t).

Now∫ x

2
f(t)

[
x

t

]
dR(t) = f(x)R(x) +O(1)−

∫ x

2
R(t)d

{
f(t)

[
x

t

]}
= O

(
xf(x)e−

√
log x

)
−
∫ x

2
R(t)

[
x

t

]
f ′(t) dt−

∫ x

2
R(t)f(t) d

[
x

t

]
.
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We have, using R(t)� te−
√

log t and integrating by parts,∫ x

2
R(t)

[
x

t

]
f ′(t) dt � x

∫ x

2
e−
√

log tf ′(t) dt

= x

f(x)e−
√

log x +O(1) +
1

2

∫ x

2

f(t)√
log t

e−
√

log t

t
dt


� xf(x)e−

√
log x +

∫ x

2

[
x

t

]
f(t)√
log t

e−
√

log t dt

� xf(x)e−
√

log x +
∫ x

2

[
x

t

]
f(t)

log t

(√
log t e−

√
log t

)
dt,

because 1� f(x)e
√

log x, due to Lemma 1. Thus∫ x

2
R(t)

[
x

t

]
f ′(t) dt = o

(∫ x

2
f(t)

[
x

t

]
dt

log t

)
+O

(
xf(x)e−

√
log x

)
.

Putting x
t

= u, we have∫ x

2
R(t)f(t) d

[
x

t

]
=

∫ 1

x/2
R
(
x

u

)
f
(
x

u

)
d[u]

= −
∑
n≤x

2

f
(
x

n

)
R
(
x

n

)
� x

∑
n≤x

2

f
(
x

n

)
e−
√

log(x/n)

n
.

Let 0 < δ < 1. We use once more Lemma 1 and write

∑
n≤x

2

f
(
x

n

)
e−
√

log(x/n)

n
=

∑
n≤xδ

f
(
x

n

)
e−
√

log(x/n)

n
+

∑
xδ<n≤x

2

f
(
x

n

)
e−
√

log(x/n)

n

� f(x)e−A(δ)
√

log x
∑
n≤x

1

n
+ f(x1−δ)

∑
xδ<n≤x

2

1

n

� f(x)e−A1(δ)
√

log x + f(x1−δ) log x� f(x)e−A1(δ)
√

log x,

if δ is a constant sufficiently close to 1. This proves (4.14).

Lemma 3. Let F be as in Theorem 5. There exist constants 0 < δ1 < δ2

and a real number x1 > 0 such that, if x ≥ x1, then

(4.15) xδ1 ≤ F (x) ≤ xδ2 .
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One can choose δ1 = (C + 1)−1 and δ2 = C−1.

Proof. We have

(C + o(1))xF (x) =
∫ x

2
F (v)

[
x

v

]
dv

= x
∫ x

2
F (v)

dv

v
−
∫ x

2
F (v)

(
x

v
−
[
x

v

])
dv = I1 − I2,

say. Since 0 ≤ I2 ≤ I1, it follows that

(C − ε1)F (x) ≤
∫ x

2
F (v)

dv

v
≤ (C + 1 + ε1)F (x).

This is analogous to (4.10), with F (x) in place of f(x)/ log x, and the rest of
the proof is as in Lemma 1. Note, however, that we do not need here F to
be differentiable, while we needed the differentiability of f in Lemma 1.

Lemma 4. Let F , ρ, δ1 et δ2 be as above, then

(4.16) δ1 ≤ ρ ≤ δ2.

Proof. Since δ1 = 1
C+1

et δ2 = 1
C

, we only need to prove that

C <
1

ρ
< C + 1.

We have

C =
∫ ∞

1
[u]u−ρ−2 du <

∫ ∞
1

u−ρ−1 du =
u−ρ

−ρ
∣∣∣∞
1

=
1

ρ
.

We also have

C =
∫ ∞

1
[u]u−ρ−2 du >

∫ ∞
1

(u− 1)u−ρ−2 du =
∫ ∞

1
u−ρ−1 du−

∫ ∞
1

u−ρ−2 du

=
1

ρ
− 1

ρ+ 1
>

1

ρ
− 1.

Lemma 5. The function h : R+ → R+ defined by

(4.17) h(r) =
ζ(1 + r)

1 + r
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is strictly decreasing on R+.

Proof. The result follows from the series representation ζ(s) =
∑∞
n=1 n

−s

(Re s > 1).

Lemma 6. Let F be as in Theorem 5 and let ϕ : [2,+∞[→ R+ be a function
such that limx→∞ ϕ(x) = +∞ and ϕ(x) = o(x). Then, as x→∞,

(4.18) F (x/ϕ(x)) = o(F (x)),

(4.19)
∫ x/ϕ(x)

2
F (v)

[
x

v

]
dv = o(xF (x))

and

(4.20)
∫ x

x/ϕ(x)
F (v)

[
x

v

]
dv ∼ CxF (x).

Proof. If x is sufficiently large, we have, appealing to (3.5), that

2CxF (x) >
∫ x

x/ϕ(x)
F (v)

[
x

v

]
dv ≥ x

2
F (x/ϕ(x))

∫ x

x/ϕ(x)

dv

v
=
x

2
F

(
x

ϕ(x)

)
logϕ(x).

It follows from this that

F (x/ϕ(x))� F (x)

logϕ(x)
.

Since limx→∞ logϕ(x) = +∞, we easily obtain (4.18).
In order to establish (4.19), we proceed as follows: If x is large enough,

we have, using (4.18) and (3.5),∫ x/ϕ(x)

2
F (v)

[
x

v

]
dv =

∫ x/ϕ(x)

2
F (v)

[
x/ϕ(x)

v
· ϕ(x)

]
dv

≤ 2ϕ(x)
∫ x/ϕ(x)

2
F (v)

[
x/ϕ(x)

v

]
dv

� ϕ(x)
x

ϕ(x)
F

(
x

ϕ(x)

)
= xF

(
x

ϕ(x)

)
= o(xF (x)),

which proves (4.19). Clearly (4.20) follows from combining (3.5) and (4.19).
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Lemma 7. Let ξ be a real positive number, then∫ x

1
vξ
[
x

v

]
dv = x1+ξh(ξ) +O(x),

where h(r) is defined by (4.17).

Proof. Let x
v

= u, then

∫ x

1
vξ
[
x

v

]
dv =

∫ x

1

(
x

u

)ξ
[u]

x

u2
du

= x1+ξ
∫ x

1
[u]u−ξ−2 du

= x1+ξ
(∫ ∞

1
[u]u−ξ−2 du−

∫ ∞
x

[u]u−ξ−2 du
)

= x1+ξ
(
h(ξ) +O

(
1

xξ

))
,

whence the result.
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5 Proof of Theorem 5 and Theorem 6

Let

∆1
def
= lim inf

x→∞

logF (x)

log x

and

∆2
def
= lim sup

x→∞

logF (x)

log x
.

It is clear that these two limits exist (because of Lemma 3) and that

0 < δ1 ≤ ∆1 ≤ ∆2 ≤ δ2 < +∞.

First, we shall prove that

(5.1) ∆1 = ∆2.

Suppose the contrary, i.e. that ∆2 > ∆1. In view of Lemma 4, two cases can
occur:

• Case #1. ρ < ∆2.

• Case #2. ρ ≥ ∆2.

First consider Case #1. Let

(5.2) ξ = min
(

∆2 −∆1

4
,
∆2 − ρ

2

)
.

With this choice of ξ, it follows from Lemma 5 that h(ρ) > h(∆2−ξ). Choose
ε > 0 sufficiently small so that

(5.3)
1− ε
1 + ε

h(ρ) > h(∆2 − ξ).

Clearly there exists X4 such that if x ≥ X4, then

(5.4) log x < x
∆2−ξ
∆1+ξ .

Furthermore, because of (4.20) with ϕ(x) = log x, there exists X5 = X5(ε)
such that
(5.5)

(1− ε)h(ρ)xF (x) <
∫ x

x/ log x
F (v)

[
x

v

]
dv < (1 + ε)h(ρ)xF (x) (x ≥ X5).
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Set X = max(X4, X5). Then from the definitions of ∆1 and ∆2, we have
that there exist y3 > y2 > y1 > X such that

(I) F (y1) ≥ y∆2−ξ
1 , F (y2) ≤ y∆1+ξ

2 , F (y3) ≥ y∆2−ξ
3 .

Recall that F (x) is nondecreasing and set

x1 = max{x : y1 < x < y2 such that F (x) = x∆2−ξ}
x2 = max{x : y1 < x < y2 such that F (x) = x∆1+ξ}
x3 = max{x : y2 < x < y3 such that F (x) = x∆2−ξ}.

Since x1 ≤ x2 and F (x) is nondecreasing, we have F (x1) ≤ F (x2) and
therefore

x∆2−ξ
1 ≤ x∆1+ξ

2 ,

which implies that

x
∆2−ξ
∆1+ξ

1 ≤ x2.

From this it follows, taking into account (5.2) and (5.4), that

(5.6) x1 <
x2

log x2

<
x3

log x3

< x3.

Using (3.5), (5.5), (5.6) and the fact that F (v) ≤ v∆2−ξ for x1 ≤ v ≤ x3, we
have

(1− ε)h(ρ)x3x
∆2−ξ
3 = (1− ε)h(ρ)x3F (x3) <

∫ x3

x3/ log x3

F (v)
[
x3

v

]
dv

<
∫ x3

x1

F (v)
[
x3

v

]
dv ≤

∫ x3

x1

v∆2−ξ
[
x3

v

]
dv

< (1 + ε)h(∆2 − ξ)x1+∆2−ξ
3 ,

which means that

(1− ε)h(ρ) < (1 + ε)h(∆2 − ξ),

which contradicts (5.3). This proves (5.1) in the case where ρ < ∆2.
It remains to consider Case #2, that is when ρ ≥ ∆2 > ∆1. We proceed

essentially as in Case #1. First, we choose

ξ = min
(

∆2 −∆1

4
,
ρ−∆1

2

)
.
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Observing that ρ > ∆1 + ξ and that h is decreasing, we choose ε > 0
sufficiently small so that

(5.7)
1 + ε

1− ε
h(ρ) < h(∆1 + ξ).

Appealing again to Lemma 6 (that is, (4.20) with ϕ(x) = log x), we have
that there exists X6 = X6(ε) such that
(5.8)

(1− ε)h(ρ)xF (x) <
∫ x

x/ log x
F (v)

[
x

v

]
dv < (1 + ε)h(ρ)xF (x) (x ≥ X6).

Then choose X = X6. From this, we deduce the existence of three numbers
y3 > y2 > y1 > X satisfying the inequalities (I) given above. Then define x1

and x2 as before.

It follows that, since F (v) ≥ v∆1+ξ for v ∈
[

x2

log x2
, x2

]
⊂ [x1, x2], one can

write, using (5.8),

(1 + ε)h(ρ)x2x
∆1+ξ
2 = (1 + ε)h(ρ)x2F (x2) >

∫ x2

x2/ log x2

F (v)
[
x2

v

]
dv

≥
∫ x2

x2/ log x2

v∆1+ξ
[
x2

v

]
dv > (1− ε)h(∆1 + ξ)x1+∆1+ξ

2 ,

which contradicts (5.7). This proves (5.1) in both possible cases. Henceforth
let

∆
def
= ∆2 = ∆1.

It remains to prove that

(5.9) ∆ = ρ.

First observe that, since ∆ > 0, relation (3.5) can also be written as

(5.10)
∫ x

1
F (v)

[
x

v

]
dv ∼ CxF (x),

if we extend the definition of the function F by writing F (x) = F (2) for
x ∈ [1, 2].
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In order to prove that ∆ = ρ, we proceed by contradiction. Assume first
that

∆ > ρ, i.e. ∆ = ρ+ δ, δ > 0.

Then let
F (x) = x∆L(x) = xρ+δL(x),

with

(5.11) L(x) = xo(1).

With this notation, relation (5.10) becomes

(5.12)
∫ x

1

L(x/u)

L(x)

[u]

u2+ρ+δ
du ∼ C.

Because of Lemma 5, we have

C =
∫ ∞

1

[u]

uρ+2
du =

∫ x

1

[u]

uρ+2
du+O

(
1

xρ

)
.

It follows from this that relation (5.12) can be written as

(5.13)
∫ x

1

L(x/u)

L(x)uδ
[u]

u2+ρ
du ∼

∫ x

1

[u]

u2+ρ
du.

Let now η be a fixed real number satisfying

(5.14) 1 < η < eδ/2.

It also follows from (5.12) that one can choose X7 = X7(η) such that

(5.15)
ζ(1 + ρ)

1 + ρ
<
√
η
∫ x

1

L(x/u)

L(x)

[u]

u2+ρ+δ
du (x ≥ X7).

Because of relations (5.13) and (5.14), there exists X8 = X8(η) > 0 such
that, we have ∫ x

1

L(x/u)

L(x)uδ
[u]

u2+ρ
du ≥ 1

η

∫ x

1

[u]

u2+ρ
du (x ≥ X8).

It follows from this last inequality that, if we fix a real number x1 arbi-
trarily large, x1 > X = max(X7, X8), then there exists at least one interval

[a, b] ⊂ [1, x1] (1 ≤ a < b)
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such that

(5.16)
L(x1/u)

L(x1)uδ
≥ 1

η
, ∀u ∈ [a, b].

Amongst these intervals, let I1 = [ax1 , bx1 ] be the one for which the upper
bound is the largest.

Now set v = x1

u
in (5.16), so that

(5.17)
L(x1)

L(v)
≤ η

(
v

x1

)δ
, ∀v ∈ [x1/bx1 , x1/ax1 ].

Further set x2 = x1/bx1 . Hence in particular, we shall have

(5.18)
L(x1)

L(x2)
≤ η

(
x2

x1

)δ
.

If x2 ≤ X, then, from (5.18), we have

L(x1) ≤ η
(
x2

x1

)δ
L(x2)� x−δ1 ,

which contradicts our assumption (5.11), since x1 was choosen arbitrarily
large and this ends the proof.

If on the contrary we have x2 > X, then

(5.19)
∫ x2

1

L(x2/u)

L(x2)uδ
[u]

u2+ρ
du ≥ 1

η

∫ x2

1

[u]

u2+ρ
du.

As above, we deduce that there exists at least one interval

I2 = [ax2 , bx2 ] ⊂ [1, x2] with 1 ≤ ax2 < bx2 ≤ bx1

such that

(5.20)
L(x2/u)

L(x2)uδ
≥ 1

η
, ∀u ∈ I2

and that

(5.21)
L(x2)

L(v)
≤ η

(
v

x2

)δ
, ∀v ∈ [x2/bx2 , x2/ax2 ].
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For each i = 3, 4, . . ., we choose

xi =
xi−1

bxi−1

and in each case we obtain the existence of two real numbers 1 ≤ axi < bxi ≤
bxi−1

such that

(5.22)
L(xi)

L(v)
≤ η

(
v

xi

)δ
, ∀v ∈ [xi/bxi , xi/axi ].

We continue this process until step n, that is until

(5.23) xn = xn−1/bxn−1 < X < xn−1.

The fact that there exists a positive integer n for which the above inequalities
are satisfied is guaranteed by the fact that

(5.24) bxi > c0 > 1, ∀xi > X,

for a certain real number c0. Indeed, assume for the moment that (5.24) is
true. Then (5.23) will certainly hold for some sufficiently large n for which

(5.25) n <
log(x1/X)

log c0

+ 2.

Then, using repeatedly (5.22) with v = xi+1 = xi/bxi , we have

L(x1) =
L(x1)

L(x2)
· L(x2)

L(x3)
· L(x3)

L(x4)
· . . . · L(xn−1)

L(xn)
· L(xn)

≤ ηn−1 ·
(
x2

x1

)δ
·
(
x3

x2

)δ
·
(
x4

x3

)δ
· . . . ·

(
xn
xn−1

)δ
· L(xn)

= ηn−1
(
xn
x1

)δ
· L(xn) < ηn−1

(
X

x1

)δ
· L(xn)

� ηn

xδ1
� ηlog x1

xδ1
=
xlog η

1

xδ1
<
x
δ/2
1

xδ1
= x

−δ/2
1 ,

where we used (5.23), (5.14), (5.25) and also the fact that Xδ L(xn) ≤
Xδ max1≤x≤X L(x) = O(1).
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But since x1 was taken arbitrarily large, this contradicts relation (5.11),
which guaranteed that

x−ε � L(x)� xε, ∀ε > 0 fixed .

It remains to prove (5.24), i.e. that we can assume the existence of a
constant c0 > 1 such that

bxi > c0,

for all i’s for which xi > X (even if there are infinitely many of them).
Assume the contrary. First, if there is only a finite number of bxi ’s for which
xi > X, then, since they constitute a monotonic decreasing sequence, they
are all bounded below by the smallest amongst them, in which case it is easy
to find a c0 > 1 which will act as a lower bound. If on the other hand there
exist infinitely many such xi’s with lim

i→∞
bxi = 1 and with the property

(5.26)
L(xi/u)

L(xi)uδ
<

1

η
, ∀u ≥ bxi ,

then, let ε > 0 be fixed, arbitrarily small; clearly there exists i0 such that
bxi < 1 + ε, for all i ≥ i0. In particular, since xi0 > X, it follows from (5.15)
and (5.26), using for short x = xi0 ,

ζ(1 + ρ)

1 + ρ
<
√
η
∫ x

1

L(x/u)

L(x)uδ
[u]

u2+ρ
du

=
√
η
∫ 1+ε

1

L(x/u)

L(x)uδ
[u]

u2+ρ
du+

√
η
∫ x

1+ε

L(x/u)

L(x)uδ
[u]

u2+ρ
du

<
√
η
∫ 1+ε

1

L(x/u)

L(x)uδ
[u]

u2+ρ
du+

√
η

η

∫ x

1+ε

[u]

u2+ρ
du

<
√
η
∫ 1+ε

1

L(x/u)

L(x)uδ
[u]

u2+ρ
du+

1
√
η

ζ(1 + ρ)

1 + ρ
.

This last integral tends to 0 as ε tends to 0, which leads us to a contradiction
since η > 1, and this proves (5.24).

This proves that we cannot have ∆ > ρ.
In a similar manner one can prove that we cannot have ∆ < ρ. Hence

(5.9) is true and Theorem 5 is proven.
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It remains yet to prove Theorem 6. Assume first that L(x) is nondecreas-
ing for x ≥ X. Then we have to show

(5.27) lim
x→∞

L(x)

L(ax)
= 1

for any a > 0. It is easily established that if (5.27) holds for 0 < a < 1, then
it also holds for a > 1. Suppose that for some 0 < a < 1, (5.27) does not
hold. Since L(x) ≥ L(ax) for sufficiently large x, it follows that there exists
a sequence xi tending to +∞ for which L(xi)/L(axi) > 1 +η for some η > 0.
Choose x = xi to be large enough. Then

L(x)
∫ ∞

1
h(u) du ∼

∫ 1/a

1
L(
x

u
)h(u) du+

∫ x

1/a
L(
x

u
)h(u) du

≤ L(x)
∫ 1/a

1
h(u) du+ L(ax)

∫ x

1/a
h(u) du

≤ L(x)

(∫ 1/a

1
h(u) du+

1

1 + η

∫ ∞
1/a

h(u) du

)
.

But since η > 0 this gives∫ ∞
1

h(u) du ≤
∫ 1/a

1
h(u) du+

1

1 + η

∫ ∞
1/a

h(u) du <
∫ ∞

1
h(u) du,

which is a contradiction that proves the theorem when L(x) is nondecreasing.
When L(x) is nonincreasing, then the proof is similar. If

lim
x→∞

L(ax)

L(x)
= 1

fails for some 0 < a < 1, then for some η > 0 and a sequence xi tending to
+∞, we have L(axi) > (1 + η)L(xi), since L(ax) ≥ L(x) for x ≥ X. But
then, for x = xi,

L(x)
∫ x

1
h(u) du ∼ L(x)

∫ ∞
1

h(u) du ∼
∫ x

1
L(
x

u
)h(u) du

≥ L(x)
∫ 1/a

1
h(u) du+ L(ax)

∫ x

1/a
h(u) du

≥ L(x)

(∫ 1/a

1
h(u) du+ (1 + η)

∫ x

1/a
h(u) du

)

> L(x)
∫ x

1
h(u) du,
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and thus again we have a contradiction.
Note, however, that if we drop the hypothesis that L(x) is monotonic,

then (3.9) does not necessarily imply that L ∈ L, which means that the
hypothesis of monotonicity is indeed the appropriate one to make. To see
this, let L(x) be a piecewise linear function defined as follows: L(x) = 1
unless x ∈ [2k − ε2−k, 2k + ε2−k] (0 < ε < 1

2
is a small given number,

k = 1, 2, . . .), and L(2k) = 2 for k = 1, 2, . . . . Then obviously

L(xk)

L(axk)
= 2

for xk = 2k, k ≥ k0(ε) and say a = 2
3
. Thus L(x) cannot be slowly varying.

On the other hand L(x) = 1 +O(ε) and

∫ x

1
L(
x

u
)h(u) du =

∫ x

1
h(u) du+O

O(log x)∑
k=1

ε2−k(x2−k)−c


= (1 +O(ε))

∫ x

1
h(u) du

=
(
1 +O(ε) +O

(
x1−c

))
L(x)

∫ ∞
1

h(u) du,

so that (3.9) does hold, since ε may be arbitrarily small.
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