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1. Introduction and notation. Denote by g the set of all prime num-
bers. Assume that d is a fixed positive integer and that pg, pq, ... , Pq are
disjoint subsets of primes such that

poUprU...Upg = p,
where (o contains at most finitely many primes (and in fact may be empty).
Let 7([a, b]) be the number of primes belonging to the interval [a, b].
Let w(I|p;) = #{p € p; N I}, where I is a subset of the integers.
In what follows we assume that

(1.1) 7([u, u + v]|p;) = 5nr([u,u+v])+0<®)
holds uniformly for 2 < v < u, ¢ =1,...,d, where ¢; is a positive constant

and 61,. .., 84 are positive constants such that Zle 6; = 1. With the proper
rearrangement, we may assume that §; < ... < §,.
We shall use the notations

z1 =logz, z,=Iloglogz, etc.

and -
(1.2) ti(z) = (52?1)'

Writing f(z) < g(z) means that the two functions f(z) and g(z) are of the
same order as z — oo.

Further, denote by w(n) = Zp| » 1 the number of distinct prime factors
of n, by P(n) the largest prime factor of n and by p(n) the smallest prime
factor of n.
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170 J.-M. De Koninck and I. Kdtai

In what follows, p1,ps, ... as well as g1, ¢2, . . . always denote prime num-
bers.

An expression of the form 4143 . ..%;, where t > 1 and each i is one of the
numbers 1,...,d, is called a word of length ¢. We sometimes write A(c) = ¢
to indicate that « is a word of length t. Let A; be the set of all words of
length ¢. Define Ag to be the set containing the empty word A. Finally, we

set
A* = U At.
t=0

We now define the function H : N — A* as follows. First let H(1) = A.
For an arbitrary prime number p and positive integer a, define
A ifpe %0,

Hp") = {j ifp e p;.

Further, for n = p{* ... p% (p1 < ... < p,), define
H(n)=H(py")... H(p}").
Finally, given a word a = 41 ..., we set
ofa) :=6; ...8;,.

Let w; be a function tending to co but satisfying w, = O(z3). For an
arbitrary number w > 1, and for each word o = iy ...4; € Ay, define

Ni(w) = {pi*...pp*: w<p1 <...<pg},
N(O)(w)—{pl Pr: w<pr<...<pr}
Ny (w; o) = {p}* Pw<pr<...<pg, H?...p*)=a},
N(O)(w a)={p1..ox: w<p1<...<pg, H(p1...px) = a},
¢ (w5 @) = Ni(w;0) \ WO (w; ),
Né“(w) = Ni(w) \ WO (w).

For each of the above expressions Ny (w), ./\/',go) (w), Ni(w; @), ..., we define
the corresponding counting functions Ny (Y |w), N}go) (Yw), Ng(Y|w;a),...
which stand for the number of elements n < Y which belong to the corre-
sponding set.

Furthermore, when w = 1, we shall write Nk(Y),N,gO)(Y) and N,El)(Y)
instead of Ny (Y|1), N,go)(Y|1) and N,gl)(Yll) respectively.

We shall also use the standard functions related to the normal distribu-
tion, namely

ak

(1.3) o(t) = \/—%e—t?/?, o)== [ a
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For each number w > 2 and z > 0, let

(1.4) vu(z) =[] <1+§)_1.

p<w
For s € C, R(s) > 1, 2> 0 and w > 2, let

1+ 25

(1.5) E(s,z) = H 17 =

P> P

Also, for each z > 0, let

(1.6) F(z) = f% ];[ (1 + Z—Z)) (1 - ;1))

where I'(z) stands for the Gamma function.

Throughout the text, ¢ stands for a positive constant not necessarily
the same at each occurrence. On the other hand, the constants cy,co, ...
appear at specific occasions and keep their original value throughout the
whole text.

2. Preliminary results. In this paper, we are proving several results
involving the distribution of subsets of primes in the factorization of in-
tegers. Many of these results are stated and proved throughout the pa-
per after having been properly motivated by the flow of the material pre-
sented. In this section, however, we state two important preliminary re-
sults:

THEOREM 1. Let ¢; > 5, limy oo Wy = 00, Wy = O(z3), Vz <Y < 2
and 1 < k < coxo, where cy is an arbitrary constant. Assume that o is an
arbitrary word belonging to Ay. Then

2.1 Nig(Y|wg; ) = (1+ o(1)) e(a) Ni (Y fwy).

THEOREM 2. Assume that the conditions of Theorem 1 hold. Let A <

zg with P(A) < wg. Then the number of wntegers n = An; < 'Y for
which p(n1) > wy, H() = o, w(nig) = k and o = iy...ik, is equal
to

Y k-1 k-1
2.2 1 1 t w ,
22) (0 etee) g st e, () r(A1)

where the functions t, Puw, and F are defined by (1.2), (1.4) and (1.6) re-
spectively.
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3. The preliminary lemmas

LEMMA 1. Define
(3.1) T(zlw)= Y G(p1)...G(ps),

P1--Pe ST
w<p1<... <Pk

where G(p) = 1+ tp, with t, a sequence of real numbers, 0 < t, < 1, such
that >, tp/p < co. Then

T 1 :L"z““l
(32)  Telalw) = O(logm (logw)k/2 (K — 1)!

) (1< k< eazs).

Proof. Clearly we have

(3.3) Ty (z|lw) < O(Vz)+ 2 Z G(p1)...G(pk)log(p1 - .. pk)-

logz
& Pi...PE<T
w<p1<...<pxk

Denote this last sum by Yy. Then we have
So< Y, Gg)...Glgr-1)G(p)logp.

q1---qr—1Pp<®
w<q1<...<qk—1

Using the fact that }° ., G(p)logp < cz for some positive constant ¢, we
obtain B

(34) Xp<ec >

w<g1<... <qr-1<T

it 2.9)

wg<le

Glq)..-Glar-1) Y,  Gp)logp

p<z/(g1---gr—1)

Now
G
(3.5) Z Gla) < o — loglogw + &4,
w<g<le q
where £, — 0 as £ — oo. On the other hand,
k—1
loglogw — ¢
(z2 — loglogw + ;)" = 2&71 (1 - ——g——%;—w>
k—1_—(loglogw)k/xz2 k-1 ¢
Sooe =72 (ogu)H/es’
for some positive constant ¢ > 0. This last estimate, combined with (3.3),
(3.4) and (3.5), proves (3.2). :
LEMMA 2. Let ¢; > 5, limg 0o Wy = 00, Wy = O(23), v2 <Y <z and
1 < k < comy. Then, writing for short w = wy, the following three estimates
hold.
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(3.6) . NO (Vi) = logytm%(’“;)z?(’“;l)(1+o(%)),

(38) NO(Y|w) = o(-w—lsg—wjv,gm (Ylw)).

Proof. Consider the generating function

0 w(n)
IR i IO, (1+ i) = C*(s)h(s),
n=2 n p>w p
p(n)>w
where
—1 1 z
h(s) = <1+fs-> <1+%><1——8—> .
pgv p IpI p p

Using an analytic method successively developed and refined by Sathe, Sel-
berg and Kubilius (see Kubilius [6]), one can prove that

S@= Y =)= (£ +0(1hy ) )Y es v

n<lY
p(n)>w

from which we easily deduce (3.6).
Similarly, starting with

* w(n)
e 3 T =TT (1) = I1 (14 2) 62
n=2 n p>w b= p>w p
p(n)>w

we obtain (3.7).
Finally, since

1+ % 1
Bls,2)= 11 1+p-z- :1+O(wlogw>’

p>w P

a relation valid for 0 < z < ¢, we deduce (3.8). This ends the proof of
Lemma 2.

4. The proofs of Theorems 1 and 2. First we prove Theorem 1.
Let c3 be a positive constant, lp < Iy < ... be knot-points in the interval
[we, Y] such that lo = wg, [j41 = I 4+ 1;/(logl;)® (j = 1,2,...). We also
define [_; by the equation I_; +1_1/(logl_1)® = ly. A k-tuple (u,... , Uk)
of knot-points is said to be feasible if it satisfies ljp < uy < ... < U and
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uy...ux < Y. Further, let u; = [uj,u; + Auy]. Here Auj = g1 — I if
U; = lk

Let w = (u1,...,ux) be a feasible k-tuple and, given o =4y .. .15, write

me(ule) == #{(p1,...,px) : p; € U; and H(p;) =ij, for j =1,...,k}.
We also define

me(w)= Y mi(ul)
Ma)=k

where the sum runs through all words o of length k.

Since we have assumed (see (1.1)) that

~ - 1
(W p5) = 657 () (1 + O(W»’
it follows that
1 _ m(ulo)

(4.1) Sa) < 2o)me(w) < S(u),
where

k
(4.2) S(u) = H (1 + GTg’t—L%CI—_C?'>’

v=1
and ¢4 > 0 is a large constant.
Let ¢5 > 0 be another constant which is to be determined implicitly
by (4.5).
The feasible u’s are subdivided into three classes, By, By and Bj, as
follows:

e u € By if there exists at least one v for which
Uy

—_—y <Y
(43) Bt T = Togw, )

H

o u € B ifu¢30 and
(4.4) (u1 + Auy) ... (ug + Aug) > Y,
e B, contains all the other u’s.

First observe that if u ¢ Bo and s; denotes the number of u, € [e*, e‘*1],

then s; < t°, and consequently, if we set tg = [loglo], we have

#65 1 1
log S(u) < Z fe1—cs < t81_03—cs_1 N O(logwaz>7

t>tg

provided
(45) cs+c3+2<e;.
We have thus proved that
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(4.6) S(u) =1+ o( ) for u ¢ By.

logw,
From (4.6) and (4.1), it follows that
1
@n) ) mr(ula) = Q(a)(l + o(logw)) > om(u)  (€=1,2).
u€Be u€Be
On the other hand, it is clear that

3 me(ula) < NO (Viwg; )
ueBy

< Z mr(u|a) + Z mr(ulo) + Z 7 (u|a).

ueBy uEBsy u€Bo
We now proceed to estimate

Clearly, because of (4.1), we have
(48) Tra Sola) 7 mi(w)S(u) = o(@)(Fr + Siz),
u€By

where in Xy ; we sum over those u € By for which (u; + Auq) ... (ug + Auyg)
<Y, and in Y; 2 we sum over the other u’s.

Now define
264
=1 _—
G(p) + (1ng)c1——cs
‘We then have
(4.9) T Y, Gie.pe),
p1.--PeSY

where the asterisk in the sum indicates that 0 < p,4+1 — p, < 2p,/(logp, )
is satisfied for at least one v € [1, k].

In order to estimate X o, we replace w by u' = (u,...,u}) where uj is
the left neighbour of u; among the knot-points. If Iy occurs among the u;’s,
then it is simply shifted into {_;. Note that it is clear that I_; > ly/2.

By construction, we have

(@) = ©(@,) (1 +0 (ﬁ)) ’

say, and since u} ...u) <Y, it follows that

(4.10) D2 < Z G'(p1-.-pi) = Za,
PP <Y

say, where the double asterisk in the sum indicates that we sum over those
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p1, ..., px for which 0 < py1 — py < 2p,/(logp, ) holds for at least one v,
I_1 <p1 <...<pg, and where G' = 1+ fp, with f, = 1/logp.

The sums (4.9) and (4.10) being similar, we only need to find an upper
bound for X 4. First we set g(p) = 2p/(logp)*s.

Clearly we have

411) Za<4 Y > Clar--qu2) =4, >

pq<Y Q1Qk_2SY/qp P9 91539k ~2
p<g<p+g(p) I-1<q1<...<qr—2

say. We consider the cases p > Y*/10 and p < Y1/10 geparately. For the first
case, since G(p) < 2 and

O T
q logp)estl’
p<q<p+g(p)q (log )
we have
- o 1 1
CSLED DD D+ S D DI DI
p>YV/10 Q1,Ge-2 p>Y1/10 " p<q<p+g(p)

p<q<p+g(p)

k
< 2 Y Z logp C5+1

>Y1/10
T dt Y
k
Y <
<z Yf/fmt(k)g t)est2 T (logx)s

because 2 = O(logz) and since logY < logz.
For the second case, we use the inequality (3.2) of Lemma 1 and obtain

(4.13) > >

pgyl/lo 140 qQl—2

p<q<p+g(p)
k—3
' 1+ fp 1
«y LA EE) Dy L
Yl/lowl —3) li<g<e 1 p<a<pta(p)

k—1
Y logz 1 1
< <10g lo gl + 0(1)) (k—1)! Z pq
§i-1 ' " p<g<pt+g(p)

Yy zkd 1 1 > 1

I ' (k—3)! (log wg)k/72  (logwg)es p<g<p+g(p) b
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as £ — 0o. Thus in view of (4.8) and the estimates (4.11)—(4.13), as well as
Lemma 2, we have proved that, for every word « of length k&,

T1,a = o(1)o(@) Ny (Y ]ws)
and in particular that
> mu(w) = S = o(N (Y ]we).
ueBp a

If w € By, then, using (4.6), we have

Y<(u1+Au1)...(uk+Auk)§YS(U)§Y+O< Y >,

log w,
Y
Uy ..usz—O< )
logw,

Thus, with a suitable large number B, we have, using Lemma 2,

414) D mi(ule) < o(a) <1 + O(logl'wm>>

ueB;
(0) YB (0) YB

T T

and

< L e(@NO (¥ uw.) = o(Le(@NO (¥ ).

Hence
> me(w) < o(LNO (Y |ws).
ueEB,

We have therefore proved that

(4.15) NO (Y was @) = (14 0(1))e(@) NV (Y [ws).

We now proceed to estimate IV ,51) (Y|wg; ), which, as we may recall from
the definition given in Section 1, represents the number of positive integers
n=pi*...p" <Y, where w, < p1 < ... < px, such that H(n) = a and
have at least one a; > 1.

We write such an n as n = njng, where n; stands for the square-full
part of n and ns stands for the square-free part of n. Note that we have
o(ca) > 6%, Observe first that we can omit all those integers n for which the
corresponding ny > z§, where c is a large constant depending on §;: the
reason is that their contribution to N ,gl) (Y|wyg; ) is less than o(a)Y/z%. We
can thus assume that n; < (logz)¢ for some large constant ¢ > 0.
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For each ni, consider those n for which the square-full part is n;. Let
H(nz) = ay,. Thus, using (4.15), we may write

Y
0
NV Y |wga) < Y N,gjw(m)(a

l<ni <z}
n1 square-full
© Y
< Z Q(anl)Nk—w(nl) <TL—1 um:)
ny

p(n1)>we
w(nl)
1 (0) Y
<@ (5;) Ny w(na) (;g

ni

).

Let us first assume that k < zo. In this case, N ,go_)w(nl) (%Iwm) is essen-
tially monotonic in &, that is,

Y
k—w(nl) ,n_l

N©

1
ny

and therefore

w(n1)
1 1 0
w19 NV <o T (5) o) MO,
But since
w(ni)
1 1 1/1 1
1 — — = I+ =(5+=+...
(.17) nz (61> n pg ( 61 (p2 p’ ))
2 1 4
= el
< exp { 61 p;w p? } b1w, logw,
it follows that
1
(1) i NOVIw. o).
(4.18) N7 (Ywg; o) K wologw, 'k (Y|wg; @)
It remains to consider the case where zo < k < cozg. In this case,
N ’go_)w (n1) (T—% Iww) is essentially decreasing in k. Hence we proceed as follows.
We have
- Y)
0) Y 1 0 1 th—w(ng)(
Nk_w(nl)< wm) < nlNk—w(n1>(Ylw”)<< nlN’“ (Yiwz)~————tk(y) .
Since
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it follows that

0) Y
Nk—w(’nl) (nl

But, similarly to (4.17), one can show that

e\ 1 1
> (2)" L= o( k)
ni>1 1 ni Wy 10 Wy

Thus (4.18) still holds in the case z2 < k < cozs.
We have thus proved that, if 1 < k < cozs and if « is an arbitrary
sequence of length k, then

e < o) (3 (g—j)w(nl)nijzvé”(wwm).

ni>1

o(a)

0
oo Ve (Y1)

(4.19) NY (¥ jwg; 0) <
A consequence of this result is that N,gl)(Y|wx;a) = o(l)ngo)(Y|w$;a) in
the whole range 1 < k < caxq, a result which, combined with (4.15), ends
the proof of Theorem 1.

Theorem 2 follows easily by taking into consideration (4.15), (4.19) and
Lemma 2. :

5. Immediate applications. Theorems 1 and 2 have a wide range of
applications in number theory. An important one will be treated extensively
in Section 7. Nevertheless, here we mention two classical situations where
the results of Theorem 1 and of Theorem 2 can be applied.

Congruence classes. Let D > 1 be a fixed integer. Subdivide the set
of primes p into congruence classes mod D, that is, in d = (D) distinct
classes, where ¢ stands for the Euler function. We have po = {p : p| D}.
Then o(i) = 1/d for each i # 0, and g() = 1/d**), where \(c) denotes the
length of the word a.

Distribution of primes in special sequences. Let the interval [0, 1] be sub-
divided into disjoint intervals Iy,...,I4 of length |[I,| = §,. Let n be an
irrational number and set

po={pE€p:pn—Ipm] € L} (V:L""d)'
Assume that 7 is a number for which the corresponding gp,’s satisfy
U
r(uollon) =8l )+ O( =) =L,
for every fixed large number ¢; > 0. It is a classical result of I. M. Vinogradov
that such a relation holds for almost all irrational numbers 7.
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6. The main results

THEOREM 3. Let cg be an arbitrary positive constant and assume that
c1 > 5. Set

1
w<p<Ly p

and assume that as w — oo, we have y = y(w) — oo so that P, — o0.
Then, uniformly for 1 < k < cgP, 4, and uniformly for o € Ay, we have

1 1 1
o(c) Z Pi...Pk :(1+0w(1)) Z PL.Dr

o) WP < <P <Y WLP1 <. <Pl <Y
H(pl..‘pk):a
Furthermore,
R 1 >
e = 0u(l) 1
ai A w
o) w<P1 <. <pp <y Pr Py WP <oe e <P <Y DDk

H(p{t..ppF)=a
max(ay,...,ar)>1

Proof of Theorem 3. The proof is very similar to that of Theo-
rem 1. Let

1 1
Sk(a) = Z —, Sp= Z m

w<pi<..<py<y Pl Pk WPy <. <P <Y
H(pi...pr)=c

Divide the interval [w,y] by knot-points I < ... < I}, where lg = w, l;41 —
li = 1;/(logl;)°", for some constant c; > 0. For an arbitrary k-tuple of

subintervals u, = [u,,u, + Au,] (v =1,...,k), uy < ... < uy, let
1 1
Llu)= Y —— and Lluw)= Y  —
puea, PLoo Pk Py €l Pr---Pk
H(pi...pr)=a
where u = (uq,...,ux). Since
k
Au
Up .. U < Pr...pp < (uluk)H (1+ > u)’
v=1 v

it follows that
1 < L(u)

where
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We shall say that w is well spaced if S(u) < 1+ ¢, where ¢ > 0 is an
arbifrary but fixed positive number. Hence, if u is not well spaced, it means
that there exists at least one couple of primes p,, Pu+1 such that

Py < put1 < pu +9(py),
where g(p) = p/(log p)°s, with a positive constant cg. We shall see that the
main contribution to the sum Si(a) comes from the well spaced w’s.
In order to find an upper bound for the contribution of the badly spaced
prime sequences {p1,...,pr}, we subdivide them into classes J (I1,t1,- ..
-y lrytr), where the I,’s and the ¢,’s are positive integers such that

ll<l1+t1<lg<12+t2<...<lr+t,n§]€,

the subdivision being made according to the following rule: {pi,...,px} €
J(lyt1, ..l ) if for every v (1 < v <),

(a) pr,+j+1 = Pr,+5 < 9(P1,45) (G=0,1,...,¢, — 1) and ]
(b) Prt1 — Pr > g(Pr), Ph — Ph—1 > g(phr_1) for each h ¢ U= {l, b +
L. L+t}

Further, define

Pr=pi...py-1, Qu=py...0u4t5 .-y Prpa = Pl+te+1 - - Dk
Note that it may happen that Py and/or P,,; are empty. Then set
U:P1...PT_|_]_, VZQlQT

Note that the value of V determines its factorization into @1,...,Q,. Ob-
serve also that the primes occurring in U are well spaced. Furthermore, if
V is given, then only one factorization of U exists with the property that
P1,Q1,P2,Q2,. .., P.y1 contain the primes in increasing order.

Let us now fix both J(l1,%1,...,l,,t,) and V.

Since oo = H(pi...py) = H(P1)H(Q1)H(P2)H(Q2) ... H(P,,1), it fol-
lows that all the H(P,) =8, (v=1,...,7+1) are determined by a. So let

us fix Q1,...,Q, and consider the sum
* 1
o= Y
P...P’
H(P)=p, "' +
where the asterisk indicates that we sum over {py,...,p;} € J(lg,t1,. ..

.oy lp,t;) with the corresponding fixed V. We can compare K, with
* 1
K = R
2 P En

where we have dropped the condition H(P,) = 3, but kept all the others.
Since the primes p;’s in P ... P,1, are well spaced, we have

Ko < (1+¢€)o(B1). .. o(Bri1)K.
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Using the fact that
r+1

ola) > H 0(B:)(61)<(@1-Qr)

it follows that, denoting by 7, the contribution of the badly spaced u to the
sum, we get, recalling notation (6.1),

(1/6,)%(Q1--@r)
T < o(a) Zt: (Q1-..Q)(Pr...Pryy)

1)) 1
<@(Q)ZM > i

% |4 w(U)=k—w(V)
(1/61)w(V) Pph—w(V)
<ole) 2 k—w(V)

v
where we used the fact that
pRJERE S AR

- t!
w<p; <y p1 b

Now since

—w(V g (V) s k w(V) k
S S () <) < e

(k—w(V) & o\ P EL\P
we have W)
Pk (06/51)w v
T, < g(a)ﬁ ; _—V,—— ,

where in ), we sum over all the V = Q1...Qy, where the Q,’s run over
those integers all prime factors of which are close to each other in the sense

mentioned earlier.
For each fixed r, we have

1 1) ( 66/51 )T
— ... — )< (),
(55)(52) = (o
whence it follows that

<

(e/5)") 1
Z i/ (logw)es

14

Thus we have
ofa) Pk

Ta< (logw)es kI~
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Similarly (and more easily!), one can prove that the contribution of the
badly spaced {p, ... ;P } to Si can be estimated from above by

1 pk
T ——

|

= (logw)es k!
Now since S, =< Pk /k! in the range 1 < k < coxy, by summing over all
the well spaced u’s and taking into account the above estimates, the first
assertion of the theorem follows. The second assertion can be proved in a

similar way; hence we will omit its proof.

Notation. For a given word a, let J, denote the set of words [ such that
= [ for some ~, including the word 8 = A. Furthermore, assume that 2z
satisfies 0 < z < ¢g for some constant cg, and let

L(4)

geaw) = Y _EZ
(e, Ae(H(4))
P(A)<w

where the sum runs over all numbers A such that P(A) < w and for which
H(A) € J,, including A = 1. Let also

(6.2) k(z|a, w) = g(z!a,w)gpw(z),

where ¢y, (2) is defined by (1.4). Note also that we shall assume that « is
a word of length greater than m(w), which implies that H (A) € J, has a
meaning for each A occurring in the definition of g.

Let w = w; be fixed for the moment and let wy > w;. Then
63 glelayws) SR

. g(z|a,wy) = —_— —,

aiies, Ae(H(AY) 2~ pg(H (A7)

P(Al)Swl

where the asterisk in the inner sum indicates that summation is to be taken
over those A; for which H(A1)H(A) € J, and satisfying w; < P(4,) <
P(A1) < wq, with Ay = 1 being included.

Assume that the length of o is greater than m(ws). To estimate the inner
sum on the right hand side of (6.3), we use Theorem 3; indeed, for

!
tS clologM =T,
log w;
we have
> 7 (Alr(A y = @ toew @) Y 1
w(Az)=t 20 2 w1<p1<... <Py <wy Pr-..pe
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and thus
w(Agz) 1
2 t
(6.4) e = L+ ou, (1) 2 > .
w(AZQ):gr A20(H(42)) t<r  wi<p<.<pi<wy P17 Pt

On the other hand,

(65) tg; Zt w1<p1;<Pt<w2 h 1pt
- AL () eo(25(25))

wy <pLwz t>r

Note that in (6.5) the first term on the right hand side is clearly of order
ef? where P =3 1/p, while the error term is o(ef?) if we assume

w1 <plwz
that 2z < c19, say. Furthermore,
w(Az) w(Az) 1
z z

(6.6) Z < Z <6_) R

w(Az)>T AQQ(H(Az)) w(A2)>T 1 2
z/61)t P ;
< Z S—-/tl')— = 0(1_)eP

t>7

if 7 > c112, where c1; is a sufficiently large constant. Note that clearly we
can also assume that ci1g > ¢;3.
Combining (6.4)—(6.6), we have thus proved that

zw(Az)

> Ty = o) T (1+3)

wy <pLws

Hence (6.3) becomes

olelon) = (1 on () T (14 2)gteloyun),

wi<plws
and consequently,
(6.7) w2zl wa) = (1+ 0w, (1))r(2le, w1)

uniformly in «.
Note that x(z|o, w) depends at most on the first 7(w) digits of «.
Now given an infinite sequence ¢ defined over A, let

Cey) = Y )
w(z|E,y) == — (2
(e, Ao(H(A) ™
P(A)<y

and
9(2l€) := lim r(zI¢,y).
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From (6.7), it is clear that ¢(z|¢) exists and furthermore that

3#(218, wo) < q(21€) < 2r(2[¢, wo),

provided wy is large enough.
For a finite sequence «, we let & be the infinite sequence & = ol ...1...

We are now ready to formulate Theorem 4 and deduce its proof mainly
by using Theorem 2.

THEOREM 4. Let k, be an arbitrary sequence tending to infinity
with x. Then, for every k satisfying k, < k < cozo and for every o € Ay,

a) Q(a)%tk(x)F(k - 1).

T2

Nifelo) = (1-+ 0, (1))g (£

Proof. Let w, be the 6-fold iterated logarithm of k.. Write each n
satisfying H(n) = « in the form n = Any, where P(A) < w,, and p(ng) >
wg. Then clearly

We; '7A) )

z
(6.8) Niela)= 30 Newin(§
H(A)E o

where 4 is the word defined implicitly by a = H (A)v4. As in the proof of
Theorem 3, we can drop from the sum all the A’s for which 4 > (logz)©,
for some large c, their contribution to the sum being O(z/ (log z)¢). For the
other A’s, we have, using Theorem 2,

(6.9)  Ni—w(a <—

A ’wm;’YA)
= (14 04, (1)) ngjmtk_wm) (). < k- w(A))F(k - w(A))_

T2 T2

x

Since w(A) is small, one can write that

1\ w(4)
tewin@ = (1) 04 mWin),

and since the functions ¢,, and F' are continuous, (6.9) may be written as
We, ')’A)
—1yw(A
=z o(va) (%) ( )t @ k1), (k=1
1 A B\ )Pws 9 T )

Using (6.10) in (6.8) and the fact that p(y4) = o(a)/o(H(A)), we have

X

(6.10) Ni_wa) <Z

= (1+ 04, (1))
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X
(6.11)  Ni(zla)=(1+ me(l))@(a)atk(w)
—1yw(A4)
k—1 k—1 » (E21)
(565 5
I9 To H(AZ)GJa AQ(H(A))

where the asterisk in the sum indicates that we sum for A up to (logz)®,
the contribution of the A’s larger than (log z)¢ being o(1); this explains why
one can, in view of (6.2) and of the definition of g(z|¢), replace the sum
in (6.11) by g(z|a,w,) and thereafter g(z|a,wy) wwz(km_zl) by k(z|a,w,),
thereby completing the proof of Theorem 4.

7. Counting subwords in H(n). Let 8 be a particular word in A*. For
an arbitrary x € A*, we define ug(x) to be the number of occurrences of 3
as a subword of «, i.e. the number of possible £ € A* for which x = £ for
some 1 € A*. For short, we sometimes write ug(n) instead of ug(H(n)).

Let o(8) be defined as in Section 1, i.e. if 8 = 4y...ix, then p(B) =

Q(il) PN Q(Zk) = 62'1 e 5%
By using Theorem 2 and some purely probabilistic theorems we can
provide asymptotic estimates for

M(z,r,1) = Mg(z,7,1) :=#{n < z:w(n) =r, ug(n) =1}
for a wide variety of 7 and [, and also for
' M(z,l) = Mp(z,1) == #{n < z : ug(n) =1}

We further need to introduce the quantities m = m(8) and o = ¢(8), which
represent respectively the mean value and the variance of a random variable
X: their exact meaning is given later in (8.3).

THEOREM 5. Let m and o be as above. Then as z — co,

(7.1) M(z,r,1) = (1 +o(1))f;tr(a:)anf/i ¢<T;\}71),v

uniformly for r — xo = O(z2/x3), and | — zo/m = O(za/z3), where ¢ is
defined by (1.3). Furthermore,

(72)  M(z,0) = 1;:‘2_51)\/771_?02 ¢<\/m e —ml))

uniformly for | — xo/m = O(z2/x3). Consequently,

(7.3) lim l#{n < g —oln) — Ty/m y} = &(y),

: <
T—0o0 I /m(m + 0—2)\/:1’.—2
where $(y) is defined in (1.3).

The proof of Theorem 5 is given in Section 9.
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Remark. Most likely, similar assertions are valid for “diophantinely
smooth” subsequences of integers, such as substitutional values of polyno-
mials at integer values, or at prime values, but at this moment we are only
able to prove such global theorems.

In order to illustrate the method, we shall consider the distribution of
the vectorial

(uﬁo(n)> Ug, (n + 1)7 s Uy, (n + h))
(see Theorem 6) and the set of shifted primes (see Theorem 7).
In order to do this we set
ug(n) — m(B)zs
8(N) = ,
AN

where m(8) = 1/m and ¢(8) = y/m(m + 02). We shall prove the following
results.

THEOREM 6. Assume that By, (1,. .., B are fixed words belonging to A*.
Then

1
lim ~#{n<z:7Mn+)<y (=01,...,h)}

T—00

A h
= H lim —1—#{n Sz:rg(n+l)<y}= H(D(yl).
=0 =0

T—00 L
THEOREM 7. Let 8 € A* be fizred. Then

lim L

Jim W(x)#{p <z:ms(p+1) <y} = B(y).

The proofs of these two theorems are given in Sections 10 and 11 respec-
tively.

8. Auxiliary probabilistic results

LEMMA 3. Let k be a fized positive integer and let £y, &1, . .. be a sequence

of independent random variables, X; = F&5, 65415, &jrn—1), where f is a
Baire function. Let M denote the mean value. Assume that MX; = 0. Let
k—1
o =MX3+2) MXoX; (< oo),
j=1

and assume that o # 0. Then

(8.1) nlin;()P(% éxj < z) = 4(2).
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For the proof, see Theorem 19.2.1 in Ibrakhimov and Linnik [5] or Dia-
manda [1], [2]. ‘

LEMMA 4 (Esseen [3]). Let X1, Xa,... be independent identically dis-
tributed integer valued random variables for which MX; = 0 and M|X;|®
< oo, with ¢ > 3. Assume furthermore that for a suitable I, P(X; = 1)
X P(X; =1+1)#0. Then

PXi+..+X,=k) = %qﬁ(zn,k) + O(%)

where ¢ is defined in (1.3) and where
k

Znk = }%7

Remark. The condition P(X; = [)P(X; = [+ 1) > 0 stands only
in order to guarantee that the maximal step between possible consecutive
values of X is not larger than 1. :

Setting up the problem. Let A = {1,...,d}. Let £, be identically dis-
tributed independent random variables, P({, = j) = 6; (j = 1,...,d),

o=MX:.

6; > 0, Z?=1 8; = 1. Note that £, may be an infinite sequence or a finite
one.

Let 8 = by...bs, ¥ = g1...9s_1 be arbitrary but fixed sequences of
length s and s — 1 over A respectively. For a random sequence ¢ ...&,, we
shall denote by II,(r) the probability of the event that both of the following
conditions are satisfied:

Lé&...&sm1=7,

2. the number of I’s satisfying 1 <1 <n—s+1 for which &&41...&+s5-1
= [ is exactly r.

Further, assume that the independent variables Y; are distributed as the
&,’s. Then for an arbitrary s — 1 tuple v, let IT,(t) be the probability of the
event that

(82) g1 ... 95—1Y1 .o Y;g

ends with 3, that is, that Y;_sy1...Y; = § and that this is the only occur-
rence of § as a subsequence in (8.2). Further, let 77, denote the length of the
sequence Y7 ...Y;. Then P(n, =t) = IL,(t).

Similarly, for the s-tuple §, let og(t) be the probability of the event that
the random sequence

by...bY1...Y;

has the same property. Thus, using the notation 8 = b1 8%, it is clear that
o5(t) = Ig«(t) and also that > .o, 05(t) = 1. Furthermore, let X be the
random variable such that P(X =1t) = IIg~(t).
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Finally, let 74(t) be the probability of the event that
by...bsY1...Y;

does not contain 8 as a subword.
It is clear that

18(t) = 0p(t) + op(t+1) +o5(t+2)+...,
and hence that
Ta(t) = P(X > t).

For the random sequence &1 ...§, starting with v, let ¢ < ... < &, be
the indices of the last digits of occurrences of the word §. Then clearly
ti1,t0 —t1,...,t, —t,—1,n—%, are independent random variables, where ¢; is
distributed as 7, and the (t;41 —t;)’s are distributed as independent copies
of X. Consequently, denoting by II,(r,n) the probability that n, + X; +
...+ X, <nandthat X, 1 >n—(n,+X1+...+ X,), we have

II,(r,n) = Z Pny=uw)P(X1+ ...+ X; =v)P(Xpq1 > n — (u+v)).

u,v2>0
utv<n

We would like to apply Esseen’s theorem in order to prove that

P(X1 4.4 Xr =) = U\lﬁ qs(”;\/’%m) +o<%),

where

(83) m=m(B)=MX =) tlt), o®=0*B)=MX-m)

Let 8 =b5;...bs and ¢ # bs, and consider the sequence
by...bsc...cby...bg,

FE times
E being a large number.

Let T denote the length of the shortest prefix ending with £ in the
word bobs...bsc...cbiba ... bs. Since the last digit of 8 is different from c,
we have Tg > E + s, and thus

Tpy1 =Tg + 1.
It follows that
Ig(Tg) #0 and IIg(Tg+1)#0, for every large number E.

This condition guarantees as well that o # 0. Note that the finiteness of
the third moment is satisfied; moreover, it is true that M (e**) < oo holds
for a suitable positive A. Indeed, P(X > t) is the probability of the event
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that the sequence £ = &;...&; does not contain 3. If it occurs, then none
of §(u—1)s41---Eus, With u = 1,...,[t/s], equals B, these sequences being
independent; thus

P(X>8) < (1—Ple...& = B)/,

and the assertion follows immediately.
We have thus obtained that

(84) I,(r,n)
= Z P(nvzu)P(X>t)P(X1+...+XT:n—u—t)%—O(%)

0<u<clogn
0<t<clogn
1 n-—u—t)—mr
= o > ¢(( U\/;) )P(nv=U)P(X>t)
ovrT 0<u<clogn
0<t<clogn
1\ 0 1
+0( - > Py =u)P(X >t)+ —~ -
0<u<clogn
0<t<clogn

Clearly the last sum is O(1). On the other hand, since ¢(y1) — ¢(y2) =
(31 — y2)¢/(y") for some y* € (y2,41), and since ¢'(y*) = —y*d(y*), it

follows that
n—mr n—1t—mr
o ) ()

where y* is a suitable number located between n‘j\;%”"" and ”;\;”FT This
implies that the first term in (8.4) above can be written as

< %¢(y*),

ag

55 - ¢(”;}Z7’) X P =wP(X >
Sisoioen
(T ] (2t ),

Now observe that

S Pl =wP(X > 1)
0<u<clogn
0<t<clogn

~ (3 P =) (L Px > 0) “o()

u=1 t=0
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and that

S Py =u)=P(&...6_1 =), while Y P(X >t)=m.
u=1

t=0

Finally, the O(...) in (8.5) is O(1/r), because [’Z_—\;’;’"Iqﬁ("g&”{
and Y (u +t)?P(n, = u)P(X > t) < co.
From these estimates it follows that (8.4) becomes

o= (25) so(2) rof )

We have thus proven the following result.

) is bounded

LEMMA 5. Assume that &, are identically distributed independent random
variables, distributed as P(§, =j) = 6; (j = 1,...,d), ijl 6, =1,6; > 0.
Let B be a fived element of A, and let v € As_1. Let m and o be as
in (8.3). Denote by IT,(r,n) the probability of the event that the random
sequence £y ... &, satisfies & ...&s_1 = v and that 8 occurs exactly r times
as subword of v. Then

i 5 o) 0(2) rol ).

9. Proof of Theorem 5. Every integer n < z satisfying w(n) = r and
ug(n) = I can be written uniquely as n = Am (< z), where P(4) < w
and p(m) > w. Now consider all the possible a € A, for which ug(a) =
l. The integers n satisfying H(n) = « are subdivided according to their
corresponding number A. It is clear that A occurs in the structure of o
if H(A) € J,, where J, was defined in Section 6. Let 74 be defined by
o = H(A)v4. Further, define J(4,74) to be the occurrence of 8 in the
sequence composed from the last s — 1 digits of H(A) concatenating with
the first s — 1 digits of 4. It is clear that

ug(e) = ug(H(A)) +ug(va) + J(A,74).

For each 0,n € A,_1, define & to be the set of words ending with 4,
and F, to be the set of words starting with 7 in the following sense. Let
0=ei...es_yandn=fi...f_1 be arbitrary elements of A4,_;. We define
& to be the set of words Aes_1,€s_ 95 1,...,e5...e5_1 and also all y
which can be factorized as v = 76 for some 7. On the other hand, we define
Fn to be the set of words 4, f1, fifz,..., fi... fs—2 and also all « which can
be factorized as v = nu for some u. ’
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With this notation, we clearly have

x
CC T, l E E 27: Nr—w(A) <:4_ w;'Y) .
; €
o (A)EEa ,\(y)lr—L(A)

P(A)Sw  ug(y)=l-ug(H(A))~ug(0n)
Assume that r — zo = O(z2/z3). Then, by Theorem 2,
1
Mz, = 1+ ou) I (1- )

plw p

1 z
X E E Z g _x‘l_tr—-w(A)(m)Q(’Y)'
eF
1 m(dess A7) or—to(4)

P(A)Sw  wp(y)=l—ug(H(A))—up(6n)

Note that here we have dropped the terms corresponding to A >> x2, since
their contribution was small. In this range for r, we have

t'r’——w(A) ("I") = (1 + 0(1))t7"(x)’

Thus we deduce that

assuming that w = O(z3).

where

and

A=Y S (- ua(H(A) ~ up(om).r = w(4))
" gl

Thus, by Lemma 5, observing that the II,;’s occurring in the sum are
(1+ o(1))I,(,r), summing on 7 and afterwards on A, we obtain

e (2 )2 o)

Since
~1
> 3-1(-5)
P(A<w p<w
we obtain
z m r—ml
Mz, 7, 0) = (14 0u(1))- ,
(e = (14 0w Zte ) 0 )
an estimate which is valid as £ — 00, 7 — 2 = O(z2/x3), [l —z2/m| < z2/23.
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The second formula of Theorem 5 is an easy consequence of the first one,
and the third one follows immediately.
This ends the proof of Theorem 5.

10. Proof of Theorem 6. Set w, = 3, 2z, = */V?2 and

E(n) := H p*.

p¥n
Wy <Pa<zz
Let £ be the set of integers all prime factors of which belong to the interval
(g, 2)-
Let Eg, Eq,...,E; € £ be mutually coprime integers, chosen so that

log E,,
max
0<v<h logz

= 04(1).
Then, by the sieve method, we have

%#{ngx:E(n—l—j):Ej G=0,1,...,h)}

=(1+01) ]] (1—ﬁ;;—1>:(1+o(1)) I1 (1_1)h+1_

Wa <P¥ <2y Wy <PA< 2y p

Now let wy(n) be the number of prime divisors of n/E(n). Since

Sley Loow,

<ww 2y <p<m
by using the Turdn—Kubilius inequality, we have wi(n) = O(z3) for almost

all integers n. Furthermore, observe that ug(n) — ug(E(n)) = O(wi(n));
thus, neglecting a set of integers n having zero density, we have

7p; (n + J) — 7, (E(n + j)) = o(1).
Because of this, and since @ is continuous, it is sufficient to prove the theorem
for 75, (E(n + j)) instead of 7g,(n + j).
Now it is clear that the set of integers n < z with max;—o1,..n E(n+j) >
x%3/V®2 ig of zero density.
We have

Ln <o, (Brt9) < v (=01, 1)

* X
=(140(1) Y = o),
Eo,Ev,....En EOE1 PPN Eh

where the asterisk in the sum indicates that the sum is taken over those
Eg, Ey,...,Ep for which 75, (E{(n+7)) <y; (j =0,1,...,h), E; < z¥3/ V2,
(BiyEy) =1 for every i # j.
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Now we can drop the condition of coprimality in X™*. Indeed, if we set
F = EoE; ... Ey, one can observe that F' can be factorized as EgFy ... Bp in
no more than dp41(F) different ways. Hence if (E;, Ej ) > 1 for some ¢ # j,
then p? | F' for some p > w,; the contribution of such p’s is less than

) dh: (u) 3 dh+; (v),

where v runs over the square-free integers with p(v) > we, P(v) < 2z, and
u Tuns over the square-full integers with p(u) > wg, P(u) < zz, u =1 being
excluded. But clearly

d h41 log 2, \ "1
Z h+1( ) < H 14 + < 0g 2
P log wg

W <p<2Zz

and

Zdh-{—;(u) -1 <1+ dh+;2(p2) N dh+;§l’3) +) 1

W <P 2y
< ex h(h+1)zi e —1
g pP>ws p? wg logwy

Hence we have

" 1
Z EOEI H Rly;) + (wm 10gwm>

Eo,E1,...,En

where R(y;) is the number of those FEj; for which E; < z*3/V®2 and
TB; (EJ) < Yj-

We have thus proved that the conditions 7g,(E;) < ¥;, § = 0,1,...,h,
are independent. It is therefore enough to prove that

(10.1) é#MSw=mAEm+ﬂ><%y—u+dnK:gj)R@a

= (14 o(1)2(w),

say A = B = C. But we have just proved that A = B. Relation (7.3) of
Theorem 5 implies that

log 25

Tog w5 R(y) = (1 +0(1))®(y) asz— o0

and therefore that B = C. This therefore ends the proof of Theorem 6.

11. Proof of Theorem 7. Let wg, 2z, E(n), wi(n) and £ be as in the
proof of Theorem 6. Denote by II(z|E) the number of primes p < = for
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which E(p + 1) = E. By the Eratosthenian sieve, we have

(11.1) I(z|E) =Y m(z; ES,—1)u(6),
)
where 6 runs over the divisors of
K := H P
W <p<2e

and where w(x;a,b) stands for the number of primes p < z such that
p = b (moda). Using (11.1), we have

(11.2) . (z|E) — Z“ ‘

six ¥

T, — - W(m)
2 [T zral

<z /B
where ¢ stands for the Euler function. But it is clear that

(11.3) S(E Z” —*—5H<1“%) 11 (1_5%3[)
)

sk ¥ p|E

1 log wy, 1
—_— e, 1 —_
o(B) mwx(+oﬁ%>

First summing up over all E < 2%3/V®2 := X say, we have

(1L4) Y |I(|E) - S(Em(@)| < Y |n(zu (@) 4w,
E<X u<z (p(u)
ueé

where as usual d(u) stands for the divisor function.

We shall prove that the right hand side of (11.4) is O(z/log® ) for any
given positive constant c.

We split the integers u < x into three distinct classes, namely those
which are < X, those satisfying X < u < 2!7¢ and finally those such that
217¢ < u < x; here € is a small positive number. We name the corresponding
sums Y1, Xy and X3 respectively.

First we notice that, since 7(z;u, —1) < w(z)/p(u),

(

Ty < wl(x) Y, dlw)
u<m1_€ ’LL)
ueé

and that

d(u)
X & —,
i<z >,
2l <u<ls
uel

These sums are indeed essentially small because P(u) < 2. Hence we have
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5y, S = 0(—’”(3—).
log® x

= Z + Z =XM1+ 22,

d(u)<log®z d(u)>logBax
uel . u€eé

‘We now write

say, where B is some positive constant. We first estimate X'; » and obtain

Y1 < (logz) Br(z) Z P(w) < m(z)(logz) P H <1 + 4 +.. )

QO(’UI) We <P<2Zg p

< n(z)(log )5 (MY

log 2,

In order to estimate Xy 1, we use the Bombieri—Vinogradov theorem in a
weaker form and this allows us to obtain

x
3 1(e1B) - S(E)n() = 0( 1oz )
From the above estimates, it also follows that
Z I (z|E) = o(1)n(x).
E>X
By using the Turdn—Kubilius inequality for the shifted primes p + 1, we

find that
— p+1 —
wl(p-i—l)—w(E(p 1)> = o(1)z

for all but o(m(z)) primes p < z.
Let y be given. We shall now prove that

#lp <o [LELENBIR) b (140 ))r(e)

In order to count the number of primes satisfying the condition contained
in {...}, we observe that

(11.5) S H@E) = Y, IH(z|E)+o(n(z))

Tg E)<y . Tﬁ(E)<y
E<X
> S(E)+o(n(z))
T(E) <y
E<X
= () B Ve Lt olr(@)
log 2. Ta(E)<y (E)

E<X
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where we made use of (11.3). We have thus reduced the problem to that of

estimating
1

T8 (E)<y ¢
E<X

To do this, we use formula (7.3) of Theorem 5. First we observe that, since
p(E) 1
R St 1=
E 11 ( p

and writing

T (E)<y
E<X
we have .
1 1 1 1
0§2"2*=Z(——-—)=§:—(H _1)
E p(E) E = E pIEl—l/p
q 1
- I (+gim)- O =
Wy <G<2y < (q - 1) Wa <g<Zg 1- 1/q

i

II ( 1™ 11 g 1
1_~> { (1+—><1——>—1}
Wy <q<2g q wy <<z (g—1)2 7
log 24 ¢ logzy \ 1
<1ngw){eXp< 2 qz) - 1} < <logw$)@:'

q> Wy

i

Thus

B Rly) + of(z).

Z II(z|E) = (= )
T(E)<y
Hence, combining this with (11.5) and taking into account (10.1), the result
follows immediately.

12. A higher dimensional problem. Let 081, - -, Br be given distinct
words of length s and let

v(n) = (up, (H(n)), ..., ug, (H(n))).
By a more sophisticated method, we are able to give an asymptotic estimate
for the size of integers n for which w(n) = r and v(n) = (I1,...,ls) are
satisfied at least in the range r ~ x5 and [; ~ zo/m; (1 = 1,...,h). In this
case, the components of v(n) are dependent and their correlation depends
on the special choice of 3;.
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It is much easier to prove the global distribution theorem by using
Lemma 3 and Theorem 2.

Let w, be a function tending to co very slowly and divide the integers
n < z into classes n = Av, where w(v) = r, P(A) < wg, p(v) > ws, and
according to H(v) = a.

For a fixed A, each o occurs (1 + 0(1)) =t-(z)o(a) times.

Furthermore,

v(n) = V(a) = (0(w(4)),0(w(4)), .., 0w(4))),
where

V(a) = (up (), ug, (@)
Consider now the random variables & which were defined in Lemma 5 and
set

(v=1,...,h),
0 iféy...Es % B

t, f&...& =P
fils,- - 86s) ;:{

Thus
Mfi(€1,.. ., &) =t10(B1) + ... +tno(Bn) :=1.
Then further set

Xj = fi(§, €415 §jrs—1) — L
Let 0 = o(t1,...,ts) be defined by
s—1
o2 =MXI+2> MXiX;.
j=2
It remains to prove that the quadratic form o is positive definite.

To prove that o(t1,...,ts) > 0, we proceed as follows. First recall that
£1,€s,. .. are identically distributed random variables with P =1) =6
for[=1,...,d. Now let f be defined on .A; by

t,—t ify=p0,
fln) = { —t otgerwise.
Let
Y, =681 Errs—1,  Zn=fY1)+...+ F(Yn—st1)-
Then choose a particular y€A, and consider those sequences Y1, ..., Yn—s41
for which ¥; = 7. Let (1 = 79 <)71 < ... < 7 denote the sequence of the
indices m for which Y, = v, and let

S =f¥ )+ .+ (Y1) (@=0,1,...,7=1),
T = f(YT»p) +.o 7+ f(Yn—s—}-l)-

Thus Z, = So + S1+ ...+ Sp—1 + T, and the summands are mutually
independent. Furthermore, all the moments of S, and T are finite. By
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using the same argument as in the proof of Lemma 5, we first find that
P(r, = k) > 0 for every large k. Thus M(S, — MS,)? = 02 > 0 can be
deduced immediately. From classical theorems on the distribution of sums of
random variables with random number of summands, one can deduce that

min M(Z, —a)> >cn (¢ >0),

and hence that o(t1,...,%p) is positive definite.
To prove that the limit distribution of

h
(12.1) > miug (H(n))
=1

exists, and that it is the normal law with variance o(t1,...,%x), we can
repeat the argument used in the proof of Theorem 6.

Since the limit distribution of v(n) is completely characterized by that
of the projections (12.1) (see Galambos [4], Theorem 19), Theorem 8 follows
immediately:

THEOREM 8. Let

1 .
Fo(yt, ... yn) == 5#{n Szitg(n)<y; G=1,...,h)}
Then
mlin;oFm(ylaayh) :¢U(y1a"’ayh)7

where @, denotes the Gaussion low with covariance matriz corresponding
to o.

13. Additional remarks. For each a € A* let k() denote the largest
integer k such that all possible words of length k occur as subwords in a.

To prove a sharp theorem for the order of k(H(n)) seems to be hard in
the general case. However, assuming that §; = ... = 64 = 1/d, we can apply
the following nice result of Tamds F. Méri [7]:

If &, is an infinite sequence of independent random wvariables with
P, =j)=1/d (j=1,...,d), then for every € > 0, the event that

loglogm
1 _ 2o
{logd(Ogm loglogm — ¢ og )}
1 loglogm
<K€y Em) < | — - +(14e)—=8"
< k(& §m)_[logd<logm loglogm + (1 +¢) log )}

holds for every large enough m, is of probability 1.
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As a straightforward consequence we have the following result:

If 61 = ... =64 =1/d and if (1.1) holds, then for all but o(z) of the
integers n < x, we have

1 .
#(H(n)) = @(562 —z3) + O(1).
This comes out by observing that AMH(n)) =z +O(a:g/4) for all but o(x)
of the integers n < z, and using Theorem 2, taking into account that zgisa
very slowly varying function, in the sense that loglog(z¢) —loglog z = 0(1).
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