ON THE LARGEST PRIME DIVISORS OF AN INTEGER

Jean-Marie De Koninck (Université Laval)

1. Introduction

Several results of number theory can be expressed in probabilistic terms
and, for others, the simplest proof is by probabilistic methods. Simply take
the uniform distribution on the consecutive integers 1, 2, ..., N. Then
arithmetic functions, when restricted to the integers 1 through N, become
random variables and arithmetic means are expectations. The power of
probabilistic methods lies in the fact that divisibility by distinct primes
are almost independent events. On the other hand, most problems remain
challenging since the errors generated by the not exact independence can be
dominating in a problem when one faces an increasing number of primes.
The best example is the study of large prime divisors where the results do
not resemble those which one would get for independent random variables.

Our work is following the number theoretic tradition, but in the light of
the above probability space one can translate most statements into ones on
random variables and expectations.

Given an integer n > 1, let p(n) be the smallest prime factor of n and
P(n) (= Pi(n)) be the largest prime factor of n. More generally, for each
integer k > 1 and for each positive integer n such that Q(n) > k (here Q(n) =

Y pe||n @), let Pg(n) be the kth largest prime factor of n. Hence, for an integer
n > 1 such that Q(n) = £, we have

p(n) = Py(n) £ P_y(n) £ ... < Py(n) < Pi(n) = P(n).
We shall write P(1) = 1. |

447

J. Galambos et al. (eds.), Extreme Value Theory and Applications, 447-462.
© 1994 Kluwer Academic Publishers. Printed in the Netherlands.




448 J.-M. DE KONINCK

It is also common to use the notation px(n) to denote the kth distinct
prime factor of n, so that

p(n) = p1(n) < pa(n) < ... < Pu(n) = P(n),
where w(n) = 3., 1 is the number of distinct prime factors of n.

For large values of k, the behaviour of the function pg(n) has been es-
tablished by Galambos [9], who proved the following two results:

(i) Givene > 0,if k = k(N) — +oo in such a way that k() < loglog N —
(loglog N)z*<, then

A}i_r)noo%[—#{n < N :loglogpr(n) < k + k) = # /-oo =32 dt.

(ii) Given ¢ > 0, if k = k(N) — +oo in such a way that k(N) < (1 -
e)loglog N, then, if z > 0,

1
A}im —ﬁ#{n < N :loglog pr+1(n) — loglog pr(n) < z} =1 —e7%.

These results of J. Galambos were in 1976 a turning point in probabilistic
number theory and have since given way to a great variety of results geared
towards a better understanding of the prime factorization of integers.

The above statements (i) and (ii) relate to the so-called “intermediate
prime divisors” of integers; they were recently generalized by De Koninck
and Galambos [4].

On the other hand, the distribution of the small prime divisors of an
integer n, that is of pg(n) for a fixed k € N, can be handled using the Prime
Number Theorem and classical results on asymptotic estimates of sums of
arithmetical functions.

The study of the distribution of the large prime divisors of an integer
n, that is that of Py(n) for a fixed k¥ € N or of P(n,Q), the largest prime
factor of n belonging to a particular set of primes @, is generally recognized

as being a more difficult problem (than that of px(n) for fixed k¥ € N) and

is the object of this paper.

First we present a survey of results concerning the behaviour of Pg(n),
k > 1, and of P(n,Q). Secondly, given a fixed integer £ > 1 and a large
number z, we establish the most frequent values taken by Py(n) among the
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integers n < z. We also establish the most frequent value of P(n,Q), when
Q is a set of primes of positive density § < 1 satisfying a certain regularity
condition.

2. The functions P(n), Pi(n) and P(n,Q)

We start with the function P(n) which has mostly been studied through
the function

Vy(z,y) = ¥(z,9) & #{n <z:P(n) <Ly}

The best estimate concerning the asymptyotic behaviour of ¥(z,y) is that
obtained by Hildebrand [13] in 1986:

(2.1) ¥(z,y) = zp(v) (1 +0 (%’1—)» ’

where u = log z/logy, uniformly for each ¢ > 0 in the range
oxp {(loglog 47} <y <

p(u) being the continuous solution of up'(v) = —p(u — 1) with initial condi-
tion p(u) = 1 for 0 < u < 1. A more detailed study of ¥(z,y) can be found
in the recent book of G. Tenenbaum [18].

The function P(n) has also been extensively studied (see the book of
H. Riesel [17]). It appears in several number theory problems, in particular
the factorization of large numbers (see Hafner and McCurley [12] and Knuth
and Pardo [16)).

The study of the function P(n), mainly through the function U(z,y), is
quite complex. This is mainly due to the fact that P(n) is very erratic. The
mean behaviour of the function Pi(n) has been studied by Alladi and Erdés
[1] who obtained that

4 | , 21+E 1loglogz
(22) 3 Pin)= Aklog'“ -+ 0 (m1+k——-10gk+1 w (Ar > 0)
n<e

fork 2 ‘kl fixed. This formula was improved for k = 1 by De Koninck and Ivié

[6] (with Ay = 1{’-;) and for k > 2 by Ivi¢ [14]. Although the mean behaviour
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of P(n) is easy to obtain, that of the function 1 /P(n) is very difficult to
grasp; in 1986, Erdds, Ivi¢ and Pomerance [8] nevertheless proved that

(2.3) > _P_(l.n—)- =(1+ 0(1))—5(%—),

n<z
where
_ z (logx

2.4 O ( )t“z.
(2.4) (z) , P\Togt ) &
Using the estimate
(2.5) p(u) = exp {—u(logu +loglogu — 1+ o(1))},
one can prove that L(z) is a slowly oscillating function (i.e. such that
. L

lim (ca) = 1 for each constant ¢ > 0) and that
% T(a)

(2.6) L(z) = exp {(1 + o(1))\/2log zloglog :1:} .

On the other hand, the study of the behaviour of Py(n) rests primarily
on the function

Ws(e,9) & #{n < 2 Po(n) < 9}
(see Riesel [17]).

The best estimate concerning the asymptotic development of Uo(z,y) is
certainly that of Hafner and McCurley [12]:

Uy(e,y) = wpa(w) (1 +0 (102.«/)) ’

valid uniformly for 2 < y < z, where pz(u) is the continuous solution of the
equation

upy(u) + palu —1) = p(u = 1)

with initial condition py(u) = 1 for 0 < w < 1. While, as confirmed by the
relation (2.5), the function p(u) decreases very rapidly to 0 as u — oo, the
function py(u) tends to 0 much more slowly since it satisfies

mey =5 (1+0(3)), @21
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(see Knuth and Pardo [16]). More generally, one can prove that

Vi(z,y) W in < z: Pe(n) < 9} = zpi(u) (1 +0 (10;1)) ,

uniformly for 2 < y < @, where pi(u) is the continuous solution of up}(u) +
pr(u — 1) = pr—1(u — 1), with initial condition pg(u) =1for 0 <u < 1.

In De Koninck [3], we obtained that, given an integer A > 1, there exist
constants }\gl), /\gz), cees )\gA) such that

1 W_2 @_=° (4) = z
= A A cet A O\ —a71- >
Py(n) ~ "7 logz T4 log? z ot log” z * logittz

4<n<a
Q(n)>2

1 1 1 1\!
where Agl) =X = E — Z — = 2—5 H (1 - —) =1.254..., the-
m=1 " y>P(m) P p P g<p 1
reby improving an eatlier result of Erdds and Tvi¢ [7]. More generally, in (3]

we proved that, given an integer k > 2,

1 x(logloga:)k‘2< ( 1 >>
Z Pk(n)__Ak logz 1+0 loglogz/ /)’

where Aj = -(—k—}—ﬁAz. Note the drastic difference in behaviour between

3 1/P(n) and Y"1/ Pi(n) (for k 2 2).

What if one is interested in the largest prime factor of an integer n
amongst the primes belonging to a congruence class, say those primes p =1
(mod 4)? More generally, given a set of prime numbers of positive density
§ < 1 satisfying the regularity condition

(2.7) r(z,Q) % 3 1=6Li2)+0 (—%—) ,
p<z, pEQ 1Og r

where Li(z) = [5 fé—t and B > 2 is a constant, and let P(n,Q) = 1 if no

prime factor of n belongs to € and otherwise P(n,Q) = max{p : p|nAp € Q},

what can one say about the behaviour of the function P(n,Q). Let (n, Q)=1

if all prime divisors of n do not belong to Q and otherwise let (n, Q) be the
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greatest divisor of n whose prime factors belong to @. One can show that

28) 5 )= (oD@
(m@)>1

for a constant ¢(Q) > 0 (see Ivié [15]) the main contribution to the sum
coming from those integers » which are prime numbers belonging to Q.

‘In De Koninck [3], we obtained that if @ is a set of prime numbers of
density 0 < 6 < 1 satisfying the condition (2.7), then there exists a positive
constant 7(Q) such that

CONEEDY 7o = (140 (ve1oz2)) Vg

(n,@)>1

an estimate which is much less complex than the one provided by the re-
lations (2.3), (2.4) and (2.6) in the case where @ is the set of all primes.
Hence the irregularity of ¥, <, 1/P(n) is considerably diminished if one ig-
nores a finite proportion of the primes. The proof of (2.9) is based on results
obtained by Goldston and McCurley (see [10] and [11]), namely the fact that

. 1
Y(z,9,Q)E Y 1=zps(v) (1 +0 (@))
P(:f;)sy

(2.10)

uniformly for w > 1 and y > 3/2, where ps(u) is the continuous solution of
ups(u) = —bps(u —1) (u>1),
with initial condition ps(u) =1for 0 <u <1, and the fact that, as u — 00,

=iz (-0 (2)

Pu(n, Q)% {(I; (Pl(n,Q)..}k_l(n,Q)aQ) if Qn,Q) 2 k,

otherwise,

(2.11)

Set

if £ > 2, where Pi(n,Q) = P(n,Q) and Q(n,Q) = Y pa|n, pe @ In De
Koninck and Ivié [6], various estimates related to the behaviour of P(n,Q)
and Py(n,Q) are established. In particular, it is shown that, if k > 2,

Pk(’"’? Q) _ T
ot P(n,Q) - (1 + 0(1))Ck(Q)(10gw)6a

(n,@)>1
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for some positive constant Cx(Q)- Concerning this last estimate, one ob-
serves that all the sums of Px(n,Q)/P(n,Q), for any k > 2, are of the same
order, namely z/(log z)? which does not depend on k, while it was proven
by Erdés and Alladi [2] that, for fixed k > 2,

Pl®) _ (1 4 o0))as gy
Z P(’I’I,) - (1+ (1)) k(logx)k_lv

2<nLx

for some positive constant ag, thereby establishing that the order of the sums
of Pi(n)/P(n) changes with k.

In De Koninck [3], we proved that if @ satisfies (2.7), then the median
value of P(n,Q) for the integers n < zis nr+o(1) where x is the unique

solution of
(5)=
Pi\k) " 2

Here, to look for the median value & of P(n,Q) amounts to seek, among the
numbers & €]0,1[, the one for which

S ¥ ek

zh <pLz n<z
j254] P(""’Q)=P

The proof uses estimates (2.10) and (2.11).

1
It is interesting to note that if the density of the set @ satisfies 6 > 270g2’

one can show that the median value of P(n,Q) is nrto() where k = e~ 25,
while for small values of §, one can obtain, using (2.10) and (2.11), that the
corresponding value of x becomes very little and namely satisfies xk ~ —2%/7 if
§ — 0. In all cases, note that the median value of P(n,Q) is considerably
smaller than its mean value which, according to (2.8), is plte(t),

(2.12)

Tt is also shown in De Koninck [3] that, for each integer k > 1, the median
value of Py(n) for the integers n < z is nrto() where k = (k) is the unique
solution of the equation

1 1
re(3) =5
1

Since p(u) =1 —logufor 1 <u < 2, one has % = (;) =1+ log k, hence

k= k(1) = I}Z = 0.606..., a result already obtained by Whaunderlich et
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Selfridge [19]. Using the tables giving the values of ps(u) (see H. Riesel
[17]), one obtains k = k(2) = 0.21 ... thus improving the estimate x = 0.24
obtained empirically by Wunderlich and Selfridge [19]. Note that we have
thus established that the median value of Py(n) is n®2!-++°(1), 3 value which
is “not so far” from the mean value of P;(n), which can be seen by (2.2) to
be n0-5+2(1) 4 definite contrast with the case of P(n,Q).

3. On most frequent values of P(r), P,(n) and P(n,Q)

Theorem 1. Let f(p) = fi(p,z) & #{n <z : P(n) = p}. For large z, the
maximum value of f(p) is attained at primes p satisfying

(31) p= e\/%logzloglogw(l+%ﬂ+o(wg—h?;))’

where
A=) def logloglogz
~ loglogz ’
in which case
(32) f(p) — xe—\/2log:cloglog:v(l-}-)‘(—;l—%zi%r__%;‘;(ll).

REMARK. Again it is interesting to note that these results add to the “wild
behaviour” of the function P(n). Indeed, on the one hand, as we saw earlier,
both the mean value and the median value of P(n) are each in the neigh-
bourhood of a positive power of n, while on the other hand the most frequent
value of P(n) is, according to (3.1), smaller than any positive power of n.

PRrOOF. Assume that z is large. To start we show that, if 0 < a < b and if
p is a prime such that

(3.3) eV elogzloglogx <p< e\/blog:clogloga:’

then

(3.4) f(p) >

T
eV/1og zloglog z(1+0(X(x))) ’
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where

1

Indeed let u = % and p in the range (3.3), then clearly

1
! log@ and logu < =loglogz.

(3-5) v < Va\ loglogz 2

Using this, the fact that f(p) = \Il(%,p) and (2.1), we have, in the range
(3.3),
(3.6)

F(p) = %p(u -1) (1+0 GZEZ)) = %p(u— 1) (1 +0 ( loilgoix)) .

Let £ = £(u) be the unique solution of ¢ = 1 + u{. Formulas (47) and (61)
in Tenenbaum [18] (pp. 412 and 417) give, for large =,

(3.7) ﬁ%‘(_;)—l) = (14 0(2)) = (14 o(1)ulog.

Hence, if  is large enough, combining (3.3), (3.5), (3.6), (3.7) and (2.5), we
have

T
f(p) > /bl log1 logutuloglogu
e og z log log x+u log u+u log log
T
> /blog zlog log 7+ = +/log z loglog o(1+2A(z)) ’
e 0g T 108108 T3 7= g z log log

VIogzloglogz
J e =2 ° d
NG an

1 gz A(z)
Y5 logloglogz = —=%\/log zloglogz.
uloglogu < Ja Vloglogs og loglog Ja gz log
We have thus established (3.4) with ¢ = v/b + 2—\1/5

since, in the range (3.3), ulogu <

We will now show that the maximum of f(p) must be attained within
the range (3.3) for some constants 0 < ¢ < b. Indeed, using the ele-

llogz
mentary estimate ¥(z,y) < ve”ilo5s (see Tenenbaum [18]), we clearly
og T
have that, for p < exp{(logz)/4}, f(p) = \Il(%,p) & Texp —QTO%E} <
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z exp{—1(logz)>/*}. On the other hand, in the range exp{(log z)}/4} < p <
exp{m\/iog zloglogz} (with M(z) — 00), we may use the estimates (2.1)
and (2.5) and deduct that

T z
f(p) — ‘I’(— p) < ___e—-ulogu < we—ulogu < z
p ’ p Mgz) 1/log zloglog = )

On the other hand, using the trivial estimate \Il(“’ p) S 2 5o it is clear that if
M(z) tends to infinity with z and if p > exp{M(:I:)\/[og:v loglog z}, then

T z
fp=¥-,p< :
) ( P ) eM(.z') \/log z log’/log z

From these estimates, we conclude that the maximﬁm value o&" f(p) must be
attained in the range (3.3) for some positive values of a and b.

We now show that with
(38) p= e\/a.logxloglogz(1+o(1)),

where a is any positive number, then

(39) f(p) - xe—c‘/logmloglogw(1+o(1)), with ¢ = \/E-}- 1
2\a’
First, if we fix a prime p satisfying (3.8), define £(z) implicitly by the

relation
- ew/alogzloglogx(1+§(a:))_
Then, with u = 1—65— it is clear that

g P
w= 1 Viogz
Va Vloglogz(1 + £(z))
and thus successively
logu = = loglogz - = loglogloga; -3 loga + 0(1)

loglogu = logloglog$ - 1og2 + o(1).

From these estimates, it follows that

1 1
logu+loglogu—1 = —iloglogw+§loglogloga:—- (%loga +log2 + 1) +0o(1)
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and therefore that, recalling (2.5) and in view of (3.7),

1
logp(u—1) = Togp(w) (1+0(3))

= —u(logu + loglogu — 14 o(1)) (1 + O(%))

= -—u(logu+loglogu —1+ o(1))

1 Iogzloglogz 1 2log2 + 2+ o(1
e R (14 e - PR,
glogT

Then, since f(p) = \I'(%,p), using (2.1), we have

0 = Zoe-n(i0(22)

T loglog z
-0 (140 (4555

= gelogp(u—ﬂu +0(1)),

from which it follows that
(3.10)

f(p)=

g Zz
eV @logzloglog #(14£()) . eﬁ;w/log a:logloga:(1+,\(z)—“’_&%&ﬁ"f_ﬂ)/(l_}_g(m))

Since both A(z) and £(z) are o(1), one easily obtains that

flp) =

ViszTogtoga| Vet ) (o) |

which implies (3.9).
- Now using (3.9) it is clear that the maximum value of f (p) in the range

(3.3) is attained when ¢ = V2 with a corresponding value of a equal to 3,

since the minimum value of v/a + 3 \/_ for @ > 0, is equal to v/2 and is

attained when a = 1.
To complete the proof of (3.1) and (3.2), note that, using (3.10) with
a= %, it follows that

T
ﬂm—ng;@aame
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where

2+ log 2+ o(1)
loglog

A(z) = 24 Az)+&(z) -~ N2)é(z) -

3 2 £(<) >
+O(E(@) +00@E @) +0 (LHEL ).
Finding the maximum value of f(p) boils down to finding the minimum

value of A(z) and thus of £%(z) — A(z)¢(z) — Lﬁ’:%;—:c@ It is clear that this

minimum is attained when {(z) = A(w) +o (13?1355)’ in which case

2+1log2+ o(1)
loglog «

A(2)  2+1log2+ o(1)
4 loglog =

thereby establishing (3.1) and (3.2).

A(z) =2+ Xz) -

=2+ Az) -

?

Theorem 2. Let k > 2 be a fixed integer and let
fi(p,z) = #{n < z: Pi(n) = p}.
Then, for large z, the maximum value of Jx(p,z) is reached when p = 3.

ProoF. First consider the case k = 2. We shall make use of the Prime
Number Theorem in the form

T T T
m(e) = log z + log? z +0 (10g3:1:) '

In particular, one can easily show that

1z 1+loga =z z
G el = et logwo(m)’

uniformly for 1 < a < o(z) def exp{(log m)1/4},
Let = be a large number, then, for p = 2, we have

B12) . filpe) = LERe)= ) 1= Y 22”(2%>

n<z 2MeLz m>1
Py(n)=2 m>1 -
z T
= Zﬂ'('ﬁ)—i—ZW(ﬁ):El—[—Ez,
m<M m>M
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(log )!/4
log 2
primes ¢; here [z] denotes the number of positive integers < z. We now
evaluate ¥, and X, separately.

First of all, we have trivia,lly

say, where M = and where the second sum in (3.12) runs over

(313) 22 < (L‘mgM om = 2M L —= gO(ﬂ?) lOgS:l:.

On the other hand, using (3.11) with ¢ = 2™, for m = 1,2,..., M, we
obtain

z 1 z 1+log2™ z
—_ e - 1 O — —
(314) El Ing m;M om + 10g2 T m;M om <log5/2 .’L‘)

T 1
- log 2 (1— Z 2—m)

m=M+1

z o + log 2™ T
_— - ~Tree O ——
+10g2 z (1 +2log?2 m;ﬂ;ﬂ om ) + <Iog5/2 :1:)

z z
= — 2log2
logz +(1+ 210 )lo 2

since

1 1 1 1
and similarly © 1+ loggm . .
o
m=%+1 +2mg < o(x) < log’z’

Thus, using (3.13) and (3.14), (3.12) becomes

z z x
= —+(1+2log2)——+0 | —7# | -
(3.15) f2(2,2) logz +(1+2log )logzx + (logs/z )
Now consider p = 3. We then have

flpe)=fiba)= 3 1= 3 7 (g5 ) +0 (108 ),

273Mq<z r>0, m
r20, m2>1
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where ¢ Tuns over primes > 3. Proceeding essentially in the same manner
as with p = 2, we obtain

610 AG2) = gD g

14 log(273™
3oy, Lileelsn)

r=0m=1

log z

T
+o(—2
<log5/ 2x>

x 3 z z
= gz +(1+log2+ §1Og3)log2m +0 <10g5/2x) .

Comparing (3.15) and (3.16), it follows that, if z is large enough, one has
f2(3,2) > fa(2,z) since 1 +log2 + 3log3 > 1+ 2log?2, that is, 3 is more
often found than 2 as the second largest prime divisor of an integer.

It remains to show that f(p,z) < f2(3,2) if p > 5. Hence, let p, denote

the pth prime (v > 3). Proceeding as above, we have

fa(py,z) = > 1= ¥ D 1

2M3%2..p;¥ g<a 71725 Ty =120 pv<q<‘?1’TT—
11,72, Ty—120, Ty2>1 Tu>1 3 Py

X IR
= Z W(m) +O(10g 17),

1,72, Tp] 20
rp2>1

where the first sum runs over primes ¢ > p,. Now observe that the series
> 2”3,;_“]0 v is convergent. Hence, using a weaker form of (3.11) and given
any € > 0, we may then write that, for z > zo(e),

1
L T

fa(pv,z) < (1+4¢)

logx 71,72, T3 20
ru>1
= (4O Y o Y oo Yo
— s e -—i“';_'
IOgIE 120 2T1 2> 37‘2 Tyem 1>0pl/ 11 r2>1 pu
35 y | 1
= (1+e)—2.2.2. ..
Ut ) oga? 3 1 poy =Ty =1

which can easily be shown to be smaller than Zioz_m’ for all v > 3.

The case k£ > 3 can be handled in a similar manner.
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Let Q be a set of i)rimes satisfying (2.7) and denote by ¢; the smallest
element of ¢} and by g2 its second smallest element. Using essentially the
same reasoning, one can prove the following result.

Theorem 3. Let fo(p,z def #{n<z:P(n,Q)=p}. Then, for large z,
the maximum value of fo(p,x) is reached when p = q;, unless ¢; = 2 and
g2 = 3, in which case the maximum is reached at p = 3.
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