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ON THE NORMAL GROWTH OF PRIME FACTORS OF INTEGERS 

Dedicated to Jânos Galambos on his 50th birthday 

J. M. DE KONINCK, I. KATAI AND A. MERCIER 

ABSTRACT. Let h: [0,1] - * R be such that $ ^ du < +oo and define Th(n,y) = 

T(n,y) = T,q\n,q<y
 h(j^)-In 1966, Erdôs [8] proved that 

1 V^ /1 / t A log log log « 
— ^ a l o g ^ l + . ( ! ) ) j 

p\n l0gp ^ " ° ' f V ' "V 'Vk)gl0gl0gl0g>2 

q<p 

holds for almost all n, which by using a simple argument implies that in the case 
h(u) = w, for almost all n, 

log log log n 

P\n - ' log log log log n ' 
maxT(n,p)= ( l + o ( l ) V 

He further obtained that, for every z > 0 and almost all n, 

1 
-#ip\n:T(n,p)<z}=(l+o(lj)<p(z) 

log log 

and that 

lim - # { « < x : ( loglog«)min T(n,p) < z} = ^(z), 
x—>oo X p\n 

where <̂ , ip are continuous distribution functions. Several other results concerning the 
normal growth of prime factors of integers were obtained by Galambos [10], [11] and 
by De Koninck and Galambos [6]. 

Let x = {xm : w G N} be a sequence of real numbers such that limm^oo xm = +oo. 
For each x € x l e t Px D e a s e t of primes p < x. Denote by p(n) the smallest prime 
factor of n. In this paper, we investigate the number of prime divisors/? of n, belonging 
to pxt for which Th(n,p) < z. Given A > 1, we study the behaviour of the function 
k(n) = max^i G #{q\n '• Pl^A < q < p}- We also investigate the two functions 
k*(n) = maxplnpepx Th(n,p) and T(n) = mmp]n^pEpxP>p(n) Th(n,p), where, in each 
case, h belongs to a large class of functions. 

1. Introduction. For an integer n > 2, we denote by P(n) its largest prime factor 
and by p(n) its smallest prime factor. The letters /?, q, P, Q stand for prime numbers. For 
a real number y > 1, let 

ny = J\ p , 
pa\\n;p<y 
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an empty product being counted as 1. By i/x{n < x : • • • } , we mean the frequency of the 
integers 1 < n < x for which the property stated in the dotted space holds. 

Given an integer n > 2, let p\ < pi < • • • < p^ UJ = u(ri), be its distinct prime 
divisors, that is, pj = Pj(n). Galambos [10] proved that, for z > 1, 

hm vxIn < x : < z) = 1 
\ogpj(n) J z 

if j - j(x) is a function which goes to +oo as x —-> oo but also satisfies "y'M < 
(1 — £)loglog;r for some e > 0. 

In [11], Galambos proved that, if, as x —> oo, both y = y(x) and lo
loy tend to +oo, 

then 
log P(ny) logP((n+l)y) 

l im I/» n < JC : — < w, < v} = uv 
logy logy 

for 0 < u < 1, 0 < v < 1. He concluded from this that, denoting by p(n, x, y) the largest 
prime divisor of n that does not exceed y (with y = y(x) as above), the natural density of 
those n < x for which p(n, JC, y) < p(n + 1, x, y) equals ^. 

In 1987, J. M. De Koninck and J. Galambos [6] proved that log logp} forms a limiting 
Poisson process if/ goes through the indices for which pj is an intermediate prime divisor. 
More precisely, they proved that, if y = j(x) is a function which goes to +oo as x —> oo 
and if both lim^oo Pj(n) = +oo and lim.x_>oo °fv " = 0 (where 1 < n < JC), then the 
points loglogpj+k, k > 1, form a Poisson process in limit as JC —-» oo. 

In 1946, Erdos[7] considered the sequence r\i = °̂ f*+1 (/ = 1,2,.. .,u; — 1) and 

proved that, for almost all n, the number of T/,-'S not exceeding / (f > 1) is (l + o(l)) 

(1 — y ) log log n. In 1950, he investigated [8] the sequence -^^- (see (1.3) below). 
Let us now consider a more general setup. Given a function h: [0, 1) —> R, if n < x, 

let 

n n r ^ e f \ - * / l 0 g / ^ • , d e f ^ J log/? ^ 
0-1) "*(") = 2 ^ 1 ; v(n) = \^h — . 

% vlogxj ^ VlogP(n); 

\h(u) 

p\n V ^ A y p|„ 

We shall assume that 

du < +oo. 
JO W 

For the sake of clarity and simplicity, especially in the statement of the theorems and 
their proofs, we shall assume that the domain of h is extended to [0, oo) and that h(u) = 0 
f or u > 1. 

In [4], we proved that, in the case h(u) = ua with a > 0, ux(n) and v(n) have limit 
distributions. One can easily see that under quite general conditions on h, the functions 
ux(ri) and v(n) will still both have limit distributions. In [5], we investigated the continuity 
module of the limit distribution in the case h(u) = ua, a > 0. 

Let 

(1.2) Th(n,y) = T(n,y)dâf^Th( 
q\n, V 

log 4 
logy 
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In 1966, Erdôs [8] proved that, for almost all n, 
1 v- i /i /ix\ logloglogn max- J2 a\ogq=(l+o(l)) , 

p\n \0gp qah
 V J log log log log H 

q<p 

which by using a simple argument implies that if h(u) - u, then, for almost all n, 

(1.3) m a x r ( « , P ) = ( l + o ( l ) ) - ^ ^ p _ . 
p\n V J log log log log H 

He further obtained that, for every z > 0 and almost all n, 

(1.4) ] o
 l
lQ nHp | n : r(/i,p) < z} = (1 + o(lj)ip(z) 

and that 

(1.5) lim i/x{n <x : (loglogrc)minr(rc,/?) < z} = ^(z), 

where </?, i/> are continuous distribution functions. 
In [1], J. D. Bovey sharpened (1.3) and (1.4) and determined y?. 
In this paper, we consider estimates similar to those of (1.3)-(1.5) but for the more 

general function Th(n,y). 
In Section 2, we establish the necessary tools. 
Let x = {xm : m G N} be a sequence of real numbers such that lirrv^oo xm = +oo. For 

each x G \ let px be a set of primes p < x. In Section 3, we study the number of prime 
divisorsp of n, belonging to px, for which Th(n,p) < z. In Section 4, we study the function 
k(n) — max |̂n,P£px oc(n,p), where oc(n, y) stands for the number of distinct prime divisors 
q of n which are located in the interval (y1//A, y), for a preassigned À > 1. In Section 5, 
we investigate the function k*(n) = m&xp\npepx Th(n,p) for a particular function h. In 
Section 6, we analyze some of the distribution functions connected with the distribution 
of the prime divisors. Finally in Section 7, we are interested in a problem analogous to 
the estimate (1.5) of Erdôs, namely that of estimating T(n) = minp\npepxP>pin) Th(n,p). 

Throughout the text, we shall use the notion of weak convergence. A sequence Fn(x) 
of distribution functions is said to converge weakly to the distribution function F(x) if 
Fn(x) —> F(x) at each continuity point x of F(x) as n —• oo. If, in addition, Fn{—oo) —* 
F(—oo) and Fn(+oo) —•> F(+oo) we say that F„(x) converges to F(x) completely. 

2. Preliminary results. Let ¥(*, y) = #{JZ < x : P{n) < y} and 0(x, y) = #{rc < x : 
/?(«) > y}. It is known (see de Bruijn [2], [3]) that 

(2.1) V^yXxexpl-c^-
V logy 

and 

(2.2) 0(x,j) = * n f l - - l ( l + tf(^ 

uniformly for 2 < _y < x, where a, c are positive absolute constants. 
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LEMMA 1. Letf be a strongly multiplicative function such that \f(n) | < 1 andfip) = 1 

for every prime p > y. Then, for 2 < y < x, 

(2.3) iE/(B)=n(i+£^W-f'£). 
X n<x q<y\ Ç J 

Furthermore, ifD is a square free integer such that P(D) < y, then 

\ogx/D 

<2.4» E m-J% n ( . • M ^ I W ^ -
n<jc, n=0 (mod D) ^ q<y;qpy Q ) V < / H ^ 

77ie constants implied by the O terms are absolute and c\ - min(a, | ) . 

PROOF. We shall only prove (2.3), since (2.4) is an immediate consequence of it. For 

this, write each positive integer n < x as n = n\nz, where P(n\) < y and p(ni) > y so 

that/(rc) =f(n\)f(n2) =f(n\). Then we have 

(2.5) E / ( « ) = E/(»i) E i - E / ( » i ) * f - ^ l 
n<x n,<x n2<x/ri] n]<x \ n \ J 

-E^nfi-iW^-) 
00 /(m) TT/\ n ^f x v- n ~/ - ^ 

But 

„1=i "l ^ V qj \logyn%nx
l v 

^ - ^ 1 r°° 1 
(2.6) E - < r-<W(t,y) 

n\>y/x 

= \*V{t,y) 
• JJÏ t2 Jy/x 

_ £ l o g £ TOO _ ]o$l dt c log-y 

<C e 2 ,ogv + / £ logy — <C logy e 2 lo8>. 

Combining (2.5) and (2.6), then (2.3) follows immediately. 

LEMMA 2 [TURAN-KUBILIUS INEQUALITY]. Letf be a complex valued strongly ad­
ditive function and set 

a(x)=YJ 7 b(x)=}2- --
p<x P p<x P 

Then 

J2lf(n)-a(x)\2<cxb(x). 
n<x 

For the proof see Kubilius [16]. 

As an immediate consequence of Lemma 2, one can deduce a well known theorem of 

Hardy and Ramanujan [14], namely that, for almost all positive integers n, 

uj{n) = ( l + 0(1)) log log n. 
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LEMMA 3. Let h be a Riemann integrable bounded function in [0, 1], monotonie in a 
neighbourhood of 0, furthermore assume that both linv^o h(u) - 0 and J0 

hold; finally, set 

1 \Ku)\ du < +oo 

wg?) , , def r-r / t e" 

<?<A 

,1 ^(v) _ i i def def 

lim ^ ( r ) = exp | / dv\ = exp{a(r)} = </?(T) 

(2.7) 

(2-8) 

y—+00 ( JO V 

a«d f/ze convergence is uniform for r varying in a bounded interval. 

PROOF. AS we will see, the proof is essentially an easy consequence of the Prime 
Number Theorem. Let \T\ < c. If y is large, then 

1 + 
£ V log V ' ] 1 

~ 3' 

and so 

\<p>(r)\>\ n f i - ^ l -

Let <5„ and £rt be two sequences of positive numbers such that linv-oo fin = 0 and that 
lim^oo en log(l /fin) = 0. Further define hn(x) as a step function such that both 

max \hn(x) — h(x)\ < en, and hn(x) = 0 for x G [0,5„] 
£„<JC<1 

hold. Then, by using elementary estimates on the distribution of primes, we get that 

\h(u)\ 
lim sup J ] 

y—>oo <7<_y 

I irhi1^) irh f^) 

— <c\ JM + C2£W log—. 
•>0 w d)n 

From the Prime Number Theorem it is clear that 

e
iTh^"> _ 1 ,1 eirhn(u) _ j 

lim V = / du. 
y~*°°q<y q Jo u 

But this last integral tends to a(r) as n —-> oo. Hence to finish the proof it is enough to 
observe that 

îmsup 
_y—>oo I 

^ « O _ ! 
q<y Q 

< lim sup ][] 
I ^ T 3 ? > - I | 2 

•+c\ / dw + c2£„log—, 
•>0 U 0n 

which clearly tends to 0 as n —> oo. Therefore limv^oo log v?v(r) = a(r), which means 
that lim^oo ipy(r) = </?(r). 
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EXAMPLES. 

1. If (0 <) a\ < b\ < a2 < b2 < • • • < ak < bk ( < 1) and 

\ 0 otherwise, 

then 

a{r) = (eiT - l ) è log - . 
Ï=I ai 

2. lfh(v) = A / 3 > 0 , t h e n 

1 IT eiv - 1 

pJo v 

3. If/î(v) = ( l + l o g ^ r 7 , 7 > l,then 

a(r)= / (eiz-\)z~x-xlldz. 
7 Jo 

REMARK. Professor Lâszlô Szeidl kindly informed us that the following assertions 
are true: 

1. If h is monotonie, then the distribution function F, the characteristic function of 
which is (/?(T), is infinitely divisible. His proof goes as follows. According to a 
classical theorem due to Gnedenko, F is infinitely divisible if its characteristic 
function < (̂r) = ea{r) has the form 

^-^-=r*C(^-"-i^)-«* , ^ 2 

(*) 

(for the validity of(*), see Galambos [12], pp. 191,195), where L(—oo) = L(+oo) = 
0, L is nondecreasing on the semi-axis x < 0 and x > 0, and 

(**) / x2 dL(x) < +oo 
Jo<\x\<\ 

holds. From this it follows that 

a(r) = [\eiTh(v) - 1)— = f(eiTh(v) - 1) J log v 
JO y J 

= j(eiTU-l)d\og(h-\u)), 

where hrl (u) denotes the inverse function of h. Letting L(u) = log hx (w), we have 

f u2dL(u)= fh2(v)d logv= f —— dv < +oo. 

Hence it is clear that a(r) can be written in the form (*) and that (**) is satisfied. 
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2. Assume moreover that \ogh~l(u) is absolutely continuous and that F has a finite 
expectation. Then F has a density function/, and/ is the solution of the integral 
equation 

4M = Jy¥of(x-y)yd(\ogh-l(y)). 

This is an immediate consequence of a theorem due to V. M. Zolotarev (see [19], 
Lemma 2.7.6, p. 134). 

Let F(z) denote the distribution function that corresponds to exp{a(r)}. 

THEOREM 1. Under the conditions stated in Lemma 3, if y - y(x) —> co and lo^f, —> 
co, as x —> co, then 

lim i/x{n < x : T(n, y) < z} = F(z) 
x-^oo 

completely. 

PROOF. Let 
def frACr**) f(q) = e K^y' 

and substitute it in Lemma 1, then, using Lemma 3, it follows that 

which converges to ip(r) ify = y(x) —• co and satisfies the condition of the theorem. 

LEMMA 4. Let r be a positive integer. Further let 1 < y\(x) < yi{x) < • • • < yr(x) < 
yr+i (x) - x and r(x) be functions of x for which 

r(*)-+oo, \ogyi(x) > r(x), l°gyJ+l{x> > r(x) (j = 1, 2 , . . . , r) 
\ogyM) 

hold. Assume that h satisfies the conditions stated in Lemma 3. Let Ti,T2,... ,r r be 
located in a bounded interval, max/ \TJ\ < B. Further set 

pi yiogyj 

and 

a,(n,...?7>)= n (1 + : (2.7) 

Then, for every large x > xo(B), we have 

ax(rh...,Tr) 

(f(Ti)...(f(Tr) 
< p{r(x\B), 

where p(u, B) —• 0 monotonically as u —• co. 

file:///ogyM
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PROOF. The proof is similar to the one of Lemma 3. Let yo - yo(x) be defined by 

log y 0 0) = ! 2 * g p - W e w r i t e (2-7) a s n ( 0 ) • • • n ( r ) where in n ( 0 ) , the product runs over 

those q < yo, and in n ^ \ the product runs over those q G Cty-i, yj]. Clearly we have 

i o g | n ( 0 ) | « E ^ — ^ « * E - £ ! logq^ 

log yj 

which is <C JQ ^ ^ du. Similarly one can see that 

los 
<Pyj(T) 

RJ 
< f 

Jo 

I**) \H(U)\ 
du, 

where 

But we also have 

RJ(T)= n | i + 
yj-\<q<yj 

e logyj — 1 

log 
n 0 ) _ v elu* - e 

• , / l o g o x 

Rj(Tfi yj-i<q<yj 

The main sum above is smaller than 

£ 
q<yj 

Jn\\ogy.) 

« £ £ 

4 V q2 

V log Vf / •"^«/•'^JM^. 
Jo 

Combining the above estimates, we immediately obtain Lemma 4. 

As an immediate consequence of this lemma, we mention the following: 

THEOREM 2. Under the conditions stated in Lemma 4y one has 

lim vx{n < x : T(n,yj) < Zj, j = 1, 2 , . . . , r} = F(z\).. .F(z r) 
JC—>O0 

We now state a refinement of the Berry Esseen Inequality due to Fainleib [9] and 

which can be found in the book of A. G. Postnikov ([17]; Section 1.4, Theorem and 

Corollary 1). 

LEMMA 5. Suppose that F(x) and G(x) are distribution functions and that f(t) and 

g(t) are their corresponding characteristic functions. Then, for T > 0, 

sup \F(x) - G(x)\ < c, [sG(l/T) + j * \f(t) - g(t)\ y j , 

where c\ is an absolute constant and 

(2.8) SG(h) = sup —- j {G(x + u) - G(x - u)) du. 
x ^n JO 
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Moreover, if we let 

def 

then 

QGQi) = sup (G(x + h)-G(x)), 
— 00<JC<+00 

1 rt 
QGQI) <C2 sup - / \g(u)\du. 

t>\lh l J0 

3. Sampling the function T(n,p) at some prime divisors/? of n. Let \ = {xm • 

m G N} be a sequence of real numbers such that limm^oo xm = +co. For each x G x let 

px be a set of primes p < x. Set 

(3.1) 

and 

Recall that 

THEOREM 3. Let 

(3.2) 

def , » = #{p\n:pGpx}. 

s(n;z) = — #{p|n : /? G p*, T(n,p) < z}. 

Assume that i(px) —> oo and that h satisfies the conditions stated in Lemma 3. Then, 

lim -J2Hn,z)-F(z)\=0 
x^oo, xex X n<x 

at each continuity point z ofF(z), and at z = — oo and z = +00. (Recall that F(z) is the 

distribution function that corresponds to <p(t) = exp(a(Y))). 

PROOF. Let 

A(n,r)= £ eiTT{n*\ 
p\n,p£px 

Then A(n,r)/ujpx(ri) is the characteristic function of s(n, z). Because of the continuity 

theorem of characteristic functions, it is enough to prove that 

(3.3) sup -J2 
\T\<B X n<x 

A(n, T) 

uPx(
n) 

(f(r) • 0 as x —» 00. 

(If o w » = 0, we set ^ = 0.) 
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First observe that < 1. Since Lemma 2 implies 

£ | ^ > ) - ^ ) | 2 < C x £ ( p , ) , 
n<x 

it follows immediately that 

U{n < x : i^p» - apx)\ > apx)
3/4} < -£= 

x VsVpJ 

• 0 a s x - ^ co. 

Thus the contribution in (3.3) of the integers n < x for which \u)Px(n) — ^(px)\ > £(p x ) 3 / 4 

is o(\). So assuming that \uPx(n) — £(px)\ < £>(px)3^4> it follows that 

|A(n,r) A(n,r) 

uPx(n) i(Px) 

Thus it is enough to prove that 

\A(n,T)\\uPx(ri)-Z(px)\ 1 / 4 

(3.4) 
1 v -sup -}2 

\T\<B
 X n<x 

A(n, T) 

i(px) 
<p(r) • 0 as x —> oo. 

Let e(x) be a function defined on X such that lim*—oo e(x) = 0 and 

1 
(3.5) 

s{x) 
= o(&fpxj) 

holds. Let u(x) and v(x) be defined by the relations 

(3.6) 

(3.7) 

\og\ogu(x) = e(x)£(px), 

\og-^-=s(x)apx). log v(x) 

Therefore u(x) —• co and V(JC) = x°{X\ Further define 

JX =[u(x),v(x)l 

J2 = [1,X]\JU 

ujj(n) = #{p:p\ n,p G px,p G Jj} (j = 1, 2), 

pepx,P£Jj P 

Since each prime/? G 72 satisfies one of the two inequalities "/? < w(x)" or "V(JC) < p < 

x", it follows that £2(p*) < 3£(;t)£(pJC). Also set 

A I ( H , T ) = XI 
frr(W,p) / xdef Ai(n , r ) 

£(px)<p(T) 

Clearly we have 

| A ( n , r ) - A i ( n , r ) | < uo2(n) and E ^2(w) < *e(*)£(p*). 
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Moreover it follows from the Turan-Kubilius Inequality that the normal order of uo\(n) 
is i\(px)- Hence, setting 

(3.8) 

it follows that, if we can prove that 

(3.9) 

then (3.4) will be proven. Indeed 

\Mn,r) 

^(T)= f£k(",T)-l|2 , 
n<x 

lim = 0, 
*—>oo x 

n<x Hpx) 
<f(r) EMOI 

A(n, r) 

i(px)^{r) 

Then clearly 

^ Y - i / Ï ii • v^ \A{n,T) - A\(n,r)\ 
< £ I<tn, r) - 11 + J2 T7~\ = Ii +12• 

n<x n<x C\bJx) 

1 Z2 < 77—r Z ^(n) < xe(x), 
iipx) n<x 

and furthermore, by the Cauchy-Schwarz inequality, 

I i < y/iy/Dtfj) = o(x). 

To prove (3.9), we proceed as follows. Define E\ = £«<* |c(n, r)|2, £2 = £„<* c(«, r) 
so that 

(3.10) D,(T) = £ , - 2 » ( E 2 ) + M . 

We first estimate £2- We observe that 

«<x /?G/i n=0(mod/?) /?&/] 

say. We now stt f(n) = fp(n) = elrT{n'p) in Lemma 1; note that for such a prime/? G J\, 

one has J ^ > e
e{x)^Px) = pi (x) (with p\ (x) —-> 00 as JC —> 00). Hence, applying Lemma 

1, we get that 

SP = -<PP(T) + ol- exp(-cipi (*)) j 

uniformly for p G 7j. 
It follows from this that 

(3.1D £2 = 77̂ - E ^ W r r W - ^ w ) ) -
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Clearly <p(r) is never zero. From now on we assume that r is bounded, say \r\ < B. 
It follows from Lemma 3 that ^(r) / (^(r) —-> 1 uniformly for p G J\, as x —-> oo. 
Combining this observation with (3.11), we conclude that 

(3.12) E2=x + o{x). 

To calculate E\, we first consider the sums 

Ç 4£ f V ^ V^ JT\T(n'P\)-T(niP2)) 
àp\<P2 ~ Z ^ 2 ^ e ' 

P\\np2\n 

for primes pi, p2 G pxr\J\.lfp\ = p2=p, then clearly we have Sp,p - * + 0( 1 ). On the 
other hand, if p\ ^pi, say p\ < P2, then, using Lemma 1 with y = P2 and 

we get that 

(3.13) S ^ 2 = elTh{^\ (j) + 0 exp(-c,p1 (*)) , 
pm VP1P2 v y ; 

where 

/te>-*iS£>) _ 1 
AP„p2(r)= I l f l + : 

q<P2^P\ ^ ^ 

A formula similar to (3.13) can easily be obtained in the case p\ > p2- Now define S(x) 
so that log S(x) = y/Çipx)- We now write 

rief 

w = {(PuP2)epxxpx} = wluw2, 
where 

Wi = {(pup2):pi <P2 <pfx)orp2 <pi <pS2(x)} 

and 
W2 = W\Wi. 

If (p\,P2) £ W2, p\ < P2, say, then, using Lemma 4, with yi(x) = p\, V2W = /?2 and 
Hx) = min(logMW, i | f§) , S(*)), we get that 

\^p\,pi(T) 

\V(T) 
<p{r(x)). 

Hence we get that 

E{~ t(<„ \2l,„/vM2 [l^^P^ 2^ àpuPl Z{Px)2W(T)\2\ p (puP2)ewuP 

x ^ 1 
/> (P\,Pl)£W\,P\Jpi 

+ 7 7 ^ 2 E — + 0 ( x p ( K x ) ) ) 

+ of T^TJ E - E -)+Oixe-c^). 
P<<P2<PT 
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Since £ n sw -f- < logS(x), it follows that 
P\<P2<P{ Pi ° 

l i m - ^ E — =0. 

On the other hand, it is clear that SPuPl <C -JL- ifpi ^pi and furthermore that 

lim — L - V — = 1. 

Hence it follows that 

(3.14) Ex=x + o(x). 

Substituting (3.12) and (3.14) in (3.10), we obtain (3.9). This completes the proof of 
Theorem 3. 

4. On the highest accumulation of prime divisors. Let X, px (x G X) be as in 
Section 1 and let A > 1. We shall assume that £(px) —-* oo as x —> oo. For each y such 
that yl /A > 2, let a(n, y) be the number of distinct prime divisors q of n which are located 
in the open interval (v1//A, v). Further, for each n < JC, set 

def 
(4.1) &(«) = max a(n,p). 

p\n,P^Px 

Our goal is to provide a precise estimate for k(n). 
Let zx = z be the solution of the equation 

(A 9Ï Ag(px)(logA)' _ 
(4,Zj r(Z + i) - 1 ' 

where T is the Gamma function. Finally set Kx = [z*]. 

THEOREM 4. Le£ xm be a subsequence of X for which, as z —> oo, both 

KXJ j T(z* + 1) 
(*) - >0and >0 

T(z* + 1) (KXm + 1)! 
hold simultaneously (with KXm — [z*Xm\)- Then 

(4.3) lim vXm {n<xm: k(n) = KXJ=1. 
m—>oo 

Without the assumption (*), we have that, ifTx is the closest integer to zx, then 

(4.4) lim vx{n < x : Tx - I < k(n) < Tx} = 1. 

REMARK. Taking into account (4.2), it follows from Theorem 4 that, for all but o(x) 
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integers n < JC, we have 

k = k{n) <~ 
\og\ogi{px) 

PROOF. We divide the proof into two parts. 
PART I. Given an integer I > 1 and a real number y > 2, let Qyj be an arbitrary 

integer which is a product of I distinct primes, Qy j = q\qi- • -q?, such that yl/A < q\ < 
q2 < • • • < qt < y. It is known that 

(4.5) n H K ^ ^ 
v'M<n<VV PJ & v'/A <p<y 

and 

1 

*<p<y 

(4.6) E " = dogA)(l + tf(eV¥)Y 
y[/A<P<yP V y 

Actually for our purposes, more crude estimates will be enough. 
Let I = Tx + 1. If for some integer n < JC, we have £(/i) > £, then it must have a 

divisorpQpj, where/? G p*. Therefore 

(4.7) vx{n < x : k{n) >t}<Y,-Y,W--
P^PxP QpJ Up.t 

Clearly we have 

i u ^ r f 

£ô^<£!U5<p?' ' 
the right hand side of which is, by (4.6), 

Since l~ iog l |&> k f o l l o w s t h a t ( l + 0 ( e - V ^ ) y < l if log/7 > 

A(loglog^(^jc)) . The contribution of the small primes /?, that is those which satisfy 

log/7 < A(log log £(px)) to the right hand side of (4.7) is 

< ^ ( l o g A ) V ^ - < o ( l ) 
v. p 

as x —> oo. Here c is a suitable positive constant satisfying 1 + 0(e~v ^ ) < <?c. Thus 
the right hand side of (4.7) becomes 

« ^ ( l o g A / + 0 x(l) . 
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This implies that 

vx{n < x : k(n) >Tx + \} = ox(\) (x -> oo). 

Assume now that conditions (*) holds. Then, by setting t - KXm + 1 and repeating the 
same argument as the one above, we conclude that 

lim vXm{n < xm : k(n) > KXm} = 0. 

To prove that k{n) > KXm and k(n) > Tx — 1 hold for almost all n in (4.3) and (4.4), we 
shall ignore some elements of px, generate an appropriate subset p" C px and prove 
that 

(4.9) k"(n) = max a(n,p) 
p\n 

satisfies k"(n) > KXm and k"(n) >Tx—\ for almost all n. 
We set C = Ci U C2, where C\ is made up of the first / smallest elements qj G px 

which satisfy 
1 1 1 

+ _ + ...+ _ G [ V ^ ( ^ , V ^ ) + I ] 

and where C2 is made up of the s largest elements qj G px such that 

1 1 
_ + _ + .. • + - = v ^ ) + 0(i) . 
q\ qi qs 

With this definition of C, define px - px\C. We shall now remove from px some 
"unwanted" elements, namely thoseP2 G px such that there exists a p\ G px such that 

log 
\ogp2 

logpi 
< 

1 

\ogp2 
or log 

Alog/?i 

log/72 
< 

1 
l0g/72 

clearly H{P2} — = o(l) as x —> 00. We denote by px" the set of uncancelled elements of 
px. Hence we have i(px) - ((px") + o(l). Now if p G p*", then 

eWÛâS < iog/? a n d / ? < / i v f e . 

Letfl^ = Y,p\i*<q<p \> It is easy to see that 

(4.10) 

with 

E i a s * n ' ~ < v 

o < ^ < ^ - j j - n ; - ' 
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(see Halberstam and Roth [13]). We now choose I in such a way that, as x —> oo, 

« P * ) , I _ A ^ A É(P*) +̂1 (log A)1 - • oo and "vo 7 HogA)^1 = 0(1). 
£! v ° 7 (£ + 1)! 

Then clearly we also have that, as x —-> oo, 

v. 
and furthermore that 

oo, 

log log £(^') 

PART II. First we let U(ri) = #{/? : p G px",P \ n, a(n,p) = 1} and set 

„ „f , def £(p/)(logA)' def w r „ , „\2 
£ = E(x) = — and D = D(x) = }_, (#(") - £) • 

We proceed to estimate D by using Turan's squaring method. Write 

D = Si - 2ES0 + E2[x], where S0 = ]T £/(n) and Si = ]T £/2(n). 

Clearly 

where Ylp stands for the number of positive integers n < x that can be written as 
w = Qp,ePr> where q /r ifpl/A < q < p and q J(Qpj. Since 

it follows, by using the sieve formula of Lemma 1, that 

£„ = E ~ n i-i i + o , - C l ^ 

Hence using (4.10), (4.5) and (4.6), we get that 

(4.11) So = £( l+o( l ) )* . 

Now 

where 

Y = T 1. 
£-^p\,pi , . 4 - ' . a(p\,n)=l,a{p2,n)=l 
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Further define 

where 

E(0) _ y^ ^ . y^O) _ Y^ Y^ Y^ • Y^^ = Y^ Y^ Y^ 

p * P'2
/A<PI<P2 ~ I* p,<p)>* 

It is clear that 
ZT=S0 = O(Ex). 

We now proceed to estimate Y,\l\ If cc(n,p\) = i, cc(n,p2) = I, then/?i/?2|« and in 
both of the intervals (p\'A,pi), (p\ ^pi), n contains exactly I distinct prime divisors. 
Clearly pi\QP2£, QPlj]\n (here [«, b] denotes the least common multiple of a and b). 
Furthermore [QP2j, QP]j] - QP2,tR> where R\n, and all the prime factors ofR are located 
in (/?j ,/?2 )' anc* ^ = 1 or w{R) < I — 1. Observe that the conditions a(n,p2) = £, /?|w 
are clearly independent. Thus 

(4.i2) Ei1}« £ -%- n O - ^ E i 

But, since p2 ' < p\, the interval (p2' ,p2 ) is certainly wider than the interval 

(p\ ,p2 ); hence 

1 ^ 1 f lV 
(4.13) E ^ < i + E7i E - < i , 

R A y = 1 7Ï V l /A2 1/A <7y 

Substituting (4.13) in (4.12), we conclude that 

It remains to estimate Ej2). First observe that, in this case, the intervals \px' ,/?i) and 

[p2 ,pi) are disjoint. Therefore 

Summing up forpi and/?2, we have that 

E(,2) = (i+^(D)Ax + oW, 

where 

A2
 Pi<P2p\P2 Qpu QPli 
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Clearly we have that 
w „ i , „ i -2 

MS*lÇ;£cw 
But, we have shown earlier that the right hand side is ( 1 + o(\))E2 as x —> oo. Hence we 
have, as x —> oo, 

£ , <{l+o(\))E2x. 

We conclude from this that 
0<D<o(\)E2x, 

and therefore that 

-#{n<x: £ /(n)^(l+o(l))E} = o(x). 

This completes the proof of Theorem 4. 

5. On ïïiaXp\n^pç.px T(n, p). Using essentially the same reasoning as the one displayed 
in Section 4, we now prove two theorems. 

THEOREM 5. Let 0 < a < 1 and let h: [0, 1] —• R be such that h(u) = 0 in [0, a) and 
that maxa<M<i h(u) = M exists and that M > 0; assume also that h attains its maximum 
at u- X and that it is continuous at X. Ifpx is a set of primes p < x, then 

k in) = max ^ h\- = M ( l + o ( l ) ) - — —-
P\^P^q\n^<p Vl0g/77 V M0gl0g^(^) 

for all but o{x) integers n < x, assuming that £(px) —> oo. 

PROOF. Choose e > 0 and then 6 > 0 such that h(u) > Af — £ in [A — <5, A]. For every 
JC, let k = k(x) = [z(x) — 1], where z(x) is the positive solution of 

iiPx){{) =r(z+1)' 
For each prime p\n, let l(n,p) = 1 if p G <px and if there are exactly k prime di­
visors of n located in \px~b\px) and no other prime divisor in (pa,p); otherwise set 
7(n,p) = 0. One can see, using the same techniques as in Section 4, that, for almost all 
n> ^p\n.pePx ^(^p) > 1. But then 

(5.1) k\n)>(M-e)k. 

Using the remark following Theorem 4, we have that 

log log £ ( ^ ) ' 

Set 

Kdif ( 1 + £ , logCfe) 
loglog£(pJ 
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where e' > 0 is an arbitrary constant. We shall prove that the number of integers n < x 
for which n has at least K prime divisors in a suitable interval [pa,p] where p\n and 
pepxis o(x). 

For this, we first let y be defined by 

l o g l o g ^ f l ^ l l 0 g ^ } . ë ë r l 2 J log log i(px) 

By the Turan-Kubilius inequality, there exist at most o{x) integers n < x, which have at 
least K prime divisors up to y. The other integers n have at least one divisorpQp^ where 
p > y,p G px and all prime factors of QP,K are located in \pa,p). Their number is 

«E E i<£ E \{ E ; 
p£px,p>y 

K 

^ ^ flog -1 E -(l+e-^)K« 
K ^ xi(px)(\og\Iaf 

K\ 

But this last expression is o(x) as x —> oo. Hence it is clear that k*(n) < MK for all but 
o(x) integers n < x. Combining this with (5.1), the theorem follows. 

THEOREM 6. Let px be a "large set" of primes in the sense that 

x->m l o g l o g l o g X 
1. 

Let h: [0, 1] —> R be such that \h(u)\ is monotonie, and assume that maxo<w<i h(u) = 
M > 0 exists, that it is attained at u = À and that h is continuous at A. Let k*(n) be 
defined as in Theorem 5. Then, for all but o(x) integers n < x, 

(5.2) Jfc*(w) = Af(l+<?(!)) log3" 
log4 n ' 

(Here log^ n stands for the l-th iterative oflogn.) 

PROOF. From the integrability and monotonicity of | 
è —> 0 uniformly in some interval [0, e\\. Let 

it follows that \h(6u)\ 
\h(u)\ • O a s 

/ex d e f 

t(o) = max 
0<U<£ 

h(6u) 

h(u) 

Let £2 be a small positive number to be specified later and let 

i < \ d e f 

h\{u) = J \h(u)\ 
0 

if w G [ 0 , £ 2 ] , 

if U > £2-

Let 

K*(n) = max ]T h\ 
P\n q\n,q<p V 

log^ 
Jog/7 
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where the maximum is now taken on all prime divisors p of n. Define Tx = (1 + £x)\^{, 
where ex —-> 0 as x —-> oo. With a proper choice of ex and using Theorem 4, we can state 
that, for almost all integers n <x,n contains no more than Tx prime factors in an interval 
[/, y] for some y. Therefore 

(53) K\n) < Tx(hl(£2) + h{(è£2) + hl(è
2e2) + -

< Txhx(e2)(\ 

< 2Txhl(£2). 

< Txhl(£2)(\^t(8)^t2(6) + --') 

Now let 

If we further set 

. . . def f h(u) if u e [>2, 1], 
n2(n) = 

( 0 if w < £2-

k\(n) = max 5</2(S)' 
we note that we have already proved (Theorem 5) that 

*i(n) = M ( l + * ( l ) ) 5 ^ . v ylog4x 

But it is obvious that 

ki(n) - K\n) < k\n) < k\(n) + K\n). 

Because of (5.3), if e2 is small enough, we have that K*(n) - #( ^7- ) - This allows us to 
conclude that (5.2) is true and hence this finishes the proof of Theorem 6. 

6. The distribution of T(n,X) in the case h(v) = v^. Let h(v) = vf\ (5 > 0. Let 
T > 0 and recall that in this case we have 

OC{T) = - yo — — dv, LP(T) = exp(a(r)). 

Since ïï(<x(rj) = 0(1) + ± JJ ^r^ dv a n d f\ ^ dv is bounded, it follows that, as 
T — > OO, 

»(ar(r)) = ~ l o g r + 0 ( l ) , 

and therefore 

(6.1) M r ) | ^ C J I T I " 1 ^ 

holds. 
Let F(z) be the distribution function which corresponds to | ip(r)\. By using Lemma 5 

and (6.1), we easily get that 
(a) in the case j3 < 1, F(z) is absolutely continuous and has a bounded derivative, 
(b) in the case (3 > 1, QF(h) <C / i 1 ^ and SF(/i) < / i 1 ^. 
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The case /3 = 1 has already been considered by Bovey[l]. 

Let <£X(T) be as in (2.7) and set h(u) = u15. We shall now estimate 

(6.2) 
<PX(T) 

<P(T) 

in the interval \T\ ( ̂ jM < ix — A, where A > 0 is fixed. 

In order to simplify the notation, let hq = ( j^f ) . Further set 

exp((^y/P\ogx) i f | r | > 
def I X 

Z = 1 
2 

and write 

where 

Let 

^ ! )(r) = n i + 
^ - 1 eirhq _ Y 

, ^>(r)= n i + 

i eiTV0 - 1 

W Jo V JT*1 V 

We have 

(6.3) logv41)(r) = £k>gfl + 
q<Z V 

hhq _ i \ irhq _ 1 
f = £ - £+o(^), 

q ) q<z q 

where 

(6.4) 
U ' T ^ _ i l 

<?<; r 

We have, by using the prime number theorem in the form R(u) = ir(u) — Li(w) <C 

wexp(—(logw)1/2), that 

eirhq _ i irhu _ j frAM _ J 

£ = / dLi(u)+ I dR(u) 
q<z 

= a i ( r ) + 7 , 

say, where J = J(z). 

We now estimate the integral J. Set J\ =?RJ and Ji = 97 . Then | / | < |/i | + |/2| , and 

Jv = / dR(u), 
n u 

where gl(u) = 1 - cos(r(gf)^), g2(u) = 1 - s i n ( r ( ^ ) . 
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Observing that g'v(u) (y = 1,2) have constant signs on [2, z], one can prove that 

cilTl 
(6.5) \J\ < 

(log*)"" 

Indeed, integrating by parts, we obtain 

g'v(u) gu(u) 

< 
tv(z) 

R(z) 
\gu(u) 

du 

jf 

J2 U 

(,°8"),/2g^(ll)rf«|. 

Using one more time partial integration, one can see that this last integral is less than 

|g„(z)k-(logz)'/2 + k„(2)| + | / 2V(")(^< l o g M ) ' / 2 ) 'H 

Furthermore, we have 

?i/(")l < |r 
(iog«r 
(logx)^ 

and hence we obtain immediately that 

Ju < 
(log*)"' 

which proves (6.5). 
On the other hand, it is clear that 

A 7 < 
(log*)/3' 

Assume now that |r| > \. Define the sequence 

by 

Z = UQ < U\ < U2 < 

UP logW£ ( kix 

logjc \2\T 
(£=1 ,2 , . . . ) . 

Arguing as earlier, we have 

(6.6) log <pV\r) - a2(r) = / rf/?(«) + 0\ £ J = 2 

The error term is <C 1 /zlogz. Set AT = max{& : «̂  < x} and modify ŵ +i to be x. Then 
write 

(6.7) 
r* e'Thu — 1 , /•«! /•«/( p 
/ dR(u)= + • • • + / + / = /„ + . . . + /*+/« 
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Further observe that the derivatives of the functions gv{u) (v = 1,2) defined earlier 
have constant signs in each of the intervals [wo, u\], [u\1 ui\,..., [w^-i, w#], [UK,X\. For 
y = 0, 1 , . . . , #, write 

/, = 4 ° + i/2), where / 1 } = Ulh /f} = »/,. 
j j j j j j j 

Then, using integration by parts, we have, for each y < K, v - 1,2, 

(6.8) fy) < ^-(log^)'/2
 + XM fUj+] j?r \SAU) i L fUj+l K W < \ J \ R(u) du\ + \ —^-g}/(u)du 

Juj U | \Juj Uz 

Since g'v{u) does not change its sign in [UJ, Uj+\], we find, using integration by parts, that 
the second term on the right hand side of (6.8) is less than 

e-({o^n
 + jU^{e-^^'2)'g,,{u)du. 

Since \gu{u)\ < 1, summing up fory, we easily obtain that 

K+\ 

E 4 « E fErt<E«~(,0g";)l/2+ fX(e-aoêu)'l2)'du 
j=0 ,«1.2 V j ' j h 

+ f^(\gx(u)\ + \g2(u)\)du. 

The first integral is less than exp(—(logz)1/2). Since \ogUj > jl^\ogu\ > jl^loguo, 
it follows that 

y * -(logi/,-)1/2 ^ e-(\ogz)l/\ 

j 

To estimate the last integral, we observe that \gu(u)\ < 1, whence, since \R(u)\ <C 
wexp(—(logw)1/2), we deduce that it is also <C e~{]ogz)] \ 

We have thus proven that 

(6.9) 

Clearly 

log^ 2 ) ( r ) - a 2 ( r )<C 

l M 

l 

zlogz 

zlogz (logx) /r 

Hence, collecting our inequalities, we get that 

(6.10) \log(fx(r)-a(T)\ < c\\r\ 
(logxyi 

uniformly for \r\ (j^f ) < 7r — A. Since 

VX(T) 

<P(T) 
< |exp(log ipx(r) - a(r)) - 11 < | log (px(r) - ar(r)|, 

file:///ogUj
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we get 

(6.11) | ^ ( r ) _ ^ ( T ) | < C l J l L | ^ ( r ) | 
(logxr 

uniformly for 

(6.12) k l f î ^ l <TT-A. 
viog-x; 

REMARK. The inequality (6.11), in the case 13 = 1, has already been obtained by 
Bovey [1]. 

Let 0 < 0 < 1, where 6 = 0(X) satisfies Xe —• oo as X —> oo. Let 

(6.13) Hx,e(z) d= ! # { " < X, T(n, X*)< z} 

and 

(6.14) i>x.e(r)d=l-Ze,Tn"-X9). 
A n<X 

We shall now approximate Hx,e(z) by F(z). To do this, we shall use Lemma 5, Lemma 1 
and our inequalities (6.11) and (6.12). 

First it is clear that 

^.*(T)-1 = ^ E ^ " ^ - ! ) 
A n<X 

and also that | (f(r) — 11 <C |r|. Hence we obtain that 

(6.15) hMr) -Y>(T) |< |T | . 

This inequality will be used in the range 0 < \r\ < 1. Applying Lemma 1 to the function 
f(n) = e

irT(n,xd)^ w e 0i,tain that 

(6.16) | ^ ( T ) - ^ ( T ) | < ^ C | / 0 . 

Hence, by (6.11) and (6.12), we get that 

(6.17) | ^ ( r ) - ^(r)| « *W* + C2_JL|^ ( r )| 

holds, if |r| < ^ ( ^ f f f d=f Ô, say. Now let 2 < T < Q. From Lemma 5, we have 

(6.18) 5 = sup \Hx4d - F(z)\ 
Z 

<C SF(l/71 + (r '+log7>-c ' / f l + ^ 1 ^ ) 1 ^ , 

file:///Hx4d
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where SF(l/T) is defined in (2.8). Consequently, if (3 > 1, then 

7-1-1/0 
(6.19) S <C T{/0 + (O-l+logT)e-Ci/9 + — y - , 

and for j3 < 1, 

(6.20) S < 1 + (0-l+logT)e-c*'9 + ^ 

because of the inequality < (̂r) <C r -1/^. Clearly the last summand on the right hand side 
of both (6.19) and (6.20) can be cancelled, since the first summands are of larger order. 

Suppose that (3 > 1. Assume that X > 4 and that (£§f / > eCi. Set T = ^ . Then 

the inequality T < Q holds, and the right hand side of (6.19) is less than \e~Cx Ie. 
This choice of T is also allowed in the case (3 < 1 as well and thus leads to the 

inequality 
1 \P 

s < < | i ^ ) + log(logAV- e~c'/e. 

We have thus proven the following 

THEOREM 7. Let h(u) = u0, f3 jt 1, X > 4, 0 = 0(X) be such that 6 < 1 and that 
( loS/ ^ eCx h°lds (where c\ = C\(f3) is defined by (2.3)). Further let Hx,e(z) be as in 
(6.13), F{z) be the distribution function which corresponds to (f(r). Then, with S defined 
in (6.18), we have: 

• S<c2(f3)9-{e-c^eif(3> 1, 
s < ôâw + c4(/j)[iog(iogtf) + iyct/9 if0 < L 

7. On the maximal gap between the prime factors. In [8], Erdôs proved that 
ogPi+i(n) 
logpi(n) 

(log J 

maximal gap between the prime factors. I 
the density of the set of integers n satisfying maxi</<^„)_i ^ f ' * } ^ > z log log n is 
l - e x p ( - l / z ) . 

Let X and px (x G X) be as in Section 3, h as in Lemma 3, and assume that 

(7.1) lim £(px) =+oo. 
x—>oo 

We shall assume that h is monotonically increasing in a neighbourhood of 0. 
In this section, we are interested in the distribution of 

T(n)d= min T(n,p)= min £ ^ f r ^ l 

MM di{ r ^ 
Jo u 

}q\n,q<p 

Let 
rUf rv hiiA 

du 

and assume that 

(7.2) H(y) < h(v). 
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From the existence of the integral J0
l ^ du and from the monotonicity of h in a neigh­

bourhood of 0, we have that 

(7.3) max >0 as o —> 0. 
« /l(w) 

Additionally we shall assume that either 

(7.4) l i m ^ = 0 
K-0 h(ti) 

or 

(7.5) H(u) > fc(i«) 

holds. 
Note that condition (7.4) implies that 

(7.6) lim - ^ = 0 for every 0 < r < 1. 
K^O / i (M) 

Let JC G x be given. Given an integer n and p a prime factor of n, let q{n,p) be the 
largest prime factor of n which is smaller than p. Further let 

,nn. P def . \o%q{n,p) 
(7.7) £„ = mm — . 

P&PX l o g p 
l»p(n) ° ' 

LEMMA 6. Let 0 < z < oo. TTien 

lim -#{« < x : in > z/t(px)} = 1 - e~\ 
xex x 

PROOF. The proof can be obtained in the same way as it was done by Erdôs in [8]. 
Assume for the moment that (7.4) holds. Let Uz be the set of those integers n < x for 

which 

and Vz be the set of those integers n < x for which tn > z/£(px). It is clear that Vz C Uz 

and consequently that card Vz < card Uz. Furthermore, given a fixed e > 0, we have that 
uz c vz-e u (V^ n uz). 

We first estimate card(Vz_£ PI Uz). If n e Vz^5 n £/z, then 

where * indicates that we sum over those primes/? for which °^n-p) < pt holds. 
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Now let us consider 

s = f £ T(«). 
nevz-er\Uz 

Then, by the Eratosthenian sieve, we obtain that 

*«*£ z-Ufr^r^ 
p£pxq<p* QP V lOg/7 ; lOg/7 

< * L - ; — A ^ h — — j 7 r ^ 
PepxploBPJl UogW y 

1 rp , log/7 /" ^ "\ rpr 

« ^ E - i / h\ dt = x^(px) h(u)du 
Ptt>xp\ogpJo UogW Jo p^v. 

< xÇ(px)h(p£)p£ <xzh(p£) 

From (7.6) we have that 
h(p£) 0 as x —• oo. 

h{z/Z(px)) 

Consequently, T(n) > h(z/£(px)) implies that 

S 
card(Vz-£ Pi U7) < —, r = o(x) as x —-> oo. 

Thus we have 

card(^) < card(Vz_f ) + card(V^ H Uz) < x(\ - e~z+£) + O(JC). 

Since £ > 0 is arbitrary, we obtain that 

card(£/z) 

x 

We have thus proved the following 

= l - * " z + 0,(1). 

THEOREM 8. Let h: [0, 1] —> R be increasing in a neighbourhood of zero. Assume 
that (7.4) holds. Let px be a sequence of sets of primes such that lim^oo i(px) = +oo. 
Let 0 < z < oo. Then the number of integers n < xfor which 

T(n)>h(z/apx)) 

holds is 

x(l+o(l)y\-e-z). 

Hence from now on we shall assume that (7.5) holds. 
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One should expect the normalizing factor to be h{\ /£(£)*)), that is that 

T(/i) 

has a limit distribution. 
Let MO(JC) be the number of integers n < x such that 

(7.8) T(n) > h 
&Px) 

Here z is an arbitrary but fixed positive number. 
Let N(x) =x — MQ(X) be the number of integers n < x for which (7.8) does not hold. 

Assume that x is large. If for some integer n < x and some prime p that divides n, p G px, 
one has T(n,p) < h(z/£,(px)), then n does not contain any prime divisors in the interval 

a given prime /?, the number of such integers n < x is clearly 

«- n [i--)<^h-
Hence it follows that, when we count N(x), we only make an error of order o(x) if we 
ignore those integers n for which T(n,p) < h^z/^ipx)) for some prime p G p* C px, 
where p* is such that lirn^oo | ^ = 0. 

We can easily construct such a set p*. We let p* be the set made up of the smallest 
and the largest elements of px, that is, those primes p G px which also belong to 
[ 1, yx] U [wxi x], where yx, wx are determined by the equations 

, i £(px) , logx £(px) 
loglogyx = -——-—, log : \ogi(px) \ogwx log^(p^) 

Let p'x - px \ px and denote by N'(x) the number of integers n < x for which there exists 
p £ pf

x such that T(n,p) < h[zjHpx))- Let p\ < pi < . . . < pk be k primes chosen 
from the set p'x, and let 

N(p\,...,pk) = [n<x:pi...pk\ n and T(n,pj) < h(z/£(px)),j = h--.,k). 

Further set, for each k G N, 

Nk(x)d= £ N(px,...,pk). 
p\<-<Pk 

Then, by the inclusion-exclusion process, we have that 

N'(x)=Nl(x)-N2(x) + N3(x) 

and the sum of the first k terms on the right hand side is > Nf(x) ifk is even, and < Nf(x) 
if k is odd. 
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We now estimate N(p\,... ,/?*)• To simplify the notation, write w = wx = z/'£(£>*). If, 
for each j = 1, . . . , £ , we have/7y|« and T{n,pj) < h(w), then n does not have any prime 
divisors in the intervals (pJ,Pj). This clearly implies that, for k>2, one has 

Pj<pJ+[ ( / = ! , . . . , * - D 

Using this and (2.2), we have that 

(7.9) tf(p,,...,w)« £ 1 = o f — ^ — , 2 ' / ^ 

X 1 X 

« r — - 7 — , ^ 7 « P i . . . p * 1 ( ^ 2 * / ^ / ? , . . . / ? * 

We shall allow & to run from 1 to Kx, where Kx —> +oo as slowly that A^ log wx —• 0 as 
x —> oo and we will choose another variable Rx (which also tends to +oo as x —> oo) in 
such a way that 

(7.10) K2
x(\ogRx)wx = o(l). 

This will permit us to show that 

(7.H) sd=j:j:fN(ph...1pk)=o(x), 
k=l 

where Yl runs over all collections/71 < .. • < pk (Pj £ pf
x1 j = 1, ...,&) for which there 

exist at least two primes/?/ < pi+\ close to one another, in the sense thatpfx > pi+\. Since 
Y.Q<q<QRx - < log/?x, it follows, using (7.9), that £ ' <C ;c(log fljw. Therefore 

5 = 0(^ 2 ( log /? , )wx)=^) , 

which proves (7.11). In order that (7.10) be satisfied, we choose 

(7.12) Rx = exp(l/y/w). 

Because of (7.11), we may assume that the prime divisors of n are far apart in the 
1 IR 

sense that /?/ < /?/+, * for / = 1 , . . . ,& — 1. 
1 IR 

For such collection of primes p\ < • • • < pk (that is, satisfying /?/ < p^x *), we 
consider the expressions 

AP],...,Pk(TU...,Tk) = E ^ ^ I ^ E 7 } ^ ^ ; ) 
« <x 7= 1 

where the * in the sum indicates that it runs over those integers n < x which are 
divisible by p i , . . . ,pk but which do not contain any prime divisors in the intervals 
(pJiPj) 0 = ! , . . . ,&). Then, by the sieve formula, we get, as x —-> oo, 

xw^ 
^ , n ^ i , • • -T*) = / ^ 7 7 ^ exp{«C(T,,.. . , r t ) } n t I L - . • • I I i ( l +o(D), 
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where 

( exp[irMpZl))- K 

n,= n (1 + p[jy,} <2<y<*) 

( exp(/nA(^)) - 1\ 

n,= n( i+ [ T )• 

and 

To simplify the notation, we let 

def u( let \\ u < ^def hW nt = Teh(z/t(Px)), hz(y) ~ 
h{z/&pxj)' 

The expressions hJ^^-) are small if q <pj_x, and 

(7.i3) Ei4^]«^ri—-,rr'—^ 
q<pl 1uq \logpjJ h(zlZ{px)) 

because of our choice of Rx given by (7.12). Now (7.2) and (7.3) implies that the right 
hand side of (7.13) tends to 0 as x —> oo. Therefore we have, as x —> oo, that, setting 
Po = 1, 

(7.i4) n,- = ( i+^D) n f i+ [ gPj) ) a = i *>, | + «P(««A(g^))-i' 

and 

(7.15) exp(/C(r1,...,r,)) = l+o ( l ) . 

Estimations (7.14) and (7.15) are valid uniformly for « i , . . . , nk varying in an arbitrary 
bounded interval. 

Because of (7.2), it follows that 

„ 1 (\ogq\ H(w) 

q<p«q viogpjj Kw) 

hence, repeating the argument used in the proof of Lemma 4, we get that 

[ ÎKjhz(u) _ 1 \ 

Jo du) (/=!,. . . ,*). 
Let 

n , , def pltW emh'{u) - 1 J 

B->.X(K) - / du. 

Jo u 

file:///logpjJ
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So far, we have proven that 

xwk / k 

AP] Pk(T\,.. .,rk) = (1+0(1)) exp(XX*0v) 
P\---Pk Kj=\ 

Thus if we let 
Lk = YL A

Pi.:.4>k(T\,-.-,n), 
P\<:.<Pk 

then we have 

(7.16) Lk = (\+o(l))xwkDkexp(j2BzAKj)), 

with 
= vt_JL Dk = E 

P\ .. -Pk 
where the f indicates that the sum runs over those pi < " , < f t ( p i G ^ , j = l , . . . , ^ ) 

11R 

for which there exist at least two primes pt < pi+\ such that pi > p^ x with Rx as in 
(7.12). We will prove that 

(7-17) Dk = Uz]-) +o((Ç(p'x))
klogRx) 

K-^pep'xPJ 

. ^ ( , • * , , ) . <«&£(,•«.,) 

which, substituted in (7.6), will yield 

1, jt 1+0(1) t
k 

exp( 
1 j 1+0(1) , * x 
-£* = ̂  — n — exP( 2J ^ f a y ) • 

To prove (7.17), we proceed as follows. Assume that k is bounded by an arbitrary 
constant. Let Si = TJ —-—, where the i indicates that the summation runs over all 
primes p\ < • • • < pk for which pj G p'x (j = 1, • •., k). Then clearly Dk < Sk. Observe 
that 

K • ^pep'x P J 

On the other hand, 

(7.19) S * - 0 * < E E " 
,'=1 pt<-<p,<pM<-<pk Pi ' ' 'Pk 

PM<P*" 

k-\ I 
<E E -^E = 1 Pl<Pl+]<p

R* A + l P i • • 'Pi-\PiPi+2 • • 'Pit 
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<iog^EE 
= 1 P\ '"Pi-\PiPi+2--Pk 

k-\ 

<W'{J0W = oW'V< 
since, because of (7.12), logR x = 0(y/£(px). The combination of (7.18) and (7.19) 

clearly yields (7.17). 

Let GZJC(u) denote the distribution function which corresponds to the characteristic 

function exp(iBzx(K)V Then, by the continuity theorem of the characteristic functions, 

we have, taking into account the asymptotic independency, that 

x k\ [ z 

Using the sieve formula, we conclude that 

«2W = (l+o(l))(,-I^l> + I^(ir2 

x v ' \ 1! z 2! 
/ x i>zMD 

This last argumentation is correct, because GZJC(u) is continuous in u and also continuous 

in the parameter z as well and furthermore N\ (x) — N2(x) + • • • + (— 1 )*~l Nk(x) is an upper 

or lower estimate of Nf(x) according to the parity of k. 

We have thus proven 

THEOREM 9. Let h: [0, 1) —> R be increasing in a neighbourhood of zero. Define 

H(v) = JQ ̂  du and assume that h(v) <C H(v) <C h(v). Let <px be a set of primes such 

that l im^oo £(px) - +00. Then the number of integers n < xfor which (7.8) holds is 

* ( l + o ( l ) ) é T — , 

where Gz^x(u) is the distribution function of which the characteristic function is 

h(u) 

HI 
fz/t(Px) e wxe*» - 1 

du 

An interesting particular case is the following. Assume that limv^o 7 ^ = KX) for 

every fixed 0 < À < 1. Then, it is known (see Seneta [18]) that t(X) - Xa for some 

a > 0, and since t(X) is increasing, then h(v) = t(v)S(v), where S(l/v) is a slowly 

oscillating function. For such a function h, we have that, as x —> 00, 

rz/apx) e fiz/iipx)) — 1 
BZAK) = I du 

Jo u 

-I 
li(px) e V^] - 1 

du + o(\) 
0 u 
,1 e ^ _ 1 
/ dv + o(\). 

Jo v 
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From these observations, we deduce the following result. 

THEOREM 10. Assume that h(u) = uaS(u) where a > 0 and S(l/u) is a slowly oscil­
lating function. Let G be the distribution function which corresponds to the characteristic 
function \ defined by 

( r\ eiKva - 1 A 
x(«) = exp^ o — — - dv). 

Then, as x —> oo, 

U{n < x : T(«) > h(z/Z(px))} = (l +o(l))e-
G(^z, 

or similarly 

-#{/! < x : (apx))
aV(n) > za} = (1 + o(l))e~G^. 

PROOF. Apply Theorem 9 and replace G^(l) by G(l). 

REMARK, X(*0 *S i n fact identical to the Fourier transform of the function wx/a(u) 
introduced by Hensley [15]. Since Hensley gives an explicit definition of the w-functions 
as solutions of difference differential equations, the function G can be explicitly defined. 
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