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ADDITIVE FUNCTIONS 
MONOTONIC ON THE SET OF PRIMES II 

JEAN-MARIE DE KONINCK, IMRE KÂTAI, ARMEL MERCIER 

1. Introduction. Let L: [l,oo) —> [l,oo) be a nondecreasing function such that 
lim^oo L(x) = +oo. Let/ = fi be a strongly additive function determined by f(p) — L(p) 
on the set of primes. In what follows/7, p \ ,/?2, ...,q,q\,qi,...,P, Q stand for prime num
bers, P(n) denotes the largest prime divisor of n. The letters c, c\, c2 , . . . denote suitable 
positive constants, not necessarily the same at each occurrence. As usual, TT(X) denotes 
the number of primes p < JC, while ir(x, k,£) is the number of primes p < x such that 
p = £ (mod k). On the other hand, <p(n) stands for the Euler-totient function and uj(n) 
is the number of distinct prime factors of n. For an integer n and real number y > 1, let 

™ d e f TT „<* 
ny= H p 

pa\\n,p<y 

For each 0 < A < 1, let (i?4) denote the condition 

(*&)• lim ^P- = 0. 
JC-̂ OO L(X) 

Further let 

(1.1) u(n) = uL(n) = , , YJ L (# ) -
L[P{n)j q\n,q<p(n) 

In [2], we proved that the fulfilment of condition (^4) for every 0 < À < 1 is necessary 
in order to assert that 

(1.2) lim -#{/ i <x : u(n) > e} = 0 for every £ > 0, 

and that it is sufficient to guarantee that 

(1.3) lim - V ( ^ - l) = 0 
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for every a > 0. Now since clearly (1.3) implies (1.2), it follows that (1.2) and (1.3) are 
equivalent to each other and also to the assertion that {9f&) holds for every 0 < A < 1. 

Let Si denote an infinite sequence a\ < a2 < . . . of positive integers such that 
linv^oo an — +oo and an = 0(nc). Furthermore, for 8 > 0, let 

(1.4) d(6) = l imsup-#{n<jc : P(an)<jf} 
x—>oo X 

and 

(1.5) e(s,S) = l imsup-#{n < x : 3/?,#, pq\an, x5 < p < q < pl+£}. 
x—>oo X 

In [2] (Theorem 2), we proved the following result: 
Assume that 

(1.6) limd(<5) = 0, 

(1.7) lim e(e96) = 0 for every 6 > 0, 
E—*0+ 

and that L satisfies condition (J-C^for every 0 < A < 1. Then 

(1.8) lim -#{n<x: u{an) > e] = 0 for every e> 0. 
x-^oo x 

One can deduce from known sieve results that the conditions (1.6) and (1.7) are veri-
def 

fied for the set !A — !A\ — {p+l : p prime}, that is, the so-called set of shifted primes. 
The same is true for the set A — %% = {^n — Uj=\(n + ef) • n = 1,2,. . .}, where 
e\, e2,. •., ek are arbitrary integers. To prove the fulfilment of (1.7) for J3b, one has to use 
the following result. 

LEMMA 1. For every fixed integer e ^ 0 and every e > 0, the number of integers 
n < x for which there exists a divisorpq ofn(n + e), such thatpq > xandp < q < px+£, 
where p and q are prime numbers, is less than œx+o{x) asx —• oo, where c is a suitable 
absolute constant. 

We shall not prove this lemma, because the argument which will be used for the proof 
of Theorem 5 indicates how to prove it. For a further reference, see Erdos and Pomerance 
[3]. 

Our main purpose in this paper is to prove similar theorems for short intervals. More 
precisely, we shall prove the following two theorems. 

THEOREM 1. Assume that condition (^4) holds for every 0 < A < 1. Let p > 0 be 
an arbitrary positive constant, and z = z(x) be a function such that x2/3"^ < z(x) < x. 
Then, ifu is defined by (1.1), 

(1.9) l i m - V u(n) = 0. 
x-+°° Z x<n<x+z 
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THEOREM 2. Under the conditions of Theorem 1, for every fixed integer 1^0, 

(1.10) l i m ^ - T T 7\ £ K ( P + O = 0. 
* - o o 7T(X + z) - 7T(X) ^ < ^ + Z 

In Section 3, we shall formulate and prove Theorems 3-5 which, as the reader will 
certainly realize, can have applications elsewhere. 

Let u be defined by (1.1) and set 

def 

(1.11) h(n\z) — màxu(ny). 
y>z 

We are interested in characterizing those functions L for which 

(1.12) lim limsup-{rc < x : h(n;z) > e} = 0 

for each e > 0. A function h(n, z) is said to satisfy the strong law of large numbers if 
(1.12) holds. 

Since h{n\ z) > u(n), then, using Theorem 1 of [2], it is easy to see that (1.12) implies 
that condition (i^4) must hold for every 0 < A < 1. A necessary and sufficient condition 
for (1.12) can be deduced from a theorem due to Erdos [4] (see Theorem A below in 
Section 7). The short interval version of such a condition will be treated in Section 7. 

2. Preliminary results. 

2.1. Let *F(JC, v) = #{ n < x : P(n) < y}. It is known (see de Bruijn [1]) that 

(2.1) ^ y ) ^ f logxA ;cexp — c-
V logy; 

uniformly for x, y > 2. 

2.2. Let ^([JC,x + z],y) = #{ n : n G [JC,X + z], P(n) < y}. Then 

log2y 
(2.2) x¥([x,x + zly)<cz-

logz 

uniformly for z > 2, 1 < y < z. 
To see that this last result is true, we proceed as follows. Because of (2.1), we may 

assume that z < x. Furthermore, if y > y/x, then (2.2) is obvious; therefore let y < yfx. 
Define 

(2.3) fy(n)= £ log q 
qk\n,q<y 
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Clearly 

Clearly fy(n) — log n if P(n) < y. For simplicity let R — ^([x, x + z], y). First we write 

(2.4) R\ogx< £ fyW 
x<n<x+z 

= E log? E 1+ E log? E ! 
qk<z,q<y x<qki/<x+z qk>z,q<y x<qki/<x+z 

Ei= E l0s*(h¥ - \i\) 

= z E ^ + 0 (£!<*« 
qk<z,q<y a \q<z 

< 2z\ogy + CiZ. 

On the other hand, it is clear that £2 < (logy) ir(y) < c2y, since for each q there exists no 
more than one k and one v satisfying the stated conditions. Thus, combining the above, 
we obtain 

(2.5) Rlogz < Rlogx < (2 log y + cx)z + c2y, 

which leads to (2.2) immediately. 

2.3. Let I be a non-zero integer. Then 

(2.6) Tr(x+y,kJ)-TT(x,k,l)< °y 

(f(k)\ogy/k 

uniformly for 1 < k < y and (&,£)= 1. 
For a proof of this result, see Halberstam and Richert [5]. 

2.4. Let I be a fixed non-zero integer. For each positive integer K, let 

Si,K([x,x + zly) = Hpe[x,x + zlp = -l (mod K),p(^-] <y}. 

LEMMA 2. Let I and K be as above. Then 
zlogly 

(2.7) Etj([x,x + z\,y)<c-
ip(K)(\ogzY 

uniformly for I < y < z < x, K < y/z, where c may depend on I. 

PROOF. For simplicity, let R = E^ ,*([*,x + z], v). We may assume that z (and hence 
also x) is large enough, and that x + £ > xj e. We proceed as in the proof of (2.2). First 
we write 

< E <\ogq)(ir(x + z,qK,-t)-ir(x,qK,-e)) 
q<y,q'<Vz 

+ E i°g<? E i; 
q<y, ql>Vz x<p<x+z, Kqlv =p+e 
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but, assuming that y < z1/8, this last double sum is no greater than 

*E(Logq)(nQc + z,qlK,-l) - T T ( J C , ^ , - € ) ) . 

Since q2K < z3/4, by (2.5), we have that 

(2.9) «logf < c ' l ^ l + c2-
 Z 

Ke (f(K) logz y{K)\ogz 

which yields immediately (2.7). If z1//8 < y < z, then (2.7) is an immediate consequence 
of (2.6). 

2.5. 

LEMMA 3. Let t be a jïxed non zero integer and K be a positive integer, K < y/x. 
Let 

(2.10) Zudxty) = Hp<x:p = -l (mod K), P ( ^ ) < y} -

Then 

(2.1D a,^,) < _ ^ * f^:) 
ip(K)logx V l o g * ; 

uniformly in I < y < x, where c\ may depend on t. 

PROOF. We may assume that y < x1/4. Furthermore it is clear that we can ignore all 
the primes p < y/x. Then, arguing as in the proof of Lemma 2 and using only the Brun 
Titchmarsh inequality instead of (2.6), we immediately obtain (2.11). 

2.6. By using elementary estimates on n(x), one can easily obtain that the two inequal
ities 

(2.i2) E ( l 0 ë p r < c * 

and 

(2.13) ( l o M ) ! < c a o g ^ 
q<H 1 S 

hold uniformly for s > 1, H > 2. 

2.7. The number of solutions of the equation p + I = aq in primes p and q, where 
x — y < p < x, is less than 

cy 
(f(a)(\ogy/a)2 

uniformly in a < y < x. 
For a proof of this, see Halberstam and Richert [5]. 
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2.8. Assume that (^4) holds for every 0 < À < 1. Let C and e be arbitrary positive 
numbers. Then there exists a boundXQ — XQ(C, e) such that 

(2.14) lg*[M 
L(x) yiogxj 

whenever xo < y < xl~£. 
This is Lemma 3 in [2]. 

2.9. Let t\ ^ I2 be two non zero integers. Then the number of solutions of the system 
of equations 

lp + ii=aQ , 
[p + £2 = bP , 

in prime variables p, P, Q, where p runs in the range 2 < p < x, is less than 

(2.15) =—, 

where c = c(£i, £2) is a positive constant. 
For a proof of this, see Halberstam and Richert [5]. 

2.10. Asx—» 00, 

Yl —r\ = co log* + a + o(l) 
a<x <P(à) 

and 

22 ~ T T = C2(l0gx)2 + C3(\0gx) +C4+ o(l). 
a<x <P(à) 

For a proof of this, see Ward [8]. 

2.11. Let p be a positive constant, x^+p < z = z(x) < x, k < \ogx, (£ ,k) = 1. Then 

uniformly in £,k,z-
For a proof of this, see Perelli, Pintz and S. Salerno [6]. 

3. Sieve methods in short intervals. In 1959, Erdos [4] proved that almost all 
integers have their factors far one from the other (see Theorem A in Section 7). For 
instance, it follows from his result that, if e > 0 and S > 0 and if we let 9^$ (x) stand 
for the set of those integers n for which there exist two primes P, Q such that PQ\ n and 
such that 

(3.1) Xs < P< Q< P1+£, 

then, if è > Ois fixed, 

lim lim -#fA£,$(jc) = 0. 
E-^OX—KX> X 

We shall prove analogues of that result first for short intervals of integers and then for 
short intervals of shifted primes. These two results can be stated as follows. 
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THEOREM 3. Let p > 0 be a fixed real number and assume that x*+p < z(x) < x, 
x > 2. Then for every choice ofO < e < 8, the number of those integers n E [x,x + z] 
for which there exist two prime divisors P, Q such that Xs < P < Q < Pl+£ is less than 
X\(£,S)z, where X\(e,S) —+0 as e —> 0, for every fixed 6. 

THEOREM 4. Let p,z,£,6 be as in Theorem 3. Let t ^ 0 be an integer. Then the 
number of those primes p in [x, x + z], for which there exist two primes P, Q such that 
PQ\p + tandxb<P<Q< Pl+£ is less than \2(e,b)z/ logz, where X2(e,6) —• 0 as 
e —> 0, for every fixed 6. 

PROOF OF THEOREM 3. Let x be large. Let fAfo z) be the set of integers n e [x, x+z] 
which satisfy the conditions stated above. We will show that 

(3.2) #<*£(*,z) < Ue log j + cope) z, 

thus establishing our claim. Hence let n G 1A£(JC,Z). Such an integer n has two prime 
factors P, Q with Xs < P < Q < Pl+£. Let n = PQy. Write 

(3.3) fAfoz) = f*fi(*,z) U <fa(x,z\ 

where in the first set on the right of (3.3), we consider those n for which PQ < z and in 
the second one, we consider those n for which PQ > z. If PQ < z, then there exist at 
most 2zj PQ multiples of PQ in the interval [JC,X + z]. Summing up for P and Q, we get 
that 

(3.4) #ifez)<2z E if E i ] 
x*<P<x r ^P<Q<P]+£ "J 

^4z£ J2 p < 6 z e l o g - . 
Xs <P<x " ô 

On the other hand, if PQ > z, we have 

Q2 > z > x2^ 7 

and thus 

Q > * i + f . 

Furthermore 
PQv 2x 2P 3p 

Pv = - ^ - < — < 2JC3-2 < 2zx~~. 

If for some choice of P and v at least one Q occurs, then we have that 

x < PQv < P2^!/ and P2v < 2JC, 

that is, 

(3.5) v e 
x 2x' 

p2+e ' p2 
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The variable Q runs in the interval 

Pv ~ Pv Pv 

and so, using (2.6), one easily sees that it takes on at most 

z 
Pv logjc 

distinct values. Therefore summing up first for all v satisfying (3.5), and after for P, we 
get that 

(3.6) # fA£(x ,z )<c 2 P r ^- Y, 1 ( E - 1 < ^ r ^ - E X^f-<cApez. 
log* i Py-'i/J log* i P 

X3<P<X X3<P<X 

Recalling (3.3) and using (3.4) and (3.6), we obtain (3.2) and thus the theorem. 

PROOF OF THEOREM 4. Let x be large and e be small. Let M(JC, z) be the set of primes 
mentioned in the statement. We will show that 

(3.7) #M(x,z)<CQpe Z 

log* 

Write 

(3.8) M(x, z) = Mx (*, z) U M2(x, z\ 

where in the first set on the right of (3.8), we consider those primes p such that PQ\p + £ 
and PQ < xï+~~, while in the second set we consider those primes p such that PQ\p + £ 
and PQ > x^ 4 . Using (2.6), we easily get that 

#Mi(x,z)<Y,{*(x + z>pQ'-t)-K(x,PQ,-£J) 

cpz 1 z 
< > <C]0£ log . 
-p^PQlogx - lH ë £ l o g x 

To estimate #f^(x, z), we proceed as follows. For each p G Ivliix, z), one has p + £ = 
PQv and PQ > x^+ * . Therefore Pv < zX~2 and v is located in the interval (3.5). 
But for fixed v and P, using 2.7, we deduce that the number of solutions of the equation 
p + £ — aQ with a = Pv is less than 

cpz 

/V(i/)(log;t)2. 

Summing now on the integers v satisfying the condition (3.5) by making use of 2.10, 
and afterwards summing on P G [JC1//3,JC], we obtain (3.7) and thus the theorem. 

We now state another result which in a sense can be considered as a generalization of 
Theorem 4. 
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THEOREM 5. Let £\,£2,...,£k be distinct non zero integers and let F(n) = (n + 
£\) • • • (n + £k). For each e > 0 and 6 > 0, let Sej&(JC) stand for the number of primes 
p < x for which there exist primes P, Q such that /><2| F(p), / < P < Q < Pl+£. Then 

(3.9) l i m s u p ^ ^ < A3(e,«), 
J - K » 7T(X) 

withÀ3(e,5) —>0as e —>0. 

PROOF. It is enough to prove the theorem for k — 2. Hence let F(n) = (n+£\ )(n+£2)-
Let St, i = 1,2, be the number of primes p < x for which there exist two primes P, Q 
such that PQ\p + £hx

5 < P < Q < Px+£. Let T stand for the number of primes p < x 
for which there exist primes P, Q satisfying condition (3.1) and such that P\p + U and 
Q\p + £j9 i ^ j . Then clearly 

S,js(x)<Sl+S2 + T. 

We first estimate T. Let e\ be a small positive number to be determined later. By using 
the Brun-Titchmarsh inequality and observing that those primes p < JC, for which the cor
responding expression PQ does not exceed xl~£], belong to two arithmetic progressions 
mod PQ, we deduce that their number is 

1 x 
< — 6\ PQlOgX 

Summing for P and Q, we shall get at most 

1 JC -_̂  1 / _ 1 \ £ 1 x 
(3-10) ^ Ç p t Ç ë ) ^ 1 0 8 ^ 
distinct primes. Let e < £\Af 

then 

JC1_£I <PQ<xl+£l 

1 , £ 1 1 

P<x~2+2, Q>x> 

and so 

Since <2|/? + ^i or Q\p + £2, then, by the Brun-Titchmarsh inequality, we get that the 
contribution of these numbers to T is less than 

1\ 
( 3 1 1 ) C ( ? Ô ) Ï ^ C I £ 1 

•ç)Q)\ogx log* 

It remains to consider those primes p for which PQ > x1+£l.Let/?+£; = i/P,p+£j = [iQ. 
If there exists a solution for some v, [i then v, [i are close to each other, that is, for every 
large JC, we have 

(3.12) | <v < fil+C£, 
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where c is an absolute constant. Furthermore v[i < C\JQ, and so vp, < c\xl £]. For 
fixed i/, ji, making use of 2.9, we obtain that the number of solutions of the system 

p + li = vP 
p + lj = fiQ 

is less than 

(3.13) c ~ — < —T r—. 

Summing for those v which satisfy (3.12) and afterwards for //, we obtain, with the help 
of 2.10, the upper bound 

(3.14) 
6 X 

C2 r> . 

£{ log* 

and (3.14), we get 

e elogj- > 
- 3 + -+Cl6i 

) — 1 logjc (3.15) T<c 

The estimation of 5/ is more simple. We use the Brun-Titchmarsh inequality directly to 
estimate the contribution of the divisors PQ ofp+ £f which are such that PQ < JC1-£I . 
Since PQ < x, for all the others, there exists a prime divisor P such that x^~2ex < P < 
X2,ife/e\ is small enough. From this it follows that 

(3.16) St<c[ ^ - + e i 
£l J log* 

Choosing e\ = e t and using (3.15) and (3.16), our theorem follows. 

4. Proof of Theorem 1. Let 

(4.1) S(x,z)d=f E E 7 7 ^ V = E "(«>• 
x<n<x+z q\n L\P\n)) x<n<x+z 

q<P(n) 

We must prove that 

(4.2) l i m ^ = 0 . 
x-^oo z 

Let £ > 0 be small and denote by C a large number which will be specified later. 
Since u(n) < uj(n) and Ejt<n<«+z^2(/0 <C (loglogx)2z, it follows, by using the 

Cauchy-Schwarz inequality, that 

E «(«)<( E i) ( E ^2(")j . 
jc<n<jc+z v x<n<x+z x<n<x+z 

P(n)<exip(^\ogx) P(n)<zxp(y/\ogx) 
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and thus, because of (2.2), that 

Y- < \ ^ z log log* 

x<n<x+z (logx)1/4 

P(n)<exp(y/iôgx) 

From (2.14), one can deduce easily that the contribution to S(x, z) of the terms f(<?)
 x 

L[P(n)) 

satisfying the conditions q < logx and P(n) > exp(v
/logx) is o(z). 

We now appeal to Theorem 3 with 5 = 1/10 and obtain, using (2.14), that 

(4-3) £ E y ^ r <<:,*,(£, 1/10)Z. 

Assume that x is large enough so that logjc > JCO. Hence, using (2.14), we obtain 

( 4 4) y L{q) <y( log(g) )C<n-ef->(log2x) 
( 4 4 ) è L(P(„))-^\log(/>(n)); - ( 1 £ ) l logP(n)J-

#>log* 

Let 
5i(ac,z)= £ "W-

PCn»*1 /4 

Taking into account (4.3), the earlier estimations and the fact that the right hand side of 

(4.4) is less than 5(1 - sf~l if P(n) > JC1/4, we obtain that 

(4.5) Si(x,z) < (c iAi (e , l / 10) + 5 ( 1 - ef'1) z + <*z). 

Let S2(x,z) be the sum of ̂  for all those integers n for which P(n) = /?, q\n, with 

logjc < q < pl~£ and/? < JC1/4. Using again (2.14), we obtain that 

«<»<,•/« v log/»; VL«p « p J 7 q<p<x li 

whence, by (2.2), 

2X'Z ~ l0gZ q<p^/4 [\0gpj log/7* 

Summing on the right hand side first for q, then for/?, we obtain, using (2.12) and (2.13), 

(4.6) S2(x,z)<C-^. 

There are still some possible factors /?, q which have not been considered yet. Hence 

let pq\n,p = P(n), pl~£ < q < JC1/4, and denote by Si(x,z) the sum of ̂  over these 

#,/?, n. Since trivially | | ^ < 1, it follows that ^ (JC, z) is not greater than the number of 

solutions of the inequalities 

(4.7) JC < pqv < x + z, 

file:///0gpj
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where p,q runs over those primes satisfying px~£ < q < p < JC1'4, and v runs over 
those integers for which P(v) < p. Since pq < yfx < z, we can use (2.2) to estimate 
S3(jt,z). Hence we obtain 

(4.8) 5 3 ( ; c , z ) < E ^ [ - , — U < f ^ E ^ ( £ -)<C2SZ. 
Ti \[pq pq J J logZp p \x-e<a<Dq> VA 

Clearly 

<q<p{ 

S{x, z) < Sx (JC, z) + S2(x, z) + S3(x, z) + o(z) 

and thus, collecting our inequalities (4.5), (4.6) and (4.8), we obtain that 

(4.9) l i r n s u p ^ 1 ^ < ClAi(£, 1/ 10) + 5(1 - ef~l + ^+c2s. 
JC-4OO Z C 

Fixing e and letting C tend to infinity, we get that the right hand side of (4.9) is not greater 
than c\\\(e, 1/ 10) + c^e. Letting e tend to zero, we obtain, by Theorem 3, that the left 
hand side of (4.9) must be zero. This completes the proof of Theorem 1. 

5. Proof of Theorem 2. Since the proof of Theorem 2 can be obtained essentially 
along the same lines as the one of Theorem 1, we shall not proceed to give a complete 
proof: we shall indicate only the necessary changes. 

First of all, as we did in the previous proof, we shall omit the terms ^^L. satisfying 
the conditions q < logx or L(p +1) > exp (yTogx) : this introduces an error o(z/ log z). 
The contribution of the terms L(p +1 ) > z1 /10 can be estimated by using Theorem 4, the 
inequality (4.4) and by observing that 7T(JC + z) — TT(X) <C zj logz; their contribution is 
less than 

{\-ef-lcx- + d A 2 O a / 1 0 ) -
logz logz 

Now the sum of the remaining terms is thus 

£ TTll#{P G [x'x + z ] : P(P +1) = P> 
Q,P L\r) 

This last expression can be split into two parts according to Q < Pl~£ or Q > Px~e. By 
using Lemma 2 and (2.14), we observe that the first sum is less than 

cz y, (logQy logP < ciz 
WzQ<^/41 logP J PQ - CXogz 

It remains to consider those Q,P,p for which Pl~6 < Q < P < JC1/4, p G [x,x + z], 
p + i = QPi/, p(v) < P. Since PQ < y/z, we may apply Lemma 2 with K = PQ, in 
which case we get 

7 log 2P 
Zi,rQax>x + zlP) < c &

 2 . 
Pglog^z 

Summing first on Q and then on P, we obtain that the second £2 is less than c^ez/ log z. 
Then the proof of Theorem 2 can be completed along the lines of the proof of Theorem 1. 



ADDITIVE MONOTONIC FUNCTIONS 717 

6. Application to shifted primes. The following result can be proven similarly as 
Theorem 2, by using Theorem 5 and Lemma 3. 

THEOREM 6. Let l\,l2,...,lkbe nonzero distinct integers and set F(n) =n?= i (n + 
£i). Assume that condition (9f&) holds for every 0 < A < 1. Then 

7. A condition on the strong law of large numbers. In 1959, Erdos [4] obtained 
the following result. 

THEOREM A (ERDÔS [4]). Let ep > 0, Sp = min(l, ep). The divergence ofY.P Sp/p 
is a necessary and sufficient condition in order that almost all integers have two prime 
factors p, q satisfying 

(7.1) p < q < pl+£p. 

Let L be a continuous and strictly monotonie function. Define u(n) = UL(ri) by (1.1) 
and h(n, w) by (1.11). We will characterize those functions L for which (1.12) holds. 

Before doing so, we introduce a sequence of functions t\(z), t2(z),.... First let t(z) be 
defined by the relation 

L(t(z)) = 2L(z). 

Next, for each integer k > 1, let f*(z) be the &-fold iterate of t(z), that is, t\(z) = t(z), 

tk(z) = t(tk-i(zj). 

THEOREM 7. A necessary and sufficient condition for L to satisfy (1.12) for every 
e > 0 is that 

(7.2) Ç n ^ ^ — — - ! ^ <+oo 

for every k. 

PROOF. Assume that (7.2) does not hold for some positive integer k. Then, by The
orem A, almost all integers n have two prime factors p, q such that 

(7.3) w<p<q<tk(p) 

(here w is an arbitrary fixed positive integer). But then > — and so 

limsup-#jfl < x : h(n,w) > —̂  \ — 1. 
x—•oo X { L > 

Since this relation is true for every w, it follows that (1.12) does not hold. 
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Conversely, assume that (7.2) holds. Let d(w) be the upper density of the integers n 
having a divisor/?g satisfying (7.3). Then d(w) —* 0 as w —• oo. Let w\ be defined by 

L{WX) = 2kY, upy 

Write 
«i ay ar 

n = nwql
lq2

2--qr
r, 

where 
w < q\ < ... < qt-i < w\ < q{ < • • • < qr 

Assume that n is not a multiple of any pq satisfying (7.3). Then 

Uqt)< YkL{qM) (£ > 1 ) 

and 

Thus 

f{nw) < ±-kL(qt). 

2 1 1 1 
h(n, W l ) < — + - r r + - r 7 + - - - < 

and so 
2k 22k 23k ~ 2k~2 

l imsup-# |n < x : h(n,w\) > —j—^ \ < d(w). 

Since d(w) —> 0 as w —> oo, it follows that (1.12) is true if e — ^P I . Since (7.2) holds 
for every &, the result follows. 

Let 0 < p < l / 3 b e fixed and z(x) be an arbitrary function such that x2! 3+p < z(x) < 
x. Let F(ri) be the function defined in Theorem 6. Further assume that £ is a nonzero 
integer and that e > 0. Set 

(7.4) A\(e) = limsuplimsup #{n E [x,x + z] : h(n,w)>e}, 
L z(x) " ' 

(7.5) Ai(s) = limsuplimsup #{/? G [x,x + z] : /*(/? + I,w) > e\, 
x—oo 7T(X + Z ) - 7 T ( X ) W—«DO X— 

(7.6) A^(s) = limsuplimsup #{/? <x : h(F(p),\v} > e}, 
w—xx) JC—>oo 'TT ( X ) 

(7.7) A^e) = limsuplimsup -#{rc < JC : h(F(ri), w) > e}, 
W—KX> X — K X ) 

THEOREM 8. IfL is such that (7.2) holds for every positive integer k, then Aj(e) = 0 
for each e > 0 and j = 1,2,3,4. On the other hand, if (7.2) fails to hold for some 
positive integer k, then for a suitable 6Q > 0, Aj(so) = 1 (j = 1,2,3,4). 

PROOF. We shall prove only the assertion for j = 2. The other cases can be treated 
in a similar way. Clearly it is enough to prove that Theorem A remains valid for the 
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subsequence of shifted primes located in a short interval [JC, x+z] satisfying the conditions 
above. 

Assume that 

(7.8) £ ^ < + 0 0 , 
P P 

where Sp = min(l, ep). Let B(x, w) be the number of those p + £ for which there exists 
PQ,PQ\p + £, such that 

(7.9) w< P< Q< Pl+£». 

One can estimate B(x, w) using (2.5) and Theorem 4. If PQ\p + £, then P < 2y/x for 
every large x. Let £(1) be a small positive number. The number of p + £ having a prime 
divisor P satisfying ep > £(1), P > w, is less than 

£ (7T(JC + Z , P , - 0 - 7 T ( J C , P , - € ) ) < C 1 - ^ - £ - . 
W<P<2yfi l 0 S Z / »C i , £,>£<» /* 

The number of those/? + £ for which PQ\p + £ and JC1/3 < P < Q < Jp
1+£() is less than 

À2(e(1), 1/3) (see Theorem 4). The contribution of the other terms is less than 

where the above double sum runs through those primes P, Q such that w < P < Q < 
Pl+£p, PQ < JC2/3. Clearly this last double sum is bounded by 

c —̂ - v -1 y -1 < c -̂ — y — 
Q logz 

Collecting the above estimates, we have 

(7.10) l i m s u p ^ < c 5 f E Ç + £ ^ U A 2 ( £ < ] > , 1 / 3 ) . 
x-+oo Z/ lOgZ Vp>w ^ P>w,ep>E^tJ 

The convergence of the second sum on the right hand side of (7.10) is a consequence of 
(7.8). Let us consider the limit superior of the left hand side of (7.10). It is not greater 
than X2(£

(l\ 1/3). Hence, letting e(1) —• 0, we obtain that 

(7.11) lim hmsup —r- = 0. 
H^OO x_^OQ z/ logZ 

At this point, one can proceed as in the proof of Theorem 7 and obtain that Aiie) = 0. 
Assume now that (7.8) does not hold. Let Sip + £ ) denote the number of divisors of 

p + £ of the form PQ satisfying (7.9) and P < log log JC. We will see that S(p + £ ) —•> oo 
for all p G [JC, X + z] with the exception of at most o(z/ log z) primes. 
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Clearly, we can assume that ep < 1. By using a Hoheisel-type theorem with small 
modules (see 2.11), Turan's method [7] can be applied and leads to the inequality 

(7.12) £ (S(p + l)-Aw(x))2 <c{Aw(x)-^-, 

with 

• S E - 1 

w<P<loglogx r x P<Q<PÏ+£P 

(7.13) Aw(x)= £ ^ T T ^ n-V 

But AW(JC) —> oo as JC —> oo; furthermore, from (7.12), it follows that 

#{/>G[jc,jc + d : S ( p + 0 < ^ } < ^ * 2 Aw(*)logz 

This proves that the left hand side of (7.11) is 1 and thus ends the proof of Theorem 8. 
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