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1. Introduction. Let L: [1, c0)—[1, o) be a monotonically increasing
function such that lim,.. L(x) = +o. Let f=f, be a strongly additive
function determined by f(p) = L(p) on the set of primes. For an integern > L,
let p(n) and P(n) denote the smallest and the largest prime factor of n,
respectively.

De Koninck and Mercier [3] proved that if L is a slowly oscillating
function which increases “fast enough” and f = f; is as above, then, as x — o0,

Y fP@)~ 3 fl)

2€n€x 2€ns€x

In [2], we proved that, for a large class of strongly additive functions f;,
Sz <nss o (/L(P () ~ X as x— oo,
~ Our purpose in this paper is to find necessary and suff1c1ent conditions
which L must satisfy in order that the functions

L) f)
L(P () L

have mean values or limit distributions.

In what follows, p, py» P2» --+» 4> 41> 42 - - - Stand for prime numbers. The
letters ¢, ¢;, ¢, ... denote sultable positive constants (not necessarily the
same at every occurrence) which may depend only on L. As usual, 7 (x) denotes
the number of primes up to x while 7 (x, k, [) stands for the number of primes
p < x, p =1 (modk). Finally ¢ (n) denotes the Euler totient function, ¢, (n)
denotes the tth iterative function, @, (1) = n, ¢, (1) = @ (1), ¢,(n) = @ (@i—1 (1))
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2. Lemmata on primes and on additive functions.

2.1. Let ¥ (x, y) be the number of integers n up to x for which P (n) < y. It
is known (see de Bruijn [1]) that

21 w < log x

2.1) (x, y) < xexp “Togy

is valid uniformly in x, y = 2, and furthermore that

(2.2) Y(x, xY) =x(l+o,(1)e(1/2) (x—o0)

uniformly in every interval ae[0, 1], & > 0, where ¢ is a continuous function.

2.2. By using elementary estimations on x (x), one can obtain immediately
that, if s > 1, ~

5 (logp)~* < 1

2.3 % C s
23 S 0 Cslogh)
loggy _ (log HY
2.4) ¥ (log gy (ogH)
a<a 4 S
uniformly in H = 2.
23. Let ¢ > 0. Then for 0 < < 1,
log x
exp “Clogp ‘
(2.5) P <e(d)+o,.(1)
pExs :

where e(0)—0 as 60,
Inequality (2.5) is an immediate consequence of the elementary estimate
n(x) < ¢,x/log x.
24. If 1 < k< x and (k, ) =1, we have
3x
@ (k) log (x/k)’
For a proof of this result, see [5], Theorem 3.8.

2.5 (Theorem 2.3 in [5]). Let g be a natural number, a,, b; (i =1, ..., g) be
pairs of integers satisfying (a;,, b) =1 (i=1,...,9), and let

(2.6) nix, k, ) <

g9
ES(]a [] (ab—ab,)+0.
i=1

1€r<s<y

Let y and -x be real numbers such that 1 < y < x. Further, let # be a set of
primes for which there exist constants 0 and A such that

Y (1/p) = dloglogy—A.

P<y; peB
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Then
#{n:nelx—y, x], (an+b, B)=1,Vi=1,..., g}

1_1 (1 1>W(p)—9 y
< —— ——
p|E;pe® D (IOg y)ég

where w(p) denotes the number of solutions of
g
[T (an+b) = 0 (mod p),
i=1

and where the constant implied by the <« notation depends only on g and A.
This theorem contains as a special case the following:
CoROLLARY. The number of solutions of the equation p—1 = aq in prime
variables p, q, where p runs in the range 1 < p < x, is

X
K
| ¢ (a)log? (x/a)
and the constant implied by the <« symbol is absolute.

2.6. Let 0 < 0 < 1/4, U (x, 0) be the number of those integers n up to x, the
second largest prime factor q of which is larger than P (n)'~°. Then for each fixed
£e(0, 1/4) |

1 1
2.7 U(x, o) < ¥(x, x))+x logi—-a IogE +0(x).

This can be proven as follows. We separate the set of integers n < x in two
sets: those for which P (n) < x* and those for which P (n) > x°. The first set has
no more than ¥ (x, x°) elements. To estimate the second one, we first fix p, then

the second largest prime factor g of n is varying in.p* ~¢ < g < p. The size of
this second set is therefore not larger than

1 1. 1 1
X - —=x|log-]{log—— |+0(x).
x§<2p2<xp171“’qu<pq < g€)< gl_o) *

27. Let g(n) be an arbitrary strongly additive function. Then
2 2 -
b
(28) ) (g(n)— 5 9—(—)> <ex y L0
n<x P<x p<x 14
This is the so-called TurAn—Kubilius inequality.
2.8. Uniformly in y > 2, 0 <e <1, we have

#{p<y: P(p—1) < y*} < cA(e)yflogy,

where A (g) is a function tending to zero as £— 0. (This inequality follows easily
from Theorem 2.3 of [5] cited in 2.5.) Consequently, if 0 < N, <%y, then
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lim inf )y (1/q) < d(my, n,),

x—on xMy<g<x;P{g—1)<x,

where lim,,_od (1, n,) = 0 for every choice of n, > 0.

3. Lemmata on functions L.

3.1. Lemma 1. Let L: [2, o)~ R* be monotonic, continuous and satisfying
lim, . ., L(x) = +co. Suppose that there exists a constant ¢ > 0 such that

1 T L ~

3.1 e d .

(3D L(x)yulogu ume A x=o

Then » |

(3.2) L(x) = (log x)'"* H (x),

where H (x) is a very slowly oscillating function, i.e. a function such that
T H (x,) .

. e TN

Reciprocally, if L satisfies (3.2) and (3.3), then (3.1) holds also.

Remark 1. The notion of very slowly oscillating function was introduced
by De Koninck and Mercier [3]. They defined such a function H: [4, + c0)
—R™*, A >0, as one which satisfies

fim B0 _

X o0

He) ~ 1, for every fixed a > 0.

This is clearly equivalent to our definition.

Proof of Lemma 1. Define

‘ * Lu
(3.4 F(x)= iu log du.
Clearly

ooy LX)
(3.5) F(x)= xTog x
By hypothesis, we have
1
(3.6) L(x)y ~ z F (x).

So, using (3.5) and (3.6), it follows that

Fe 1
F(x) cxlogx
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Therefore
*F' (@) 1% dt 1+0(1)
log F(x)—logF(2) = dt ==[(1 1 =
og F (x)—log F (2) £F(t) C!( +0())tlogt log log x,

whence we obtain
F (x) = (log x)!* (log x)°=1),
Thus, by (3.6),
L(x) = (log x)'** (log x)°® = (log x)'"* H (x),

where 0 (x)—0 as x— co. ,
Now we estimate log (H (x,)/H (x,)) in the range x, < x, < x2. First we
observe that by (3.2) we have

H (x,) _ 1 L_(xz)_l log x,

I = .
OgH(xl) ogL(xl) ¢ Oglogx1

Using (3.6), we then obtain

Lix) . F(x)
o8 Ty T B Fxy)

+o,, (1).

On the other hand, we have

F(xy)) Z1+0,(1) 1. logx, ™ o,(1)
1 — ¢ d = _] 2 t
F(x,) le ctlogt c © 10,gx1+§ctlogt

X1

Combining these last two estimates, we conclude that

H(xy) 7 0,(1)
H(x,) jctlogt ’

X1

log

which implies (3.3)
We now prove the second assertion. For this we assume that (3.2) and (3.3)
are satisfied. So we have, for every fixed § > 0,

*Lu) 1 * (logu\' du
3.7 — du = (1
G7) s L(x)ulogu u=(+o.(1) J (log x> ulogu

x6

= (1+o0, (1)) c(1—5).

This implies that, uniformly in x,

¢ L
xirz U lOg u

du < ¢; L(x).

Consequently
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}C L(u)
2

du < ¢y (L(x)+L(x"?) + L(x"*)+..))
ulogu . ,

L) L) L)
L(x) L' Lx) )

But from (3.2) it is clear that, uniformly in x > ¢,, there exists 0 < 0 < | such

that

=c, L(x) (1 +

L(xl/z)/L(x)‘< 0

Thus we have

(3.8) 5
2

du < ¢, L(x).

Then the conclusion follows easﬂy from (3.7) and (3.8).

Remark 2. Assume that the conditions of Lemma 1 are satisfied with ¢ = 0.
Then

fog L(x) o

(39 log log x

as x - co.

This result can be obtained easily if we observe that (3.1) implies that for
every ¢ > 0 we have L(x?)/L(x) < ¢ whenever x > X, (&).

Remark 3. Assume that the conditions of Lemma 1 are satisfied with
¢ = 0. Then

log L(x)
log log x

In order to prove this, first let F be as in (3.4). Then L(x) = o, (1) F (x), and
using (3.5) we deduce that

F (u)

(3.10) -0 asx—oo.

(3.11) ) = 0“(1)ulogu (u— ).
This implies that
x du
= ———— = d(x)loglog x,
(3.12) log F (x) logF(2)+£o,,(1)ulogu (x) loglog x

where 6 (x)—0 as x— oo. But since L(x) « F(x), (3.10) follows from (3.12).

3.2. In this section we assume that L: [2, co)— R™ is a monotonic function
satisfying lim,_ ., L(x) = + co. Further, for each 4 €(0, 1), let (5£,) denote the
condition:

L(xl —A) _

() lim )

X 00
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Remark 4. A function L which satisfies condition (5,) for some 4 (0, 1)
and which is also a slowly oscillating function (that is, such that
lim, ., L(ax)/L(x) = 1 for each fixed a > 0) must satisfy

L(x)
L{x)

which means essentially that it increases faster than any power of log x.

xlogx—>o asx— 0,

LEMMA 2. Assume that condition H#,, holds. Then there exists a monotonic
Sunction H such that lim,.,, H(y) = +oo and such that

L 1 H(y)
(3.13) % < <lz§i> whenever 2 < y < x1/16,
Proof. First we let
e() max 2O

ySz<J§L(x).,
and define H (y) by
8(y) = 277,

Since clearly lim,, ., ¢(y) = 0, we have Iimy_,w H(y) = 4+ 0. Let y and x be any
pair of real numbers satisfying the condition 2 < y < x'/1®, Further, let k be

the largest integer for which y** \/J—C Clearly k > 1. Since ¢ is monotonic, we
can write

L) _ L(y) L(yz"' )

<o = 2720,

L(x) L% L™
further, since
K1 llogx . 1 4 4logy
2 > 2k+1 e — ,
Y v Z2logy 2 log x

we have

L(y) _ (4logy)*"®
L(x)  \logx '

Finally, since H(y) = 0 and

4log y\? 1 ogy
log x log x’
we easily obtain (3.13).

LeMMA 3. Assume that (H#,) holds for every A in (0, 1). Let C and ¢ be
arbitrary positive numbers. Then there exists a constant x, = x, (C, &) such that
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c
(3.14) Lg; G:’): i) whenever x, < y < x*7¢.

Proof. The proof is similar to the one of Lemma 2. If y < x/16, then
(3.14) is a consequence of (3.13). So let us take y = x'/'6. Set ¢ = 1/(1—¢)
and, for each k=1, 2, ..., define y, = y°*. Further, let T be defined by
yr < x'7 ¥ < yr., and let 4 be a large positive number such that

(3.15) AT > (1—¢)~€ 67,
Clearly (3.15) implies that

(log yflogx)° = e™4T if y < x'7°
Choose y, large enough so that
max L@) < e 4,

zZyo L(Za)
Then, if y = y,, we have

L(y) < L(y) L(yT) < e_AT.
L(x) h L(J’1)“.L(J’T+1) h

(3.16)

Obsefving that
' logyr = o logy,
logy; < (1—¢)logx,
. (1—¢glogx < logyr+y < alogyy,
(3.14) follows rapidly.

4. On additive functions satisfying f (n)/f (P (n))— 1 for almost all n. Assume
that L: [2, co)— R™* is a monotonic function satisfying lim,_ ., L(x) = + o0
and that f = f; is a strongly additive function. Let

4.1) uiny s L@ !

-l =— L{q).
T T L) g - @

THEOREM 1. Let L, f, u be as above. Assume that u(n)—0 as n-» oo for
almost all n. Then (#,) holds for every 0 < A4 < 1. On the other hand, if (#,)
holds for every 0 < A < 1, then, for every a > 0,

42) fim Y (e —1) =0,

X0 NV nsx

in which case u(n)—0 for almost all n.
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Proof. I First assume that u (n) — 0 for almost all n and suppose that (3#;)
fails to hold for some § (0, 1), which we can assume to be smaller than 1/2.
We shall show that this leads to a contradiction.

Let A be defined by 6 = 34/(1+4). Let 1 < x; < x, < ... be a sequence
of real numbers such that

Lx}"2y > cL(x!*4) (v=1,2,..)
for some ¢ > 0. Define Y, = x3 ™44 Now let p and ¢ run over the intervals

1-24

x3 <g<xi/4, x,<p<xi*t4

If n< Y, and n is a multiple of pq, then n = mpq, where
| <Y/pg <x;7?  (<g),
P (n) = p and q is the second largest prime factor of n. With this it is clear that

Lig) _ L™
L)~ LG9

u(n) >

We now count the number S of such integers n. Clearly

- g

1 1— 1 .
ZE— 0g T~ 2A+0 (1) - and Z;=103(1+A)+0v(1)=

Since

we may conclude that

1—4
§=dY,+o(Y), with d=log1_2A-log(1+A)>O.

This contradicts our assumptions. The first assertion is thus proven.

II. Assume now that (#,) holds for every 4€(0, 1). Let
S(x, u, a) pad Z (eau(n)_l)'

2€n<sx

- We want to show that

4.3) ,_ S(x, u, a) = o (x).

Since u(n) < w(n) and

. 4 — Acta Arithmetica LVIL1
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Y ¥ « x(log X)L,

2€<n<€x

a simple application of the Cauchy-Schwarz inequality shbws that

Y (@ =1)=o0(x),

nes »

where £ is a subset of {neN: n < x} for which
card (#,) = O (x/(log x)°**).

Therefore, because of (2.1), we may omit those integers n < x for which
P (n) < exp ((log x)'?).

Let u, (n), u,(n) be arbitrary positive quantities such that u, (n)+u, (1)
= u(n). First consider the obvious identity

M ] = (oM _ 1) (%2 1) (e — 1) (e3¢ — 1),
Now since
(e —1)2 L ™MW -1 (j=1,2),
we easily obtain, using the Cauchy-Schwarz inequality,
44 S(x,u,a)
< S(x, ty, @)+ S (X, gy, A)+(S (x, uy,.20)"* (S (x, u,, 2a))"/%.

We now choose small positive numbers ¢, # arbitrarily and pick according
to these a large positive C such that the inequality

4.5) (1—g° 1<y
is satisfied. Let x, be the constant involved in (3.14). We let

def L(Q) def
uy(n) = qln,qZ’SxoL(Pl(n)), u, () = u(n)—uy (n).
Since we have assumed that P (n) > exp(,/logx), it is clear that, because of
(3.14), one has u, (n)—0 and hence S(x, u,, a) = o(x) as x— co. Therefore,
keeping in mind (4.4), in order to obtain (4.3), it is enough to prove that
S(x, u,,2a) = o(x) as x—co. To do this, we split u, into two parts,
u, = uy+u,, where

L(g) def L(g)

,  ug(n) = .
gln,xo < qz<: P(nm)i-e L (P (n)) gln;P(n)! ;< q<P(n) L (P (n))
We shall show that

def
uz(n) =

1/x)S(x,u;; 4a) <6 (i=3,4)

for every & > 0 and every large x, thus establishing the proof of (4.3) and hence

of Theorem 1.
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We first estimate S(x, u;, 4a). Using (4.5) and Lemma 3, we obtain

log x log x
1—g) ! .
() < logP()( 9 <1110gP(n)
Thus
logx
S(x’ Us, 4(1) < Z (e4“'ﬁ;g—1;__ 1) T(x/p, p)
exp*/m$p$x
Using (2.1), we may write
4.6) S(x,us,4a)
< x Z _(e4a’11°gp_.1)e i:gi;_}_x Z '1‘(216aﬂ'“1)-

expviogx < p<xi/d xa<p<xP

The second sum is bounded by 2 (e'®*"—1). To estimate the first sum, we can

separate it into two parts, namely the one for which p < x3" and the one for

which p > x®". Thus we obtain that the first sum on the right of (4.6) is
1 _ctoex ¢ logx

« Y —e 4'°Zﬂ+8a11 log x T

p<xi/4 D logp

exp‘/logx < p<x8an

The second sum in the above expression is clearly bounded. On the other hand,
one can see, using (2.5), that the first sum above is bounded by a function of
# which tends to 0 as n — 0. Hence we have proven that S(x, u;, 4a) < (6/2) x if
n is small enough and x large enough.

We now proceed to estimate S(x, u,, 4a). Let ¢ > 0 be small but fixed. For
each integer n (= exp ./log x), we let P (n) = p, and ¢,, ..., ¢, be all its prime
divisors which belong to the interval [p* ¢, p]. If there are no such primes qj,
then u, (n) = 0, and in general, u, (n) < r. Therefore

@47 S, g 40) < 3 (€ —1) T, (),
' r=1

‘ whére T,(x) stands for the number of those integers n < x such that

(n) = p > exp~/log x and which have exactly r prime divisors in [p* 7%, p].
We will show that there exists an absolute constant ¢, > 0 such that

(4.8) T (%) < ¢y (2))r!.

Setting this in (4.7), it will follow that

S(x, uy, 4a) < c;x Y, e*"Qe)/r! = ¢, x (€2 —1).

r=1
if ¢ is sufficiently small, we will have

S (x, uy, 4a) < ¢, x 4e**
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from which it follows that S(x, u,, 4a) = o(x). This will end the proof of
Theorem 1 if we can prove (4.8). For this, we first write
L= X >
exp*/logx\p\x Pqi...grm<x
where in the inner sum the g;’s and m satisfy

plTi<q <...<q,<p, Pm<p
Hence we have .

@9  TE= I ¥ T( a ,p1-8>.

expViogx<p<x pl-e<€g1<... pq,---4
We now separate the sum over p into two sums, according as p > x'/®” or
p < x'/®” We first consider the one with p > x'/®). In this case, since
pr=9+1 < x it follows that p < x'/" and therefore the part of the sum in (4.9)
concerned by those p’s is clearly

& X Y 1—1—'< > l>r < 3x (2:;)"

/e <p<xir PVi\pt-22q<p g

If p<x'®, then pq,...q, <p'** < x** and

x x ¢ log x
4 , p1'8> < ex <———_ >
<pql---q, pay.4, T\ 2logp

Summing first on g, ..., g,, the sum with p < x1/®" is bounded by

29 Zlexp<-—flogx> « 1.
R 4

2logp

This proves (4.8) and finishes the proof of Theorem 1.

Remark 5. Let P; > P > ... > P, be the largest prime factors of n and
define ‘

Y, L.

qln.g <P

1
u, (n) =‘L(Pk)

By the method used in the proof of Theorem 1, one could prove the following
generalization of Theorem 1:

THEOREM 1'. Assume that condition (# ,) holds for every 0 < 4 < 1 Then,
for every positive integer k and every a >0,

Ly (e _1)50.

nsx

5. The behaviour of 1 (n)/f (P (n)) on subsets of N. In this section we shall

show that the sufficiency of the conditions (in Theorem 1) remains true if we -

replace the set of all integers by some subset satisfying certain conditions.
-Hence we state: '
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THEOREM 2. Let o = {a, a,, ...} be an infinite sequence of not necessarily
distinct integers such that a, = O (n*), where k is a fixed positive real number.
Assume ‘that

1
(5.1 : lim sup — #{n<xi P(a,)<x’} <c(d),
where
(52) fim ¢ (5) =
-0

* Further, for 0 < ¢ < 0, let S(x, J, €) be the number of those integers n < x for

which there exists a suitable couple of primes q,, q, such that

. 5
419.la,; x°<qy<q,<g;x°

and set

(5.3 d (a 5) = lim sup — . S(x d, a)
Assume that

(5.4) limd(, 0) =0 for every 0 < < 1/2

e—0

and furthermore that for L the condition (£ ,) is valid for every 0 < 4 < 1.
Then u(a,)—0 for almost all n.

Proof. First we choose 0 < & < § fixed. We then define the set # = %, ;,
as the set of all integers n < x such that P(a,) > x® and for which there exist no
pairs ¢,, g, of primes satisfying the conditions

41, 4, €[x°% P(a)], a14z0a, d1 <4, <qyx°.
Let # be the complementary set, that is,

F=1{1,2,.., [x]\4.

We shall first prove that u (a,) is small for every ne 4. So let a, = P (a,)? b,d,,,
where P (a,)’|la,, b, is composed of the prime power divisors ¢* of a, satisfying
x*2 < q < P(a,), and d, of those for which g < x%2. Let also

def L(q) def L(qg)
ORIy " X IP)

It is clear that
u(a,) < oy(M+o,(@).
Let ne 4. Since q|b, implies that g < P(a,) x™°, by Lemma 3, we have
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logg \¢ < _>
7 <qlzbn<logP( )) < P

Since b, < a, < Cr¥, it follows that ¥, 1 < 2k/6, if x is large. Hence we have

2k (. &\°

(5.5) o,(n) < ?<1 _E) .

Now define

def def l
L= ), m = ——— Y Lg).

k L(P (au)) qelgllldn

Then

(5.6) ZXURSIEA D)
h=1

Denote by q;, g,, -, qx all the prime divisors of a, in I,. Since q; = x*"!
h+ 1
[14: < a, < Cx*, it follows that R < 2k- . On the other hand, since

L(g)/L(P(a,)) <27 if ¢ > x,(C, 1/2), we have

k]

2h+1
(5.7 7, (n) < 2k———5——— 27k
Choose C large. It is clear that
max ( ! > L( )) 0
¢ — q) - as x—o0.
n<x; Play) > x? L(P (an)) qlan;g < x0(C,1/2)

Hence we have
16k-27¢

s—+o,(1)

o,(n) <

if C = 3. For each fixed ¢ > 0, let

def 1

T, ——# {n < x: ufa,) > &}

We shall prove that lim,., T, = 0.
Let 6 be an arbitrary small number. Then it is easy to see that we can pick

& 0 <& <, small enough, and C > 0 large enough, so that

2 _E C+16k-2‘c<é
F; k F; 2

Hence we may conclude that u(a,) < ¢ for each ne 4, ,,, whenever x is
sufficiently large.
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Finally, we estimate card (). If n € 4, then either P (a,) < x°, or there exist
4> 4, such that q, g,la,, x** < ¢, < ¢, < g, x*. So, by our assumptions (5.3)
and (5.4), we have

ns

limsup T, < ¢(6/2)+d (¢, 8/2).

We first let ¢ tend to 0, and then we let § tend to 0. It follows that
limsup T, = 0. Since this is true for every & > 0, our theorem follows.

Remark 6. One can easily check that the conditions hold for &/ = N.

6. Iterations of the totient function.

THEOREM 3. Let of = {,(n): n =1, 2, ...}, where ¢, (n) is the t-fold iterate
of the Euler totient function. Then the conditions of Theorem 2 are satisfied.
Consequently, if (#,) is satisfied for every 0 < A < 1, then

u(p,(m)->0 (n—o0)
for almost all n.

Proof. Let Ry(n) = n, R, (n) = ¢,(n)R,_, (n), i.e. R,(n) = np(n)...o,(n).
In order to prove our claim, we only need to prove that the conditions of
Theorem 2 hold for

A Z (R n=1,2,. }

We proceed by induction on ¢. If t = 0, then = N, and consequently the
conditions of Theorem 2 hold. Assume now that t = 1. We shall proceed in
three major steps:

1. Let &, = {py» Pa» -+ - pR} be an arbitrary set of primes p; < x. Define
By_ 1, ..., B, as follows. 93 1 is the set of those primes g < x for which there
exists p € 4, such that plg—1. If &, , ..., %+, are defined, then 4, is the set
of those primes g < x for which there exists pe %;., such that pjg—1.

For an arbitrary subset @ of primes, let

(6.1) (xlg) L % {n < x: (R, (n), 2) > 1}.

Here (R, (n), 2) > 1 means that there exists g € & for which g|R, (n). Hence if we
let

E, (x|@) #{n x: (R,(n), @) > 1 and (R, (n), 2) = 1},
it follows that

62) A,(612) = . E,(x12).
j=0

Letting

(6.3) s@)= Y 1/p,

peD
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we clearly have

6.4 E, (x|9) < xs(2),
for every choice of 9. Furthermore, if 9 = 2, and n is counted in E, (x|9), then
n is counted in E,_; (x|#,-,) as well. Indeed, let Q-1 (n)=r$-...-rf and

assume that (R, (n), 8,) = 1, (R,(n), #,) > 1. Since there exists plo,(n) =
[T=ir# 1 (r;—1), pe B, and (P, Ri—1 () = 1, it follows that r,—1 = 0 (mod p)
for some r;e %,_,. So we have

(6.5) | E,(x|8) < E,—; (x|8,-).

Now let  be a small positive humber and assume that all the elements of
%, are larger than x°. Then the elements of %, are larger than x° for 0 <j < ¢,
as well. o ‘ 0 .

Further, let # be a small positive number that may depend on 4. We shall
choose it later explicitly in such a way that it will allow us to estimate s (%))
from 5(%;. 1) ‘

First we observe that

s@)< Y Y lYa= Y (U @+U, ),
o peBj+1 g=1(modp) PeBj+r .

where in U, (p) we sum over those g for which g < p**", while in U, (p) we sum
over those g such that g > pt*". ‘

Let My =p'*", M, =¢"M,, v=1,2, ... Starting from the inequality

cM,
_ plog(M,/p)
valid with an absolute constant ¢ (see (2.6)), we obtain

V= ¥ ¥ C<iyo

My<x qeMady.qd PS5 v+nlogp’

where v runs over the nonnegative integers satisfying M » < x. Hence we have

T(2M,, p, 1) <

c 1
< —log—;
U, () < log
therefore .
Y U,(p) < As(%j+1),
PEBj + 1 .
where
(6.6) A= clog(l/(né)).
We now proceed to estimate
©7 Y U

PEBj+1
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If p, g are two primes occurring in (6.7), then g—1 = ap, where 1 < a < 748
Therefore the sum (6.7) is not greater than Y ».a 1/q, where the summation is

_ extended over all solutions of the equation g—1 = ap, 1 < a < p” in primes

D, q satisfying x" < p < ¢ < x. To estimate it, we shall use the Corollary stated
in Section 2.5. We split the interval [x", x] in intervals of the type [M,, M, . ],
where M, = x°, M, = 2" M,,. Since for every fixed a, the number of solutions of
p—1=aq where ge[M,, M,.,] is ‘

« M,/(¢ (a)log® M,),

assuming that » < J/2, say, and since clearly Y 1/¢(a) « nlog M,, we obtain,
after some calculations,

2 Ui(p) < cynlog(1/9).

pedBi1
Hence we proved that
(6.8) S(#B) < As(#B+1)+B,
where o
6.9) B = ¢, nlog(1/6).

Inequality (6.8) implies that

S(Bo) < A's(B)+B(A+A+A+...+A'7Y.
Therefore, using (6.5) and (6.4), we obtain
(6.10) () E,(x\B) < A's(B)+B(1+ A+...+A4Y),

and so by (6.2) we obtain

t—1
(6.11) (1/x) A, (x1B) < 1 +A+...+A)s(B)+B(Y (t—)) 4).
. j=0
2. We are now in a position to prove that (5.2) is satisfied. Hence let

im (1/x) # {n < x: P(R;(m)) <x’} =¢;(6) (j=0,1,..., 0.
Assume that ¢;(6))—>0 as 6 ;=0 has been proved for j < t— 1. We shall prove it
is also true for j =t.

Let ¢ > 0 be an arbitrary small number. Let us choose §,_, so that
e,—1(0,—1) < ¢/2 is satisfied. Let & be the set of those integers n < x for which
P(R,(n)) < x*. Write 9 = 9,0U%,, where P(R,-1(n) < x* ' in 9,, and
P(R,-y () > x** in 9,. Because of the hypothesis of induction, we have

card (2,) < xe;,—1 (6,—1)+0(x) < ex
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if x is large enough. It remains to estimate card (2,). If n € &,, then there exists
a prime g > x**, qlR,_; (n), P(g—1) < x*. We shall now make use of the
result of part 1. We define 7, as the set of the primes ¢ e [x*~*, x] for which
P(g—1) < x*. Then

(6.12) $(Bi-1) = Y 1/q.

Xt~ 1 <g<xiPlg—1)<x9t
It is clear that

card (Z,) < Ay—y (1%, 1).

We now substitute d,_, in the place of J in (6.6) and (6.9). Further, let # be so .

small that B(}26 (t—j) A') < ¢/2. Hence it follows, using (6.11), that
card (2,)/x < AL s (B ) +8/2.
- Collecting our estimates, we obtain
e, (0,) < A's(B,-1)+e.
It then follows from Section 2.8 that

limsupe, (d,) < e.
. at—»()

Since ¢ can be taken arbitrarily small, our resuit follows.

3. It remains to prove that (5.4) is satisfied. For this we assume that (5.4) is
true for &%, ..., /¥ . We show that this fact implies that it is true for /.
Let 0 < ¢ < 6 be fixed and let & be the set of those prime pairs (q,, ¢,) for
which q,/q, < x*, x> < g, < ¢,, 4,4, < x. Let 7 be small (depending on &), M,
be the set of those integers n < x for which p|R,(n) and pe D, VE,. Here D, is
the set of primes p € [x?, x] such that p—1 does not have prime divisors in the
interval [x", x%?]; E, is the set of primes pe [x°, x] such that p—1 contains
two prime divisors satisfying ¢, > ¢, > x%*, ¢, > qi " By using parts 1 and

2 above, one can show that
4,(xID,) 4,(E,) _
X

X

=0, limlimsup 0.

=0 x-w

lim lim sup

=0 x—wx

. To see this, it is enough to observe that

1 1
limlimsup( ) -) =0, limlimsup() -)=0,

=0 x—w peDy =0 x—w peEy,
estimates which follow easily from known sieve results. Thus we have
card (/) < (t(m)+o,(1)) x

where t () >0as n—0. Let &, = {1, 2, ..., [xX]}\#,. Let H;(x|%) be the num-
ber of integers ne A", for which there exists (q,, g,) € & satisfying q,4,|R;(n),
but for which there exists no pair (qs, g,) € & such that g;q,|R;_ 1 (n). Let
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!
K,(x%) = Y H,(xl%).
i=0

We shall prove that

K, (x]¥
(6.13) lim lim sup R _ 0.
X

£0 x-ow

This will imply (5.4) and end the proof of the theorem.

We have
Hydo) <x ¥ ——<x zi( ¥ 1)
(qr.g2es 9192 UFRNI
1
< xl -log ~ x),
X ogl_g/() ogb+o(r)
which proves that
L H, (x]9
lim lim sup —2—-~ () = 0,
X

£20 x—-w

Let now 1 <j <t and consider H;(x|%). Let n be counted in H;(x|#). Then
q19,In for a suitable choice of (¢,, g,) € &, but there exist no (¢;, q,) € & such
that g5q,|R;-; (n). Let us fix (¢,, ¢,) € &. Then the following cases can occur:

(a) ¢1IRj-1(n), g,/ R;_ 1 (n),

(b) 43IR;- 1 (m), ql/l’_Rj—1 (n),

©) @2 /R;-1 (), g/ R;-1 (n).

We split the sum H;(x|¥) = H (x|9)+ HY (x|#) + HY (x|¥), according
to these three cases.

We first consider the case (). Let U;_ (¢,) be the set of primes {rQ, r{, ...}
for which ¢,|r?’ — 1 for every positive integer v and which come up as divisors of
R;_5(n) for at least one ne./,. Assume that ¢ <nd. Then U,_,(q,)
NU;-1(q,) = 9. Indeed, if r were an element of the intersection, then it would
imply that g,q,|r—1. But then re E,, which is impossible because ne .4 - S0
there exist e U;_;(q,), e U, (q,) such that r¥ ¥R, | (n). Further-
more, it is clear that r" YR, ,(n) (/ =1, 2). Starting now from the set
Xj—1 = Uj;-1(qy), define X*¥_, as the set of those primes pe [x’, x] for which
there exists re X; 4, rlp—1, and which do not belong to D,. Now let
Yy =U;-1(q;) and Y%, be defined by Y,_; exactly in the same way as
X7, was defined from U;-,(q,). Further, let Z;,_, = X¥ ,nY%,, X;_,
=X o\Z;, Yoy = YE,\Z; 5. Let X; 4, ..., Xy, Y5, ..., Yy, Zj_3, ..
Z, be defined by the same process. : ’

If n is counted, then the following cases can occur:

(1) there exist pe X,,, g€ Y, such that pqgln,

b
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(2), there exists s, 0 < s < j—3, and pe Z, such that p|R;(n).
Since X,nY, = O, then we have at most

x@ﬁ@@

integers n¢ D, for which (1) holds. But
1

X< ) 2 BZ—

P gex, pzl(modq);p>q“’7;pexop © gex; 4

where B is defined in (6.9). Continuing this process, we obtain

) 1
ylepr v L
pEXop reXj-1 r
Since
1 1 B
z -< - <,
reXj-1 r r= 1(modq1) r>gltn r q:
we get
Z 1 Bj
peXo P ‘11.

Similarly, we obtain
< —.
q;a q q2

Let us now consider the case (2),. If pe Z,, then there exist e X4,
t® e Y, such that 1 t@|p— 1. Since t? ¢? > p' " is excluded, we must have
p4D,, and therefore

1 ’ 1 1 1
Y -< 3 Y ~<B{ Y wm)| X )
peZs P 11),1(2) p=1 (modt{Di(2)); p> (N2l +n D tMeXgyy H2e¥gu

Proceeding as above, we get

1 Bt—(s+1) 1 Bt-—(s+1)
_—<— P
2 (D= g, el 0
and so
1 BZ(t—s)—l
I —
peZsp ql q2

Collecting our estimates and summing over (¢, ¢,) €%, we finally obtain

' 1
lim lim sup S HY (x|&) =

20 x-—o©
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Since there is essentially no difference between the treatment of the cases
(a) and (b), we will only consider case (b). So let g, and ¢, be fixed. Let s be the
smallest integer such that ¢,|R(n), 0 < s < j—1. Let W,_; be the set of those
primes 7t D, such that q,[r—1, r < x. Let W,_, be the set of those primes
u < x such that rlu—1 for some re W,_,, ut D,. Continuing this process, we
define Wj_s, ..., W,. If n is counted; then there exists ** € W, such that r*|R (n),
q,JR,(n) and such that ¥* " VyR._;(n), q,/Re-1(n). It follows that the
estimation

#{nEJV r® q,|R, (n), case(c)} < B*/(g, r)
can be deduced as earlier. Moreover, since

Y 1 < B gy,

reW s

we have

lim lim sup -}-IC- HP (x|#) =0

g0 x-w

Similarly we can deduce that

1
lim lim sup — H® (x|%) = 0
x

g0 x>

Summing up for j < ¢, we see that for d(e, &) defined in (5. 3)
limsupd (e, ) < t(y).

e—0
But since this is true for every # > 0 and 1 (1) >0 as n — 0, it follows that (5.4) is
true.
This ends the proof of Theorem 3.

7. Further applications. There are other cases in which we can apply
Theorem 2 successfully. The following results, which we state as theorems, can
be obtained by using the theorem mentioned in 2.5 and from other known sieve
results.

THEOREM 4. Let o/, = {p+1:pis prlme} be the set of shifted primes. Then, if
I # 0, the conditions of Theorem 2 hold. Consequently, if (# ,) is true for
0<4<1, then u(p+0)—0 as p— oo for almost all primes p.

THEOREM 5. Let k = 3,(0 <) I, < I, < ... < [ (< k) be integers, coprime to
k,(I;, k) =1(j =1, ..., 5). Let % be the set of those integers n for which all the
prime divisors belong to the union of the sets {p: p = l; (mod k)}. Let &, = B+1
= {n+1: ne B}. Then the conditions of Theorem 2 are satisfied for of = %,
(=0, £1, £2,..).
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THEOREM 6. Let K (x) be a polynomial with rational roots, taking on positive
integer values for every n > n,. Let o/ = {K (n): n > ny}. Then the conditions of
Theorem 2 hold.

Remark 7. We are unable to prove (54) if o = {n’+1:n=1,2,...}.
8. The distribution of the large values of f(n)/L(P (n)). Let

' def S L(g)
8.1 v(n) =u(m)+1 _L(P(n))*q%L(P(n))’
8.2) 0 (K) ! fim sup ~ # {n<x:v(n) = K}. |

In this section we shall give necessary and sufficient conditions for L which
guarantee the fulfilment of

(8.3) lim Q(K) =

K- o

We first define a function which will play an important role, namely

(84) a(x) = Z L(g)/q.

Using the Turan-Kubilius inequality (stated in (2.7)), we obtain
f0) a\ (L(q))

&) Z, (L_(x') L(x)) < 2 o\te

Since L(q)/L(x) < 1, the right-hand side of (8.5) is less than cx a (x)/L(x), hence
we have

S _Lakl Hﬁ
Since f(n)/L(x) < v(n), we obtain
: ) 1a(n) 4cx
(8.7) # {n <x:vp < EL(x) < 2 GILG)

Ifa (x)/L (x) is not bounded and x, — o« is ‘a sequence of real numbers such that
a(x )/L(x,)— as v,
then, from (8.7), we obtain
#{n<x,0m=z,/2 >0~

for every & > 0, provided v is large enough.
Thus the condition
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(8.8) a(x) < cL(x)

is necessary to guarantee (8.3). Now assume that it holds and let 0 < 5 < 1 be
a constant. Then

L(g) 1
8.9 = — = L(x"){ lo 0 .
SR )
From (8.8) and (8.9) we infer that
(8.10) L{x")/L(x)y < 1/2 if n is small and x > x,.

Let  be fixed. Using (8.10) and repeating the arguments used in the proofs of
Lemmas 2 and 3, it follows that there exists a suitable positive x, depending
only on #, such that

LO) _ (logyY
A1 — <y<x.
(8.11) L(\) log x whenever x, <y < x
Finally, note that it is easy to prove that (8.8) is equivalent to
XL
(8.12) (24 < e, L),

.ulogu
where ¢, is a suitable positive constant.

THEOREM 7. Relation (8.3) holds if and only if (8.12) is satisfied. Moreover, if
(8.12) is satisfied, then, for every a > 0,

(8.13) T e = 0 (x).

n<x

- Consequently, there exists a positive constant C = C(a) such that

Q(K)< C e %
Proof. We have already shown above that “(8.3) = (8.12)”. So assume
that (8.12) holds, that is, that (8.8) is true. To prove (8.13), we may ignore the

integers n < x such that P (n) < exp (,/log x), since their contribution to (8.13)
is o(x). Let x4, n, » be determined from (8.11). Further, let

v (1) = vy (n)+ v, (n)+ 05 (n),

where in their definitions (see (8.1)), we sum over g < x,, X, < g < P(n),
P (n)" < q < P(n), respectively. It is clear that v, (n) tends to 0 uniformly.
Therefore, using the Cauchy-Schwarz inequality, it is enough to prove that
both the estimates

(8.14) Y 2 = 0(x) (j=2,3)

HEx

hold.
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Forj= 2,‘we split the sum (8.12) into subsums according to the largest

prime factor belonging to
def

Ik — [x1/2'<’ x1/2k‘1],
e - e4a2""(logq/logx)" -1
2, = Y e < x T (1—!— i
n<x . g<xi2ko1 : q
Using (2.4), we observe that the product on the right-hand side is bounded by
a constant that depends on » but not on k.
Furthermore, by the Cauchy-Schwarz inequality combined with the
inequality

k=1,2,...

and so

P (x, xV27) < xexp (— 271,
we deduce that
(815) Z eZavz(n) S Z Z eZavz(n)
n<x k P(n)el;

<YW (x, x1P 1z 312 xY exp(—c2*"?) « x.
k k

It remains to consider the case j=3. . :

If n contains exactly r distinct prime factors g, ..., g, in the interval
P" < gq; < p, then v, (n) < r. Therefore the left-hand side of (8.14), in the case
j =3, is bounded by o

(8:16) Y. € R, (x),
r=0
where
(8.17) R (%) <qu( X ,pn>.
pql r

Now pq,...q, > /x implies that p > x'*+D. furthermore P < pg,...q,
<x, and so p < x'*™_Therefore the contribution of the terms satisfying

VX <Dpgy...q, is less than
r r/ 1 2\ (2log (1/n)y
ad 1( Y l) <—————(210g(1/’7» (Z—>x<2(log—>—h(' Og(' /1) X.
7‘! r p p’1<q<pq ) r! p ’1 r
For the other terms we have

X x clogx
U4 , P < exp(-— )
(pql--.q, p) Pq:---4, 2logp

Summing first for ¢, ..., q,, and after for p, we get
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R, () < (a+ ) 1L

where 4 = 2log(2/y), and B is a number such that

1 1
5 —exp(—f ogx) <B

p$xp Zlng

Substituting this inequality in (8.16), we obtain (8.14) in the case j = 2. This
ends the proof.

Remark 8. It is interesting to note that Theorem 7 remains true if we
replace the whole set of integers by the set of values of an arbitrary polynomial
or by the set of shifted primes.

9. On’ the limit distribution of v (n). Let

©.1) PS4 (< o) < ),
where v(n) is defined in (8.1),‘Wé say that v has a limit distribution if
©.2) lim F(y) = F ()

exists for almost all y, and F is a distribution function.

It would be nice if one could characterize those functions L for which v has
a limit distribution. We are unable to solve this problem in general,

We shall nevertheless discuss what happens when v has a limit dist-
ribution. First of all, in that case, (8.3) is true, and hence the conditions of
Theorem 7 are satisfied. Thus (8.13) is true, and so by (9.2) we have 1—-F(y)
= 0(e™™) as y—oco. From this we can deduce that

9.3) lim 1 Y vk =c,

x—o0 X n<x
exists for every k = 1, 2, ... Indeed, if 4 > 0, we have

>y

X nSxvmy<a

A A
o) = [ y*dF, (y) = | y*dF (y)+o,(1).
1 1

Furthermore,

1.
— U(n)k < 1 v(n)Zk < de
xA* <

k°®
anx,v(n)>A n<x ¥\

for a suitable constant das and [ y*dF (y)—>0 as A — oo, Combining these,
(9.3) follows immediately. Taking into account the fact that

k
(av (m)Y)j! < e,
ji=0

5 — Acta Arithmetica LVIL1



66 J. M. De Koninck, I. Katai and A. Mercier

we find, using Theorem 7, that ) 32, c; a//j! is convergent. But, as is well known,
in this case the existence of all moments given in (9.3) is sufficient for the
existence of the limit distribution.

On the other hand, it is clear that

(9.4) ; v(n) = [x]+ Z< i(;; < p).

Taking into account (2.2), for every fixed 0 < A < 1, we have

X X log x—log p—1lo
'P(——,p>=(1+0(1))——g< EXT 08D gq)
pq pq :

logp

uniformly for p > (x/(pq))*. Furthermore, the contribution of the terms
g <p <x* in the sum on the right-hand side of (9.4) is < Q(4,)x, where
0 (4,)—0as A, —0. Hence, from the existence of (9.3) for k = 1, we can deduce
that

: L{g) (logx—logp—logq
05 ¥ (
<<= L) ap logp

Clearly (9.5) is equivalent to

i L(e" <logx—é—;1) dn dé
1Sr[<‘§<long(eé) 5 71 é
It is clear that (9.6) implies (9.3) in the case k = 1.

Note that the relations (9.3) for an arbitrary integer k > 1 can be expressed
by relations equivalent to (9.6), but these become very complicated for large
values of k, and it becomes very difficult to characterlze the functions L which

satisfy them.
In the next section, we consider a somewhat easier problem.

10. On the distribution of f(n)/L(x). Let
(10.1) = ML

and

>—>c1-1 as x— 0.

9.6) —c;—=1 as x—o00.

ef 1
F.0)= - # {n < x: v.(m) < ).

We say that v, (n) has a limit distribution F if
(10.2) F(y)=lim F, (y)

X oo
exists for almost all y. :
Using the standard theory of limit distributions for additive functions, as
presented in Chapters 16-18 of Elliott [4], one can obtain necessary and
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sufficient conditions for the existence of the limit distribution F(y). More
precisely, one can prove that the existence of the limit

. a(x)
. = A,
1oy I
(where a(x) is defined in (8.4)) with
1
(10.4) A=lim— 3 0,()>0

is a necessary condition for the fulfilment of (10.2). ‘
On the other hand, if (10.3) holds with A = 0, then F (y) exists and has
a maximal jump at y = 0, that is,

{O if y<o0,

Pl = 1 if y>0,

Finally, if (10.3) holds with 4 > 0, then it is easy to see that

_ T Lw
(10.5) a(x) = (1 +o(1))£umgudu

and thus, using Lemma 1, that
(10.6) L(x) = (log x)' H (x),

where H is a very slowly oécillating function.
Therefore, with L(x) as in (10.6) (set « = 1/4 > 0) and introducing the
following functions:

VST L@, K=,

gln

def * def k
Vx<n)=z(19§-‘l),. oy

Zi“gg"‘i;“(h“j)wa q]zn (log Q)a (I’l = 2)7

one can prove, using Theorems 18,1 and 18.2 (along with Lemma 1 4) of Elliott
[4], the following results:

THEOREM 8. Assuming the conditions stated above, K (n) has a limit
distribution F, that is,

F(y) = lim ! #{n<x: K, (n) <y

R ¢

for almost all y. Furthermore, F does not depend on H, so K (n) is distributed as’
Ve ().
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THEOREM 9. Under the conditions stated in Theorem 8,

limi# {n < x: t(n)%y} =G

x>

exists for almost all y; furthermore, G is a distribution function and it does not
depend on H. The same result holds when replacing t(n) by T (n).
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