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RANDOM SUMS RELATED
TO PRIME DIVISORS OF AN INTEGER

J. M. De Koninck and A. Ivié

To the memory of J. Karamata

and f(z) = ¢ L(z), where L(z) is a slowly oscillating function. The above sums naturally arise
when one defines random sums related to the prime divisors of an integer from the probabilistic
viewpoint. Three different types of asymptotic results, corresponding to the cases p<0,p>0
and p = 0, are derived.

1. Introduction

Let w(n) denote the number of distinct prime divisors of a positive integer
n and let pi(n) < py(n) < ... < Pw(n) be the distinet prime divisors of n. Let
f(z) = 2”L(z) be a regularly varying function; here p is a real number and L(z) is
a slowly varying function in the sense of Karamata (that is, a continuous function

L(az

defined for z > 2 and satisfying lim 7 ) =1, for each fixed a > 0). It is known
T=+00

(z)
(see Seneta [6]) that, for large z, such functions can be written in the form
T
(1.1) L(z) = A(z)exp </ @dt),
Zo

where A(z) tends to a positive constant A >0, n(t) is continuous and tlim n(t) = 0.
—00

For each positive integer n > 2, we define the random value f,(n) = f(pi(n)),
where p;(n) (j =1,2,... yw(n)) is any of the prime divisors of n, picked with equal
probabilities, and set

(12) CS@= Y fm).

2<n<z
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Integration by parts then yields
z 4p
1 / PLE) 4
3/2 logt
Pl = e+l (L(t)n(t)  L(t
SNy g ey (101 RO R

= (p+1)logz 32pt+1 tlogt tlog?t
p+1 pHL], R
- x L(m) 0 <:U 2(27)) +O(7)(.’L‘)I),
(p+1)logz log” =
and limg .00 () = 0, since limg—.c0 n(z) = 0 by hypothes1s Hence

_ (,%Tf—l(é% (1 +0(7(z)) + O (10;,5)) ’

and the lemma follows. We remark that for 7(z), we could have taken
$UPge<t<s |n(t)| for any fixed 0 < ¢ < 1.

LEMMA 2. If L € L, then there ezisls a real-valued -function ¢ such that
limg 00 () = +00 and

L(5) = {1+0(ViE)}

uniformly for 1 < t < p(z), where fj(z) = sup |n(t)|. In particular, one can take
JE<t<e

»(z) = min {\/5, exp (1/\/§;T(5:j)} .

Proof. This is a modified version of Lemma 1 of De Koninck - Mercier [4],
which holds if n(z) is assumed to be monotonic. Note that, with ¢ as above,

¢ du
nu)—| <
/x/t()u

Since 7j(z) — 0 as # — 0o, we have that 0 < I < 1 for z > #;. Then using
¢® = 1+ O(z)) for |z| < 1, we obtain

L(%) _ exp (_ /;t n(u)‘%‘) =14+0()=1+4+0 (ﬁ%(ac))

L(z)

def

4 I < () / = i(x) log p(z) < 7H ().

z/p(=)

with the O-constant uniform in t. In particular, for 1 < n < ¢(z), we have,
uniformly in n,

L (%) = (1+o(1))L(z) (z— o).

LemMaA 3. Let L € £ and 6 > —1. Then, for any fized D > 2o and € > 0,

/Ds uwL(u)du = (5_%_7 + O(ﬁ(x))> S L(z)+ 0 (xﬁar_xﬂ) ’
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where 7(x) = sup z<i<o IN()]-

Proof. The proof is similar to that of Lemma 1. Integration by parts gives

T
def 5 _u 1
I—/D,uL(u)du_. e

6+1L'(u) du-

p 6+1

z? T e )
=18 o0y 40 ( [ uéL(u)du) vo([) W L)no)ld

_ 21 L(x)
T8 +1

since L(u) < uf, and the lemma follows. Note that as a corollary we obtain
r
[ wrdu= ( At 0(1)> SHLE) (2= o),
D §+1
which is in fact equivalent to the statement that L(z) is slowly varying by a classical

theorem of Karamata (Th. 2.1 of [6]). The last relation shows, after an integration
by parts, that as 2 — oo

+0 @)D +0 (+F+),

/z “tedL(t) = o(s®L(z))  (a > 0).

4

Thus we may obtain by the method of proof of Lemma 1 that, if p > —1 and

T S i) = (o) 22

= log

This is weaker than the statement of Lemma 1, but holds for most general slowly
varying functions L(z), whereas for Lemma 1 we assumed that A(z) in (1.1) was a
constant.

LEMMA 4. Let Lel. Then
1 7 L(u)
i 11 _— du =
( ) -0 L(x) o
(ii) I € L.

Proof. We start with part (i). By Lemma 2, we have L(u) ~ L(:c) for
z/p(z) < u <z and limg_. p(2) = +00. Thus

" L(w) ’ du o
/m, u dt,‘ 2 —/w/w(z) L(u) e )/ = Lz)log (=),
which implies (i).

In order to prove (ii), we only need to prove that, as z — oo,

(@) =2 8 = o).
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1
FUAD D oM A D). @em + T+ D

m<yp—J -t

In the last sum, we use the fact that, uniformly in p, w(pm) = w(m) + 0(1). For
J > M, this sum then clearly contributes to the error term in (3.1). For the
remaining sums in (3.2), we have, for any fixed j, R > 0,
(3.3)

E 1 _ B drjz +0 ( z )

= w(m)+1)...(w(m)+ §) 4% (loglog ) A (loglog z)Fti+!
where the constants dy; are effectively computable and do; = 1 for each j. The
proof of (3.3) follows from the general methods of De Koninck-Ivié [2]. Namely their
equation (2.22) gives an asymptotic formula for 3 s<n<s (") with the error term
uniform in ¢ for |t| < 1. This is integrated j —1 times over t from ¢(z) = (logz)™°
(with suitable ¢ = ¢(j) > 0) to t, and then finally from ¢(z) to 1, producing (3.3).
Using (3.2) and (3.3) in the expression for §_,, we see that we shall obtain sums of
the type

Y priL(p)loglog(zpT) ™) (G=01,...;k=12...)
p<exp(y/logz)

in which we replace (log log(zp~i))~* by

y r
R log (1 — 2= ; R41
-k g ( loga:) logp’
-k N eszr]
(loglog ) {1 + ; ( n ) ( loglogx +0 (logzloglog a:)

and simplify. Since p <0, all the series

Y v L(p)(log P’

are convergent for any fixed r, j, and the portion of the series for p > exp(+/logz)
will make a negligible contribution. This ends the proof of Theorem 1.

Remark 2. Note that one could obtain a further sharpening of (3.1). It could
be done by using an asymptotic formula sharper than (3.3), essentially in the same
way that Theorem 2.5 of [2] was sharpened to Corollary 5.3. The truncation of
Y, at exp(v/logz) will work in that case too; for (3.1), we could have made the
truncation at log? z for some large A > 0. Also note that Theorem 1 holds if L(z)
is of the most general form (1.1).

4. The case “p>0”

We now have to deal with “large” additive functions. In the case f(z) =
z, this problem has been tackled by De Koninck - Ivié (3], who proved a sharp
asymptotic formula for the summatory function of

1
Pu(n) = m%?

S
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(the function P.(n) may be called the average prime divisor of n) and some related
arithmetical functions, such as

. 1
P*(n) = ) > ap,
p|in
where Q(n) stands for the total number of prime divisors of n.
TaeoreM 2. If f(z) = 2?L(z), with p >0 and L € L, then as £ — 00,
1 i+ L(x
(@) Y o S0 = o) Ty

2<n<z pin log z

1 1
h = .
where Cp = 7 X nX=:1 (@(n) + Dnite

Proof . Clearly we have w(pm) = w(m) if pjm. Therefore
(4.2)

1 1
Se) = Y s @=2f0 2 o

2¢n<s pln p<c  m<zfp
i

1 1
ZZ{W Z f(P)+Z)—(m—) Z f(P)}

m<z p<z/m, (p,m)=1 p<z/m,plm

Y 0 2 W

p<e/m p<z/m,pim

o O )}

p<z/m,plm

_ 1 1
= mé:x OES! pg;m f(o) + mZS:x D psx%plm f(p)
= Zl + 22’;

say. Now ¥, is of smaller order than the main term on the right hand side of (4.1).
To see this, we write

(43)
322<<Z Y =Y X @+ X 3 ).

m<z p<z/m,plm m<y/@ p<e/m,plm VE<m<Lz pSz/m, pim
Since p > 0, f(z) is increasing for & > €o. Thus using L(z) < &° we have
Y, <logz 3 flm)+logz 3 f(@) <& HEL(VE)loge = ofa' %),
m<VE VE<m<s

as £ — oo. This proves our claim about the size of Y
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= > L) ) - ) Yo L) Y (pm)

p<z/é() m<a/p ¥
= Zl + Zz’
say. Here £(z) is a function, to be suitably chosen later, which satisfies

(5.1) lim éz) = +00,  £@)SVE (2> a1).

Suppose now either (i) or (ii) holds. We use the elementary estimate

1
Z;.—..logloga:-f—C’+O<l 1A ),

z/é(z)<p<Lz m<z/p

Using the ' method of proof of Lemma 1, we obtain, for y < z/3,

Lip) _ [¥ L(t)at ' L(y)
P el B tloglogZ T O\ 1.7, )
pSyp oglog o zo t10gtlloglog & log”y

)}

r<s og” z
which holds for any fixed 4 > 0. With 4 = 2 we obtain, since L(z) is increasing
and &(z) < +/z,

L
D Y PV
e/(§(z))<p<e m<z/p z{(§(z))<p<s
1 1 1
<zL(z) Y. ==zL(z) {log B0 +0(
— f T 2
o/ (=) <pss 1= Sogs log”=
< zL(z)logé(z) + mL(zx).
log:c log z
But 0 © g L)
z z
I > —~dt > L |~ —
L(m)‘/g tlogt = (2)‘4 tlogt > logz’
hence L I
(f) <L) _ (L= )
log” = log « loglog x
From (3.2) and (3.3) we have, for p < z/¢(z),
1 z z
(5.2) > = +0 ( _ ) .
meay, W(mp) — ploglog £ p(loglog £)?
This gives
Z 2, Up 3 (mp)
p<z/¢(z) m<z/p
L(p) L(p)
(5.3) e YO _7+o(z > ) )
_ p<eTe(a) ploglog z r<oTele) p(loglog 5)
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hence

> e Ot o (el )

p<ele(@) ploglogf—, o tlogtloglog % log?(z/&(x)) |
- /z tlogiii):;og% to (lfg(;fl) ’

since L(z) is increasing and £(z) < 1/z. Using the relation

1 1 1
loglog £ ~ logloge <1 +0 <loglog€(w)>) (1 sts €(w))

and evaluating the O-term in (5.3) in a similar way, it follows that

64 3, = giogs (“‘"0 (EgTIgT(xi)) fe (E(%)*O (ﬁfglli(g_%?)

Pl (6_(2~)> /;g(x) tLlcgtg)t dat

< L(z) (loglogx - log o7 ))

1 L(z) logf(x)
st € log z

logz

. We have

= L(z) iog

Thus from (5.4) and the upper bound on 3,, we obtain

zlr(z) zL(z)logé(z)
oglogm+0( log = )

(5.5) S(z)=(1+ o(l))l
Now we define ‘
(5.6) &(z) = exp { (z%’;g—”k))—;f’f;’—m) _} .

If (5.1) holds, then from (5.5) we obtain the assertion of the theorem, since \/Z =
o(z) as £ — oo and thus (5.6) gives

L), L(z) ( I(2)logz \*  [L(z) Ip(z)loge
loga: ogt(=) = log z (L(I:;)log logx) =0 (logw L(z)log logw) '
We have

I (= )_/ “() dt K L(z )/ ——<<L(z)loglog:c,

which in view of (5.6) 1mplles &(z) < +/z, as required. The main difficulty lies in
showing that limg_,o £(z) = 400, which will follow from

def Ip(z)logz

(5.7) :cli»ngo () = +oo, 71(2) = L(z)loglogz’
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Here we distinguish between cases (i) and (ii). If (i) holds, then first we have that
L(z)loglogz/logz — oo and IL(z) = 0 as ¢ — co. Using I’Hospital’s rule and
the definition of A (z), we obtain

. . I (=) . logz
1 =1 L = lim = 400
15, 70(2) = lim, (£(oygles=) ™ =~ o)~ D loglogz ¥ 1
precisely if Ap(z) = o ( %ﬁ%), which is our hypothesis.

If (ii) holds, then for ¢ > z; and some ¢ > 0,

tL'(t)logt _
—Tt)— .— /\L(t) <e
and L(z), I(x) — co with z. Hence integrating the above inequality we obtain
L(z) - I( )—/zy(t)dm c/z L) 4 < 10)
poHe)= =%/, togt B

and (5.7) follows.

Having settled the cases (i) and (ii), we pass now to the cage (iii). This time
we choose

(5-8) £(=)

Then we have, using Lemma, 1 and Lemma 3,

Y.< ¥ Moy g

=/(e(z)<p<s P 2/€(@)<p<o

o[ Euo(ii

z&(z)L(z) _ _zL(z) R zlp(z)
< logz 7 (log logz)? — (loglogw),

_ log=
" (loglogz)?”

where in the last step Lemma-5 (ili) was used, since now L € L*. Hence we only
need to prove that '

(5.9) o=+ o(l))l—%%.

Using (5.2) and the method of proof of Lemma 1, we have

Y =)t ¥ LB

oglogz | ey
z/¢(z)
, z L(t) ( zL(z) )
(1+of ))log logz J,, tlogt + log? z log logz
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=( +o(1))log£gx~’ﬂ (5(2)) o (iﬁé;l) '

By (5.8) and Lemma 5 (i) and (ii), we obtain I, (é%) ~ Ir(z), which establishes
(5.9).
It remains yet to consider case (iv), that is, when, for some d >0and z > 24,
1

(5.10) L(z) < ogs

This implies that, as y — 00,

(5.11) IL(y) ~Z£§(§Z:CI+O(Z plolgdp) =G+ <log1"y)’

p<y P>y

where

C1=ZM>O,
> P

the summation being over all primes p. In this case we simply choose £(z) = VT,
Using (5.10), we easily have

L Cdt I
Zz<<z Z ._(_pl<<z/ ‘d-]-l << 1; :O(lx ?(.’E))’
Vicp<z P vz tlog®™ "t T loge oglogz

since Ir(z) (by (5.11)) is bounded. To estimate 2_1, We use the asymptotic de-
velopment of T( f-,,p) obtained in the proof of Theorem 1. We get, for any fixed
integer M > 1,

M di
2470 % M{z_‘_fw(m)}

rsve POl (log log £
with d; = 1. Replacing loglog% by loglogz and using (5.11), we obtain the
assertion of Theorem 3 for case (iv). This ends the proof of Theorem 3.

. Remark 3. Actually, using (5.11) and the method of proof of Theorem 1,
what we obtain in case (iv) is the analogue of Theorem 1, namely

M
_ ej:c X
) =2 togiogay +© ((log log:c>M+2)

i=0
for any fixed integer M > ( and effectively computable constants ej (e = Cy =
>, 5. |

Remark 4. If Ar(z) is not much smaller than logz (by definition of L(z),
AL(z) = o(logz) as z — 00), then Theorem 3 does not have to hold. This means
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that the restriction on Ar(z) in case (i) is a very reasonable one. Suppose that

Ar(z) is increasing and Ap(z) > ﬁ%’ where A > 0 is-a given constant. Then
zL(z)
Sz 3 L) Z —>>L( ) Y 1Y Togs
£<pLlz £<p<z

by the prime number theorem. But L’ (t) = —(}-1)5)5&"—‘@ and our assumption on Ap
gives by integration

Alogz

1@ +o > [ e ay B8 1, 0) - 13 > R8T

/5 tlogt loglog+/z

which contradicts the assertion of Theorem 3 if A is large enough. Here we used
the fact that Ip(v/z) = o(Ir(z)) as ¢ — oo. This follows by ’Hospital’s rule and
our assumption on Ar(z).

I (z),

6. The probabilistic interpretation

As we mentioned in the introduction, for each choice of f(n) = 2 oin F(P),
the sum S(z) given in (1.4) has a probabilistic interpretation: it represents the
expected value of the sums S,(z) given by (1.2). In sections 3, 4 and 5 above,
we obtained asymptotic estimates of S(z) for different classes of slowly varying
functions. Our results had the form

(6.1) S(z) = (14 o(1))A(=),

where A(z) is a “nice” increasing function. As we shall see now, these estimates
do indeed approximate “very well” the sums S.(z). If we denote by Ng(z) the
number of sums S, (z) for which the relation

(6.2) Sr(2) = (1+ o(1)A(2)
does not hold, then, as £ — o0,
(6.3) Ng(z) = o(w(2)...w([z])).

This will mean that, for almost all sums S (z), the estimate (6.2) holds. In order
to prove this, we will use the famous Chebyshev inequality from probability theory
in the form stated below.

LEMMA 6. Let An = {az,a3,... ,ayn)}, n >-2, be a sequence of finite sets.
For every n > 2, pick one member r(n) of A, at random with equal probabilities
(i-e. r(n) = a; with probability 1/g(n)), and set

(6.4) Q)= ) r(n).

2<n<z
Then the number Ng(z) of sums (6.4) for which
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where

. g9(n)

E=E()= 2<;<zg( )Z i
and
(6.6) U = U(z) = o E(x))
satisfies
No(z) v

(6.7 @40 9D = U7
where

g(n)

V=ve)= 2 o Z Z(gug(f )2

2$n5:c j 2<n<e j=2

Proof. For a proof of this lemma, see Galambos [5].

For our purposes we set g(n) = w(n) in Lemma 6. Hence, in order to show
that (6.2) holds for almost all sums S, (z), we need to choose U = U(z) in such a
way that condition (6.6) is satisfied and at the same time the right hand side of
(6.7) tends to 0 as  — oo.

We treat separately the cases “p < 0” and “p > 0”.

First observe that in all cases we have

(6.8) Vie)<S D = Zfz(p)

2§n<x p|n

We claim that a proper choice of U(z) is

(6.9) U(z) = E(z)3*?,
where & is any positive real number satisfying
1 Px
~>§6
(6.10) 3 >6> — et 2

with p, = max(0, p).

We start with the case “p < 0”. As we have seen in Theorems 1 and 3, we
have E(z) ~ M () for some M € L. On the other hand, it is easy to establish,
using (6.8), that V(z) € #N(z) for some N € L. Hence

Vv Vv N(z)
Uz T i < 2 M(z)1+28°

which clearly tends to 0 as # — oo, because § > 0.
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It remains to consider the case «p > (7. Theorem 3 ensures us that E(z) ~
» M () for some M € L. On the other hand, one can casily obtain, using (6.8)
estimate (4) of De Koninck - Mercier [4],

2p+1 92
vy s 3 P~ _—5%%?—9 L) _ (o

24n<s
‘some N € L. It follows that

vV _ ___Y._— & ,;P-(2ﬁ+2)5___1\_r_(_@——

7z~ EMW® M(z)H+? ’

hich also tends to 0 as &= o0, because of condition (6.10)-

This proves our claim.
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