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Continuity module of the distribution of
additive functions related to the largest prime
factors of integers

By

J M. DE Koninck, I. KATAI and A. MERCIER

1. Introduction. For an integer n > 1, let p(n) and P(n) denote the smallest and the
largest prime factor of n, respectively. The letters ¢, ¢, c,, ... denote suitable positive
constants not necessarily the same at every occurence.

For some a > 0 let

1.1 fn)= le (log g)°,

where the sum runs over the prime divisors of n,

def 1

12w o,
w  f(n)
9 T Goepay

In our previous paper [1] we proved that both v (n) (n < x) and T (n) have limit distribu-
tions. Let

1
(14) E() = #{nsxo <y},
(15) F(y) = lim E(),

1
(1.6) G.0) = - # {nSx: T <y},
(17) G(y) = lim G,(y).

Note that (1.5) and (1.7) hold only for points of continuity of the distribution functions;
however, since F and G are continuous everywhere, this makes no difference. Let ¢(t) be
defined for t = 1 by

(1.8) lim L ®(x, ) = (1),

x=aw X
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where ¥(x, y) stands for the number of integers n up to x satisfying the condition
Pn) < y.
It is known that ¢ is a decreasing function, that

loglogt 1
(1.9) o) = exp| — t{logt + loglogt — 1 — 281} L o ~ )|,
logt logt

as t — oo and furthermore that
(1.10) ¥ (x,x") = xp(f) + O(x/log x)

holds as x — oo uniformly for all ¢ varying in a bounded interval (see [1]).
The continuity modules of F and G, that is

Qp(h) = max (F(y + h) — F(y))

y

Q¢lh) = max (G(y + h) — G(¥)

y

will be treated here. We shall provide (mainly) upper bounds for Qg(h) and Q(h), where
0 < h < 1, for various ranges of a. Hence the results established in the following sections
may be outlined as follows: let 0 < h < 1, then

-1/2
§c(logﬁ> if 0<a<i,
Op(h) 1 =1 if o=1,

1 a+t1 l—l
<<logz> B ifa>1,

1 1\~
< c(log log ﬁ) (log ﬁ) f0<a<ti,

and

=log(1 + h) if o=1,
h 1 1 at+1 1_1
Qs(h) = c(log log ﬁ) (log —h—> h *ift<asg2,
1 a+1
< chlfe (log E) if o> 2.

2. The case a = 1. In this case, it is clear that f(n) = logn + o(logn) holds on any set
of integers having asymptotic density 1, whence we easily obtain that F(1) =0,
F(1 + 0) =1, so F has a maximal jump in 1. Since g is a continuous function, we get that

2.1} G(zy=1—9p(z) fz2=1.

Let 0 < h < 1. Observe that g(z + k) — ¢(z) is not greater than the limit density of the
integers n up to x having at least one prime divisor in the interval [x!/*® x!/] and that
this can be estimated from above by the limit bound of

1

x/(z+ R < p<xl/z p

b4

29*



452 J. M. DE KoNINcK, 1. KATAl and A. MERCIER ARCH. MATH.
therefore

h
(2.2) 0z +h) —o(2) = log(l + ;)

holds for every h £ 1, z = 1. Furthermore, as is well-known, in the interval 1 £ z < 2,
G(z) = log z, which gives immediately that

(2.3) max (G(z + h) — G(2)) =log(1 + h)
for every h < 1.

3. Approximation of the distribution function F. Let 0 < 6 < 1,

1
(3.1) U, s(n) = —— 2 (logg)*®
(logx)* 47n
and
(32 Sy, 5(n) = v.(n) — v, 4(n).

In [1] we noted that for every constant a > 0,

(10gp>’
gV
e VOB 1

1
(3.3) =X e I M+ —— | Z¢i(a,9)
X ngx PEx P
where ¢, (g, «) depends on a and a.
Assume that 0 £ a £ 1/6*. Then Tor g\
der 1 e (k’gx -1
(3.4) A== 3 S < TT 1+ —-—
X ngx psSxé p

But the above product is less than

logp\*
(o) 1 (log p\*
exply > ¢ - < exp (2a > (_og p) )

p<x° p p=xs P \logx
Therefore since

i o
> —(logp)*=—(1+0(1)) (logx)*,
s p o

pPEx
we deduce that
(3.5 A, Z exp(3ad®/a)

if x > ¢,. Hence we get immediately that for x > x,,
1
(3.6) ¥ {n<x: 8, 5(n) 2 K%} < exp(3/0) exp(— K/)

holds uniformly in K (= 1).
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Let F;(z) be the limit distribution of v, ;(n), the existence of which was proven in [1].
Since v, 5(n) < v,(n), therefore

3.7 F(2) 2 F()

holds for every z. Furthermore, v, 5(n) <z — Kd%, v, (n) 2 z imply that S, 5(n) > Kd°,
and so

(38)  FE— K8 F()+exp (g) exp(— !;_)

Let

(39) Qs(h) = max (Fy(z + h) — Fy(2))
and |

(3.10) 0ph) < max (F(z + h) = F (2))

If we choose now & = h/ from (3.7), (3.8) we obtain that
Qr(h) = max (F5(z + h) — F5(z — K6%) + exp(3/o) exp(— K/v),
whence ’
(3.11) 0r(0%) = (K +2) Q5(6%) + exp(3/a) exp(— K/a).
We can deduce similarly that

(3.12) 05(0%) = (K +2) Qr(6°) + exp(3/a) exp(— K/a).

4. Estimation of Q (k) in the case « > 1. Let

def
(4.1) E(y) = F(y + h) — F(y),
where h = 6*. Choose a fixed y > 3% Let J, be the set of integers n < x for which
v, s(n) €y, y + H]. It is clear that

A L gy (x-o0).

Let Z.* = 7, be the subset of those integers n for which p? tn if p> x°. Then
card(Z,\ Z.*) = o(x) (x > o). For a general n, let p, > p, > ... > p, be the set of all
prime divisors greater than x°. We shall write

ny=ppy-"p M=p, p,.

Let us estimate card (Z.*). Since y > 6%, then clearly n, = 1 cannot occur. Now let £ > &

be fixed. Then

@.2) card(ZH <Y 'I’(ML, x") + ¥(x,x%) =Y + P(x,x9,
p

1
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where in 3" we sum only over those n; € 7.* for which p, > x°. We shall now make use
of the inequality

43 Pox)<xexp <_%>

valid uniformly in the range 0 < 4 £ 1.
To estimate X" on the right hand side of (4.2), we shall distinguish between two cases,
namely:

(A) y>8¢Z,
(B) y<8Z~
Case (A). Since for n, € 7.*, we have
lo *
@4 o) = (»f——”—) o s(M)elyy +h),
ogx

it follows that, for a given M, there exists p; > x° only if v, ;(M) < y + h — £*. We shall
write 3 as 30, + X, where in 3, , we have the restriction v, ;(M) < y — 4£%, whilein Y,
we have the restriction v, ;(M) > y — 4£*. It is clear that

=x .
2= pxgx’z Mp,

nie gt

For a fixed M, p, satisfies the inequalities

log p,
log x

y— x,B(M) << ) < y+h— x,&(M);

this implies that
y—u, (M) +h . h
y—= x,&(M) y—- x,&(M).

1 1
> —<-—log
P «
Hence we obtain that
1
YiKxhY ———————.
' M(y — v, 5(M))
Finally, since y — v, (M) = 4¢* and
1 1 1
—_ 14 = -,
ZM%QJ +q><6

we obtain that
x0%~ 1
21—
T
On the other hand, if v, ;(M) > y — 4% and v, 4(n,) < y + h, then

1 a
logx
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with
4.5) B =(h+ 49,

But the number of integers n < x with P(n) = p, < x* is precisely ¥(x,x®); conse-

quently
c
22 <X CXp(-— B)

Therefore, in case (A), we have

(4.6) E(y) < 5;1 + exp(— %)

with § as in (4.5).

Case (B). Since (logp,/logx)*<8&*+ h, it follows that logp; <7y logx with
y = (8% 4+ h)'* and hence that

S<LP(x,x")<x exp(—%).

Since ¢ < y, we have

4.7 E(y) <€ x exp (— g)

Now let y < 6% Then E(y) £ F;(26% £ £(1/2'*6), and so by (4.3) one has that
E(y) < 9%
This in turn implies that

a—1
48) 0,09 <+ exp(— f).
¢ Y
-1

1
Set y = §<log 5) and let £ be computed from the equation y = (8% + h)1/*. Using

(4.8), we easily get that

1 4
4.9) 0,00 < <log 5) 6% 1.
Let us choose now K = ¢, log(1/6) and apply (3.11). Then we have

a+1
Gp(6% < <log 5) st

This means that the following theorem is true.

Theorem 1. If o« > 1, then

at1 l—l

1
QF(h)<<logﬁ) h .
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5. Estimation of Q(h) in the case « < 1. A general theorem of 1. Z. Ruzsa immediately
implies the following

Theorem 2 (Ruzsa [2]). Let o < 1. Then
(5.1) 0r(h) < c(log1/h) "2

Ruzsa presented his result in the following form:
Let f be an additive function and let

Ql(X)=SUP%# {nsx:f(mela,a+1]},

1
Wx, )= X ;min(i,(f(p)~110gp)2),

PEX
W (x) = min(4% + W(x, 1)).
A

Then .

Q,(x) < (W(x))~=.
To see how Theorem 2 follows from the above, we consider the function

def logg
¥ x (e

and let h = 6*. We have

1/1 2a 1 1
Wx,0 = 3 —( 0gp> + X —=log<+ O(1).
p=x° p 510gx x0<p<x p 5

It is enough to see that A% + W (x, 1) > W{(x,0) for every real number 1. Let « be defined
by the relation 4 = /(6 log x) and set #, = (logu)/(d log x). Then

1
W(x’ A) = Z _min {15 (7,; - K”p)z}'

If k = 1, then ky, — % = ¢ — ¢* for p = x°° and so W(x, 1) > log1/5. Assume now that
0 <k £1. Then

where the second sum runs over the primes p such that x° < p < x and for which
In% — kn,| < 1. Let 1™ < #”) be defined as the solutions of the equations

A gep® = 1,
7™ gep® = _ 1.

It is clear that
1 7 1
- <log—+ y + 0(——) <cq,

pig<n,<n®@ P
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and that |#% — kn,| 2 1 if p 2 x°* and 7, ¢ (17, ©). Thus we have
Wi(x,4A) > log1/s.

This ends the proof of Theorem 2.
Most likely, Theorem 2 is far from being sharp, but we are unable to prove a better
one.

6. Estimation of Q(h) in the case a < 1. Let y = 1, & > 0 be given. Then the density

1
of the integers n satisfying y < T'(n) < y + h can be estimated by card(Z,), where 7 is
the set of those integers n < x for which
fn)

(61) (—IWE[%}/ + h)

1
holds. It is clear that —card(J,) » G(y + k) — G(y). We shall give an upper estimate
X

for the number of integers n < x satisfying (6.1). Let us write each ne 7, as n = mP,
where P = P(n) is the largest prime divisor of n. Let 1,, 4, be small positive numbers
The number of those elements n of Z, for which P(n) < x* is not greater than ¥ (x, x*),
while the number of those for Wthh P(n) > x7* is at most x > 1/p. Thus,

with the exception of at most A,x + xe™* 4 o(x) integers, we ma; ‘assume that
x*' < P(n) £ x* ~*2. The number of integers n < x for which P?(n)|n and P(n) > x*
is at most O(x!~*). For the others, we have f(n) = f (P(n)) + f (m); for each fixed P,
(6.1) can be written as

S (m)
(logP)“E [v—1,y—1+h),
and so
62 fom [(y —1)(ogP)* (y+h—1) (logP)“>
' (log(x/P))* (log(x/P))* ~ (log(x/P))* '

If n=Pm, P(n)=P, nec 7, then m < x/P and P(m) < P. Let 7, p be the set of the
integers m, for which m < x/P and (6.2) holds. We keep in 7, , the elements with P(m) = P
as well. Then, it is clear that

(6.3) card(7) £ b card (7, p) + A, x + xe”“* + o(x).

xA1<Pgxl-22
The length of the interval on the right hand side of (6.2) is h(log P)*/(log(x/P))*;
therefore,
h(log P)*
(log(x/P))*

uniformly for P e [x*, x! ~#2]. We are now in a position to apply Theorem 2.

(6.4) card(Z;,p) = 5 Q ( >+ o(x/P),
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log P)*
(log P) <1, we have

Summing up for P £ ]/x and observing that -~ <
V (log(x/P))

S (7S 0Wx T +o()S Qelhxlog + o).

PSVx sgpsxiz P

We now choose A, = (¢ loglog1/h)~?! and A, = (log 1/h)_% and further proceed to sum

over P e [x!/2, x!~*2]. Then, for every P,

(log P)*

0BT _ hlog1/m)2,

(og(x/py < "0o8 1

(log P)* -

0 (him < (loglog 1/h) (log 1/h)~ /2,
r\" log(x/P) g 1/h) (log 1/h)

Consequently

1
1 1\72
¥ card(Z; p) € x <log log Z) <log ﬁ) .

Vx<P<xi-42

Collecting our inequalities we immediately obtain

Theorem 3. If o < 1, then for every h, 0 < h < 1,

1 1\ 12
Qs < C <log log ﬁ) <log ﬁ) .

7. Estimation of G (1 + »”) for small w. For an integer n let Q(n) denote its second
largest prime factor. Since T (n) < w®* implies that Q(n) < P(n)®, it follows that G(1 + w®)
is not greater than the upper density of the integers n satisfying Q (n) < P(n)®. Observing
that the number of integers n < x satisfying this condition is at most

X
71 vi—,0}.
() z Qg'w (P 0 Q)
By a simple application of the inequality

1
Y(x,y)<x exp(— c ng),
log y

we easily get that (4.1) is less than ¢, x®. This implies that
(7.2) G(1 + 0® = .

Let us now consider all those integers n up to x which can be written as n = mp, where
m < x°, p is a prime larger than ]/;c For such an n,

_ 1 . 2*(logm)* 1 .
T T Gog e VB2 Tiog 0 fogmpe 1187
=1+ —2“(log m)° s(m),

(log x)*
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say. For every m we have at least ¢,x/m log x distinct n’s. Let K be a positive number. If
s(m) = K, then for every n = mp we have

2*(log m)*

TO S+ =00

K <1+ 2Ko"

Let K = 1. The density of the integers m satisfying s(m) < 1 is positive; therefore for every
large M, in the interval [2™,2¥*!] there exists at least c,2™ distinct m’s such that
s(m) < 1. This implies rapidly that T'(n) £ 1 + 2*w holds for at least

x >1
€€y — — 2 =6, XD
logx m<xoem ™ 2

distinct integers. Thus G(1 4+ 2*w® = c;w. We have thus proved the following
Theorem 4. If o« > 0, then

cw<G(l+ o) <c,w

with suitable positive constants c,, ¢, which may depend on o.

8. Estimation of Qg (k) in the case a > 1. Let y = 1 and 0 < h < 1 be fixed. We argue
similarly as in Section 6. For E(y,h) = G(y + h) — G(y), we have

(8.1) xE(y,h) £ x exp(— z£> + A%
1
+ > card(7; p) + > card(7; p).
pr1I<P<yx Vx=P<xl-%2

It is clear that
X x\ .
(8:2) card(7, p) = P Qrh) + o(;) if P< ]/;c;
therefore the first sum on the right hand side of (8.1) is bounded by

1
(8.3) xQp(h) log T + o(x).
1

Let y > 1. Since f(m) /<log %) in (6.2) is smaller than 1, it follows that when estimating

the second sum on the right hand side of (8.1), we may assume that

log P < 1
log(x/P) = (y — 1)'*’
hence that
(84) logP _ ! o

logx =14+ (y— 1=
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From Theorem 1, we have
log P 1+ 1-2 7 Jogp \* !
hl——— log - h “
QF( <log(x/P)>> < ("g h) logxP)
and so

1+t -1 4/ logP \*! 1
8.5 d(Z, ) <x|log-) h *¥= —
(8.5) szﬁcar ( x,p)_x<ogh> ZP(logx/P> +o<xﬁ§§};<x P>,

where we sum only over those primes P for which (8.4) holds. Let 3 denote the first
0,a

sum on the right hand side of (8.5). From the prime number theorem we get immediately
that

¢y if o <2,

®.6) P {c2(1 — 02 fa>2,

0,2

where ¢, ¢, depend on ¢, but not on y.

Assume that o £ 2. Choosing 4, = ¢/(log 1/h) in (8.3) and using (8.5), (8.6) and further
setting 4, = 0 in (8.1) and taking into account Theorem 4 for the case y = 1, we obtain

Theorem 5. If 1 < o < 2, then

1 1\et+t l—l
Qah) = c(log log ﬁ) <log z) ho®.

Assume now that a > 2. Let 4, = ¢/log(1/h) and A, =0 as earlier. Assume first that
¥y — 1 = h. Then by (8.6), we obtain that (8.5) is bounded by

1\et1 -1 2_,
<x logﬁ B *(y—10D% +o(x) <xh'™(log1/h)*** + o(x).

Hence we obtain that
E(y) < h'*(log1/h)**!
uniformly in y as y — 1 = h. But Theorem 3 gives that the same is trueif 1 £ y <1 + h.
Hence we have
Theorem 6. If « > 2, then
¢,V < Qg(h) < c,hVe(log 1/k)**1,

Jor 0 < h < 1, with suitable positive constants that may depend on «.
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