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Continuity module of the distribution of 
additive functions related to the largest prime 

factors of integers 

By 

J. M. DE KONINCK, I. KATAI and A. MERCIER 

1. Introduction. For  an integer n > 1, let p (n) and P (n) denote the smallest and the 
largest prime factor of n, respectively. The letters c, q ,  c 2 . . . .  denote suitable positive 
constants not necessarily the same at every occurence. 

For  some ~ > 0 let 

(1.1) f (n )  = E (logq) ~, 
qln 

where the sum runs over the prime divisors of n, 

(1.2) v~(n) dr _ _ 1  f (n), 
(log x) ~ 

(1.3) T (n) dr f (n) 
(log P(n)) ~" 

In our previous paper [1] we proved that both v~(n) (n < x) and T(n) have limit distribu- 
tions. Let 

(1.4) F~(y) = 1_ #e {n < x: v~(n) < y}, 
X 

(1.5) F(y) = lim Fx(y), 

(1.6) G~(y) = 1 ~ {n <= x: r(n) < y}, 
X 

(1.7) G(y) = lim Gx(y ). 
x ~ o o  

Note that (1.5) and (1.7) hold only for points of continuity of the distribution functions; 
however, since F and G are continuous everywhere, this makes no difference. Let Q (t) be 
defined for t > 1 by 

1 
(1.8) lim - 7t(x, x TM) = 0 (t), 

x ~ o o  X 
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where hU(x, y) stands for the number of integers n up to x Satisfying the condition 
P (n) < y. 

It is known that 0 is a decreasing function, that 

[ ( ) O(lo+)1 (1.9) 0 (t) exp t log t + log log t 1 log log t + 
log r ' 

as t --* oe and furthermore that 

(1.10) 7~(x,x 1/') = xo(t) + O(x/logx) 

holds as x ~ ~ uniformly for all t varying in a bounded interval (see [1]). 
The continuity modules of F and G, that is 

Qv(h) = max (F(y + h) - F(y)) 
Y 

QG(h) = max (G(y + h) - G(y)) 
Y 

will be treated here. We shall provide (mainly) upper bounds for Qv(h) and Qo(h), where 
0 < h < 1, for various ranges of a. Hence the results established in the following sections 
may be outlined as follows: let 0 < h < 1, then 

1/2 

Qv(h) = 1  i f , = l ,  
/" 1'~+ 1 i_L 

~ ~log ~)  h ~ if ~ >  1, 

and 

= log(l + h) if ~ = 1, 
1 ~+1 1__1 

Qo(h) <=c log log log h " if 1<~_-<2 ,  

<= ch TM log if c~ > 2. 

2. The ease �9 = 1. In this case, it is clear that f (n )  = logn + o(log n) holds on anyse t  
of integers having asymptotic density 1, whence we easily obtain that F ( 1 ) =  0, 
F(1 + 0) = 1, so F has a maximal jump in 1. Since Q is a continuous function, we get that 

(2.1) G ( z ) = l - o ( z )  if z>__l. 

Let 0 < h < I. Observe that O(z + h) - O(z) is not greater than the limit density of the 
integers n up to x having at least one prime divisor in the interval [x lxz + h), xl/~], and that 
this can be estimated from above by the limit bound of 

1 - ;  
Xl/(z+h)<=p<=x I/z p 

29* 
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therefore 

(2.2) Q(z + h) - ~(z) < l o g ( l  + ~ )  

holds for every h __< 1, z > 1. Furthermore, as is well-known, in the interval 1 < z < 2, 
G (z) = log z, which gives immediately that 

(2.3) max (G(z + h) - G(z)) = log(1 + h) 
z 

for every h < 1. 

3. Approximation of  the distribution function F. Let 0 < 6 =< 1, 

1 
(3.1) vx,~(n) - (logx) , ql~ (logq) ~ 

q > x  6 

and 

(3.2) S~,~(n) = v~(n) - Vx,~(n ). 

In [1] we noted that for every constant a > O, 

/ 
1 

(3.3) - ~ e~t")_-< r I  ~1 + 
X n < x  p < x  \ 

where q (a ,g )  depends on a and c~. 
Assume that 0 <_ a < 1/6 ~. Then 

(3.4) A~ d~f _1 ~2 e "sx'~t") = < I~ 
X n<=x p<_x 6 

But the above product is less than 

exp 

Therefore since 

Z 

aO~ ) 
e Uogx/ _ 1  < c l ( a , ~  ) 

P 

o(log,y ) 
e \ l o g x ]  - -  1 

1 +  
P 

e \logxJ - -  1 < exp 2a 5~ 
p ~  p = p<~ p \lo~gx] ]" 

- (log p)~ = - -  (1 + o(1)) (log x) ~, 
p_<x~ p 0~ 

we deduce that 

(3.5) A~ < exp(3a6~/cO 

if x > c2. Hence we get immediately that for x > x o, 

1 
(3.6) - # {n < x: S~,~(n) > K 6  ~} < exp(3/~) e x p ( -  K/c 0 

X 

holds uniformly in K ( >  1). 
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Let Fo(z) be the limit distribution of v,, o(n), the existence of which was proven in [1]. 
Since v~,, o(n) < vx(n), therefore 

(3.7) F~(z) > F(z)  

holds for every z. Furthermore, vx,6(n) < z - K 6  ~, v,(n) > z imply that S,,a(n) > K 6  =, 
and so 

+ (3.8) 

Let 

(3.9) 

and 

(3.10) 

Q~(h) da max (Fo(z + h) - Fa(z)) 
z 

Qv(h) ~f max (F(z + h) - F(z)).  
z 

If we choose now ~ = h 1/=, from (3.7), (3.8) we obtain that 

Qv(h) < max (F~(z + h) - Fo(z - K6=)) + exp(3/~) e x p ( -  K/a) ,  
z 

whence 

(3.11) Ov(6 ~) < (K + 2) O~(6 ~) + exp(3/a) e x p ( -  K/e) .  

We can deduce similarly that 

(3.12) Qo(6 ~) < (K + 2) Qv(6") + exp(3/e) e x p ( -  K/a).  

4. Est imat ion  of  Qr(h)  in the case  �9 > 1. Let 

(4.1) E(y)  ~f  F~(y + h) - F~(y), 

where h = 6=. Choose a fixed y > ~ .  Let ~ be the set of integers n __< x for which 
v~,~(n) E [y, y + h]. It is clear that 

card(~-~) 
�9 ~(y)  (x-~ ~). 

X 

Let ~-~*~ ~ be the subset of those integers n for which pZ,,~n if p > x a. Then 
c a r d ( ~ \ ~ * )  = o(x) (x ~ 0 0 ) .  For  a general n, let Pl > P2 > --- > Pr be the set of all 
prime divisors greater than x ~ We shall write 

nl = PiP2 " " P r ,  M = P2 ' "  Pr. 

Let us estimate card(9~*). Since y > 6~, then clearly n 1 = 1 cannot occur. Now let ~ > 
be fixed. Then 

(4.2) card(J~*) < ~ gJ ( M - - ~ )  = , x  ~ + ~ ( x , x ~ )  = Y + ~ ( x , x ~ ) ,  
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where in 32 we sum only over those n 1 e ~-~* for which Pl > xe. We shall now make use 
of the inequality (c) 
(4.3) ~ (x ,x  a) ~ x exp - ~  

valid uniformly in the range 0 < 2 < 1. 
To estimate 32 on the right hand side of (4.2), we shall distinguish between two cases, 

namely: 

(A) y > 8 ~  ~, 

(a) y < 8 ~  ~. 

C a s e (A). Since for n t c ~-~*, we have 

= ( l ~  
(4.4) v~,o(n~) \ l o g x }  + v ~ , o ( M ) e [ y , y + h ) ,  

it follows that, for a given M, there exists Pt > x~ only if v~, o(M) < y + h - ~ .  We shall 
write ~ as 321 + 322, where in 321, we have the restriction v~,~(M) __< y - 4~ ", while in 322, 
we have the restriction v~,a(M) > y - 4 ~  ". It is clear that 

1 
Z~<--x Z 

m>x~ M P l  
nlE~* 

For  a fixed M, pl satisfies the inequalities 

( log  P~5 ~ 
y - v~,~(M) < \ l o g x  ] < y + h - v~,~(M); 

this implies that 

1 1 y - v~, e(M) + h h 
32 - -  ~ - log 

Pl c~ y -- v~,~(M) y - Vx,~(M ) " 

Hence we obtain that 

1 
321 ~ x h  Z M ( y  - v~,o(M))" 

Finally, since y - vx, a(M ) > 4~" and 

xr<q<=x 

we obtain that 
X ~ - I  

521 ~ - -  

On the other hand, if v~,~(M) > y - 4~ ~ and vx,~(nl) < y + h, then 

( log Pl~ ~ 
< h + 4 ~  ~ and l o g p l < f l l o g x ,  

\ log x ] 
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with 

(4.5) fl = (h + 4r 1/~. 

But the number of integers n < x with P(n)= pi < x p is precisely ~(x,  xa); conse- 
quently 

Therefore, in case (A), we have 

(4.6) E(y) ~ ~ -  + exp - 

with ]7 as in (4.5). 

C a s e  (B). Since ( logp l / logx)~<  8 ~ +  h, it follows that logp~ < ? logx  with 
? = (8~ ~ + h) ~/~ and hence that 

~ ~ ~P(x,x') ~ x e x p ( -  ~). 

Since ~ < ?, we have 

,47, 

Now let y < 65  Then E(y)< F~(26 ~) < ~(1/2i1~6), and so by (4.3) one has that 
E(y) ~ ~ .  

This in turn implies that 

(4.8) Q~(~) ~ ~ -  + exp - . 

Set ? = log and let ~ be computed from the equation 3' = (8~ ~ + h) 1/~. Using 

(4.8), we easily get that 

(4.9) Q~(6~) ~ ( log ~ ) ~ ,  ~-I . 

Let us choose now K = c~ log(l/g) and apply (3.11). Then we have 

/ 1 \  ~+l 
GF(6 ~) ~ t log  6 )  6~- t .  

This means that the following theorem is true. 

Theorem 1. I f  ~ > 1, then 

/ 1\~ +l 1 - !  
Clogs) h 
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5. Estimation of Qr(h) in the case �9 < 1. A general theorem of I. Z. Ruzsa immediately 
implies the following 

Theorem 2 (Ruzsa [2]). Let ~ < 1. Then 
1 

(5.1) QF(h) <= c(log l/h)-~. 

Ruzsa presented his result in the following form: 
Let f be an additive function and let 

1 
Ol(x) = sup - # {n < x: f(n) e [a,a + 1]}, 

a X 

1 
W(x,2)  = E - m i n ( 1 ,  (f(p) - 2 logp)2),  

p_-<x P 

W(x) = min(2 2 + W(x, 4)). 
A 

Then 
1 

Q~(x) ~ (W(x))-~. 

To see how Theorem 2 follows f rom the above, we consider the funct ion 

d e f l  ( l o g q y ,  
f (n) = ~ q~, \ l o g  x] 

and  let h = c5 ~. We have 

1 / log p x~ 2a 1 1 
= z - - -  z W(x,O) p__<x, p L b l o g x )  +x~<p<~ = l o g ~ + O ( 1 ) .  

It is enough  to see that  2 2 + W(x, 2) >~ W(x, 0) for every real number  ;L Let tc be defined 
by the relation 2 = x/(J log x) and set t/u = (log u)/(5 log x). Then  

1 
W(x, 2) = Z - min {1, (t/~ - ~:~/p)2}. 

p P  

If x __> I, then tct/p - t/p > c - c ~ for p > x c~ and  so W(x,2)  >~ log 1/5. Assume now that  
0 < tc < 1. Then  

w(x,~)= E 1--E1-, 
x~<p<:, p p 

where the second sum runs over the primes p such that  x ~ < p < x and  for which 
I t/~ - xt/pl < 1. Let  t/(~) < t/(~ be defined as the solutions of the equat ions 

( r/(~)~ - -  tcr/(I) = 1, 

t/(~ -- ~ct/(~ -- 1. 

It is clear that  
1 t/(~ ( 1 )  

Y~ - < l og~ i~  + 0 < Q ,  
p: ~(11 <t/p<t/(O) P 
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and that [t/p - ~t/p[ > 1 i fp  > x a and t/p~ (@), t/t~ Thus we have 

W(x,2) ~> log 1/6. 

This ends the proof  of Theorem 2. 
Most  likely, Theorem 2 is far from being sharp, but we are unable to prove a better 

one. 

6. Estimation of Qa (h) in the case at < 1. Let y > 1, h > 0 be given. Then the density 
1 

of the integers n satisfying y __< T (n) < y + h can be estimated by - card (fxx), where ~ is 
the set of those integers n _-< x for which x 

f (n) 
(6.1) e [y, y + h) 

(log P (n)) ~ 

1 -~ 
holds. It is clear that - c a r d ( ~ )  G(y + h) - G(y). We shall give an upper estimate 

X 

for the number of integers n _-< x satisfying (6.1). Let us write each n e ~ as n = mP, 
where P = P(n) is the largest prime divisor of n. Let 2 x, 22 be small positive numbers. 
The number of those elements n of ~ for which P(n) < x ~' is not  greater than ~(x,  xZ'), 
while the number of those for which P(n) > x a-a~ is at most x ~. l /p.  Thus, 

xl -x2<p__. x 

with the exception of at most 22x + xe-r o(x) integers, we may assume that 
x ~ < P(n) <__ x 1 - ~ .  The number of integers n _-< x for which pE(n)l n and P(n) > x ~ 
is at most O(xl-Z~). For the others, we have f (n)  = f ( P ( n ) )  + f ( m ) ;  for each fixed P, 
(6.1) can be written as 

f (m) 
- - ~ [ y -  l, y -  l + h), 
(log P) ~ 

and so 

(6.2) f (m)  [ (y  -- 1)(logP) ~ (y + h - 1)(logP)~) 

llog(x/Pir [ (ro  ' 

If n = Pro, P(n) = P, n e ~ ,  then m < x /P  and P(m) < P. Let ~ , e  be the set of the 
integers m, for which m < x /P  and (6.2) holds. We keep in ~ ,  e the elements with P(m) > P 
as well. Then, it is clear that 

(6.3) card(~-~) < 52 card(~ ,p)  + 22x + x e  -c/a1 + o(x). 
x .Z l  < p < _ x  1 - x  2 

The length of the interval on the right hand side of (6.2) is h(logP)~/(log(x/P))~; 
therefore, 

x ~ /' h(logP)~ "~ 
(6.4) card (~ ,  e) < ~ ~ r  ~ ( ~ ~ )  + o(x/P), 

uniformly for P ~ [x al, xl-a2].  We are now in a position to apply Theorem 2. 
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1//~ (log P)" < 1, we have Summing up for P < and observing that (log(x/p)) ~ = 

1 1 
Z card(J~,e) < Qr(h) x Z + o(x) < Qr(h)x log + o(x). 

- - P  = xai <p<xl /2  

We now choose 2 i = (c log log 1/h)-1 and 2 2 = (log 1/h)-�89 and further proceed to sum 
over P ~ [x i/2, xi-a~].  Then, for every P, 

h (l~ P)~ 
( l o ~ 7 ~ ) ~  < h(log 1/h) ~/2, 

Q /h  (l~ "~ 1~ (log(x/p))~) ~ (log log l /h)(log l /h)- i /2 .  

Consequently 

Z card (~-~, e) ~ x log log log 
V~<=p<xl -.z2 

Collecting our inequalities we immediately obtain 

T h e o r e m  3. I f  a < 1, then for every h, 0 < h < 1, 

7. E s t i m a t i o n  o f  G(1 + to~) for small to. For  an integer n let Q(n) denote its second 
largest prime factor. Since T(n) < co ~ implies that Q(n) < P(n) ~ it follows that G(1 + co ~) 
is not greater than the upper density of the integers n satisfying Q (n) < P (n)~. Observing 
that the number  of integers n =< x satisfying this condition is at most  

(7.1) E E Q 
Q<P~ ~ ' �9 

By a simple application of the inequality 

log x'~ 
~(x ,  y) < x exp - c l ~ y g  y ) '  

we easily get that (4.1) is less than clxco. This implies that 

(7.2) G(I  + to~) < clto. 

Let us now consider all those integers n up to x which can be written as n = rap, where 
m _-< x ~, p is a prime larger than l/~. For  such an n, 

1 2 ~ ( l o g  m) ~ 1 
= - -  Y, ( l og  q)~ < 1 + (7.3) T(n) 1-t (logp) ~ qlm = (logx) ~ (logm) ~ qlm ~ (1ogq)~ 

2~(1og m) ~ 
= 1 + s(m), 

(logx) ~ 
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say. For  every m we have at least ClX/m log x distinct n's. Let K be a positive number.  If 
s(m) = K, then for every n = mp we have 

2~(l~ m)~ K 
T ( n ) < l  + < I + 2 ~ K o ~  ~. 

(log x)" - 

Let K = 1. The density of the integers m satisfying s(m) < 1 is positive; therefore for every 
large M, in the interval [2 M, 2 u+l ]  there exists at least cz2 M distinct m's such that  
s(m) <_- 1. This implies rapidly that T(n) < 1 + 2"o9 holds for at least 

x 1 1 Z ->=~c, c2xo~ C1C2 l ogx  m~xo, m 

distinct integers. Thus G(1 + 2~o9 ") > c3~o. We have thus proved the following 

Theorem 4. I f  ~ > O, then 

c1r < G(1 + o~') < c2o~ 

with suitable positive constants c~, c2 which may depend on ~. 

8. Estimation of Qa(h) in the ease at > 1. Let y > 1 and 0 < h < 1 be fixed. We argue 
similarly as in Section 6. For  E(y,h)  = G(y  + h) - G(y), we have 

(8.1) xE(y ,h )  N x exp - + J~2 x 

+ ~2 card (~'~, 1,) + ~ card ( ~ ,  e)- 
p'Zl <P <V~ V ~ < P  <x~ - z z  

It  is clear that 

(8.2) card(~,~,) < ~ Qr(h) + o if P < V ~ ;  

therefore the first sum on the right hand side of (8.1) is bounded by 

1 
(8.3) xQv(h ) log ~ + o(x). 

Let y > 1. Since f ( m ) /  log in (6.2) is smaller than 1, it follows that when estimating 

the second sum on the right hand side of (8.1), we may  assume that 

log P < 1 

log(x/P) = (y - t) 1/ ' '  

hence that 

(8.4) l o g P  < 1 deJ 0. 
1ogx = 1 + ( y - -  1) 1/" 
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F rom Theorem 1, we have 

//h / l o g P  \ '~ / 1 \  ~+1 " 1 -~ / '  l o g P  "~-1 

t )J ' 
and so 

(8.5) 5-'. c a rd (3 -~ .e )<x  log h ~ Z l , \ l o g x / P j  + o  x Y~ 
P>Vx V2<P<x 

where we sum only over those primes P for which (8.4) holds. Let Z denote the first 
0,~t 

sum on the right hand side of (8.5). F r o m  the prime number  theorem we get immediately 
that  

< )'c I if cr < 2, 
(8.6) Z 

O'~t= t C 2 ( 1 - - 0 )  2-ct if ~ > 2 ,  

where c 1, c 2 depend on ct, but  not  on y. 

Assume that  ~ < 2. Choosing 21 = c/(log 1/h) in (8.3) and using (8.5), (8.6) and further 
setting 22 = 0 in (8.1) and taking into account Theorem 4 for the case y = 1, we obta in  

Theorem 5. I f  1 < g < 2, then 

( 0( 0 Q~(h) < c Iog log  log h 

Assume now that  ct > 2. Let 21 = c/log(1/h) and 22 = 0 as earlier. Assume first that  
y - 1 > h. Then by (8.6), we obta in  that  (8.5) is bounded by 

(0 ' 
~+1 1__ I --1 

x log h ~ ( y - l )  ~ +o(x)~xh i /~ ( log l /h )  ~ + l + o ( x ) .  

Hence we obta in  that  

E(y) ~ h l/~(log l/h) ~+ 1 

uniformly in y as y - I > h. But Theorem 3 gives that  the same is true if 1 < y < I + h. 
Hence we have 

Theorem 6. I f  ct > 2,  then 

clh l/~ ~ Q~(h) < c2h l/~(log l/h) ~+1, 

for 0 < h < 1, with suitable positive constants that may depend on ~. 
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