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The average prime divisor of an integer in short intervals 

By 

JEAN-MARIE DE KOMNCK and ALEKSANDAR IvI~ 

1. Introduction. In [1] we defined two functions which may be called the average prime 
divisor of an integer. They are, for n > 2, 

fi(n) B(n) 
P,(n) - co(n)' P*(n) - f2(n)' fl(n) = Y~ p, B(n) = 32 ~zp, 

pin p~Hn 

and as usual co(n) is the number of distinct prime factors of n, f2(n) is the total number 
of prime factors of n, f II n means that p~ (p prime) exactly divides n. It was shown in [1] 
that, for each fixed natural number m, there exist computable constants el, e z, .. . ,  era, 
fa,f2 . . . . .  fro, 0 < f a  < el, such that 

(1.1) y. p , ( n ) = x Z {  el e2 em ( 1 ) )  
2__<,_<x \lo~gx + ~ + ' " +  1ogm~ + O 1og,7+a x , 

(1.2) Z P*(n)= x 2 ( +  + f2 + . . . +  fm + 0 ( 1 ) )  
2=<,__<~ log2x logmx ~ " 

We also proved that an asymptotic formula similar to (1.1) and (1.2) holds also for sums 
of fl(n), B(n) and P(n) (the largest prime factor of n __> 2). These questions were considered 
in a general setting by De Koninck and Mercier [2], where under suitable conditions 
asymptotic relations of the form 

(1.3) Y~ f(P(n)) = (1 + o(1)) Z f(n) (x ~co)  
2 N n < x  2<-n<-x 

are established, and in fact both sums in (1.3) are evaluated asymptotically. Here f(n) 
denotes a "large", strongly additive arithmetic function defined by the relation 

(1.4) f(n) = ~. pOL(p) 
pin 

for some ~ > 0, and where L(x) is a slowly oscillating (or slowly varying) function. Slowly 
oscillating functions (see E. Seneta [8] for a comprehensive account) are continuous for 
x ~ x0, and satisfy lim L(Kx)/L(x)  = i for any fixed K > 0. For  our purposes (similarly 

x ---~ cx3 

as in [2]), we shall consider positive slowly oscillating functions L(x) which are defined 
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for x > 2 and may  be written, for x > x 0 > 2, as 

(1.5) L(x) = K exp ~/(t) , lim q(t) = 0, K > 0. 
t~co 

Indeed, it was shown already by J. K a r a m a t a  [5], who founded the theory of slowly 
oscillating functions, that  a general slowly oscillating function L(x) has a representat ion 
of the form (1.5) where K is not  a constant  but  a function K = K(x) which tends to a finite 
limit as x - ,  oo. Thus every slowly oscillating function is asymptot ic  to a function of the 
form (1.5), and the lat ter  have the advantage of being differentiable for x > x 0. In  analogy 
with co(n), s and fl(n), B(n) we define also the additive function F(n), which may be 
thought  of as the companion  function of f(n).  This is, for n > 2, 

(1.6) F(n) = Z ~P~ (0 > 0). 
p~ll, 

Our  aim is to investigate the behaviour  of f (n) ,  F(n) and P.(n), P*(n) in " shor t "  intervals 
[x, x + h], where " shor t "  means that  h = o(x) as x - ~  oo. I t  will turn out that  these 
problems are in an intrinsic way connected to the problem of the range of validity of the 
asymptot ic  relat ion 

h 
m ,  (1.7) n(x + h) - n(x) = (1 + o(1)) l ogx  

where as usual n(x) = Y'. 1 is the number  of primes not  exceeding x. This is one of the 
p<x 

most famous problems of prime number  theory, and it is known e.g. that  on the Lindel6f 
hypothesis  (((�89 + it) ~ ]t r) (1.7) holds for h = x ~/z +~. We are interested in uncondit ional  
results, and thus we can use (1.7) in the range 

(1.8) x 7/12 log22x < h < x.  

This was proved by A. Ivi6 [3] (see also [4], Ch. 12), and in fact (1.8) was shown to hold 
7 7 1 

with h > x 7/12 logZ2-ax with some 6 > 0. The constant  1~ comes from 12 = 1 - ~ ,  

where C = ~ is the currently best known constant  (see Ch. 11 of [4]) for which the 
zero-density estimate N(a, T) ~ T c~1 -~) logDT (D > 0) holds. Here as usual N(cr, T) 
denotes the number  of zeros 0 = fl + i7 of~(s) for which fl > a > �89 ]71 < T. It is not  hard 
to guess the behaviour  of P,(n) and P*(n) in short  intervals, a l though the difficulty in 
dealing with them lies in the fact that  they are neither additive nor  multiplicative. Indeed, 
from (1.1) we have by the mean value theorem 

for 

( x + h )  2 X 2 // X2 ~ h x  
Y~ P.(n) = e 1 ~ ) = (2e 1 + o ( 1 ) ) -  

x<,__<x+h log(x + h) el  logxgx + 0 ~ logx  

x ~ (x) 
- -  -< h _< o(x),  if lim ~b(x) = 0% ~b(x) = o ( l o g x ) ,  (x -~ oo) 
log x ~ -  oo 
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since (x2/log x)' = 2 x/log x - x/log 2 x. Naturally, the above range of h is very poor, and 
a similar type of result could be obtained for f (n)  and F(n) in short intervals by the main 
term for 52 f (n)  evaluated in [2] (the methods of [2] will also work for F(n) at the cost 

n ~ x  

of some technical complications). It is the aim of this paper to obtain much better ranges 
for h, by connecting these problems to (1.7) and (1.8). We shall prove 

Theorem 1. Let  f (n)  and F(n) be defined by (1.4) and (1.6) respectively, with L(x) given 
by (1.5). Then for x 7/1a log22x < h <_ o(x) we have, as x ~ o% 

hxQ L(x) 
(1.9) Z f (n)  = (((1 + 6) + o(1)) - -  

x<n<x+h logx  
and 

h xe L(x) 
(1.10) Z V(n) = (~(1 + 6) + o(1)) - -  

x<,__<~+h logx 

Note that for e = 1, L(x) = I we obtain f (n)  = fi(n), F(n) = B(n), hence Theorem 1 gives 
the asymptotic behaviour of 52 fl(n) and Z B(n). 

x<n<_x+h x<n<=x+h 
Our second result concerns the behaviour of P,(n) and P*(n) in short intervals. Our  

method of approach certainly makes it possible to deal with more general arithmetic 
functions than P,(n) and P* (n), but we wanted to single out these two because of their 
arithmetic significance, since either of them may be thought of as the average prime 
divisor of n. 

Theorem 2. For X 7 / 1 2  1og22x <-- h < o(x) we have, as x ~ oo, 

h x  
(1.11) 52 P,(n) = (2el + o(1))1 ' o g x  

x<n<=x+h 
and 

hx  
(1.12) 52 P*(n) = (2fl + o(1)), ' o g x '  

x<n<x+h 

where 0 < f l  < el are the constants appearing in (1.1) and (1.2), respectively. 

2. Proof  of Theorem 1. We shall give only the proof of the somewhat more complicated 
relation (1.10), since both proofs are similar. Note that if R(x) = x~ then 

R'(x) = OxQ-1L(x) + x~ = x ~  L(x) (e + rl(x)) > 0 

for x > xl ,  since lim t/(x) = 0. Hence R(x) is increasing for x > x 1 and 
x --* oo 

52 F ( n ) =  < 52 < F(n )+  < 52 F(n) 
x<n<=x+h x<n=x+h,P(n)=Vxx x<n=x+h,P(n)>~x 

= < Y', F(n) + O(x~ 
x<n=x+h,P(n)> Vxx 
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since for xl < P(n) < w/x 

V(n)< {P~ L(P(n)) + 0(1)} 32 c~ = {P~ L(P(n)) + O(1)} Q(n) ~ x ~ 
p~ II n 

because trivially O(n) ~ logn, and it follows from (1.5) that L(x) ~ x ~ for any e > 0. I f q  
denotes primes, then we have 

52 F(n)= 52 P~ Y' 52 kqQL(q) 
x<n<x+h,P(n)> l~x x<n<x  +h,P(n)> l/xx x<n<x+h  qk [[ n 

P ( n )  > ~ x x  q<P(n) 

= < 52 PC(n) L(P(n)) + O(hx~ 
x<n=x+h,P(n)> ~x  

since q v / x  < qkp(n) < n < x + h implies q < 2 x/x, whence 
1 

52 kq~ ~ x~(~ f2(n) ~ x ~/2+~. 
qk II n,q<e(n) 

But ifx < n < x + h, P(n) > x/x, then n = pm, p = P(n) > .~/~, _x < P < __x + h and m is 
= m = m ' 

an integer satisfying I < m < (x + h)/p <= (x + h) x -  1/2 < 2 ~ ,  P(m) < p. Hence 

(2.1) ~, P~ L(P(n)) = 52 ~, p~ 
x<n<=x+h,P(n)> Vxx m<=(x+h)x - i / 2  X<p<=X~_,p>P(m ) 

= Y'. Y~ p~ + O (  ~ x~  52 1), 
m<_M X<p<X+h \ M < m < 2 V x x  x <x+h 

- = m m < P = ~  

where M is a fixed, large integer. This procedure is necessary, since in the inner sum in 

the O-term in (2.1), h is small when compared to x ,  hence we cannot use (1.7) in the range 
m m 

(1.8). Instead we use the well-known inequality (e.g. see H. L. Montgomery [6]) 

2Y  
(2.2) n(X  + Y) - n(X) < (X, Y > 2) 

= log Y 
to obtain 

h 
Z 1 4 - -  

~<p~_X+h m logx  
m - -  m 

(1 < m < 2 x/x, x v/12 < h _< x). 

Thus the error term in (2.1) is 

(2.3) O(h OM-o 
log x]"  

We will now use Lemma 1 stated in [2] and which essentially says that there exists a real 
function ~b satisfying lim ~b(x) = + oo and such that 

x --+ oo 

(2.4) L(x/n) = (1 + o(1)) L(x), uniformly for I < n < ~b(x) as x ~ oe. 

Hence from now on we assume that M =< q5 (x). 
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X 
We shall use now (1.7) for the range h > x 7/J-2 log 22-6x with x and h replaced by m and 

h respectively, I < m < M. We have < _h for x 7/12 log22x < h < o(x) 
m = = m = m  - - 

a s  x --, oe. Hence in the last range 

. X < p < X + h  
m - rn 

x~ h L (x) 
= (1 + o(1)) m~+~ l o g x '  

and a lower bound of the same form follows analogously. Thus we obtain 

(2.5) 
x~ h L (x) 

2 pQL(p) = (1 + o(1)) rn~i~ log - x 
x < x + h  
ra < p =  

(1 < m < M, xT/1210g22x <- h <- o(x),x ~ o e ) .  

Using (2.5) in (2.1) and keeping in mind (2.3) we obtain 

hx~ L(x) 
Y', P ~ ( n ) L ( P ( n ) ) = ( I + o ( I ) )  Y m~+llog x 

x < n < x + h , P ( n ) >  Vxx r n < M  

(h 14 )) = ( l + o ( 1 ) ) : ( e + l ) h X O l ~ g x + O  x ~ M  -o , 
log xJ  

and thus 

Z 
x < n < - - x + h  

[ L(x)'~ 
+ O~ hxQM-e lo~gx) 

F(n) = (((0 + 1) + o(1) + O(M-~ hx  e L(x) + O(hxa/2+~) 
logx 

= (~(~ + 1) + o(1)) hx  ~ L(x) 
logx 

if0 < e < r and M = qS(x) --, oe. This finishes the proof of Theorem 1, with the remark 
that the o(l)-terms in (1.9) and (1.10) could be improved if one used a sharper form of(1.7). 

3. Proof  of Theorem 2. We shall prove only (1.11), since the proof of (1.12) is analogous. 
Using the method of proof of Theorem 1 we obtain 

~_, P,(n) = Z P,(n) + O(hx 1/2+~) 
x < n < x + h  x < n < - x + h , P ( n ) >  V~x 

fl(n) + O(hxl/2+~) = < Y" 
x<.=x+h,P~.>>Vx co(n) 

P(n) ~- O(hxl/2+~)" = < 
. . . . .  +h,e(,)>U~ co(n) 

Now if x < n < x + h , P ( n ) > x / x ,  then n = p m  with p = P ( n ) ,  co(n)=co(m)+l ,  
x x + h  

< p < , 1 <_ m < (x + h)/p < 2 x/x ,  P(m) < p. Similarly as in the proof of (2.1), 
m m 
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with the error term given by (2.3), we have 

(3.1) < Z P(n)_ Z 1 Z P 
. . . . .  +h ,P ( .~>~  co(n) ,.=<(x+h)x lj~ co(m) + I ~ ~+h 

~ < p < ~ - ~ ,  p>P(m) 

1 
= Z co(m)+1 E p + O  l_<m_<~ x <~+h M lo-og x 

where again M is a large, fixed integer M < ~b(x). We use (2.5) with 0 = 1, L(x) - I to 
estimate the last sum in (3.1), and we obtain 

(3.2) Yl P(n) = (1 + o(1)) 2 m2(co(m) + 1) + O 
n<=x+h,e(n)>Vxx co(n) l < m < _ M  

( ) rnZ(co(m) + 1) ~ m = l  

Letting M = q~(x) and x ~ ~ we obtain (1.11) from (3.2), since analyzing the proof  of (1.1) 
given in [1] it is found that 

e~ = 2 m=~ m2(co(m) + 1) - 0.65321 . . . .  

The asymptotic relation (1.12) is established analogously, with 

f l  = ~ m~,=l m2(F2(m) + 1) - 0.64259 . . . .  

whence 0 < f l  < e~. We thank J.-P. Massias (Limoges) who has kindly computed the 
values of e t and f l .  

4. Remarks. We first note that Theorem 2 could have been stated to deal with more 
general arithmetic functions. In fact, we can prove for instance that, using the same 
technique as in the proof  of Theorem 2, if f is defined by (1.4) with 0 > 0 and L satisfying 
(1.5), then, for x 7/12 log22x _< h -< o(x), 

f(n) hxQ L(x) 
Z - (% + o(1)) - - ,  

~<,_-<x+h co(n) logx  

with c~ - d = l  (co(d) + i) d ~247 

Throughout  this paper, we have focused our attention on additive functions defined 
by (1.4) and 0.6) where 0 > 0. But one may also consider functions with correspond- 
ing Q = 0, which means dealing with "small" additive functions, such as co(n) and 
•(n) (whereas for 0 > 0, we had "large" additive functions). In the case of ~ f(n), 

2<_n<_x 
this possibility was treated in detail in [2]. There, essentially, it was shown that if 
f(n) = X L(p), where L is a slowly oscillating function of the type (1.5), then 

pin  
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x L(u) 
Z f(n) ~ x J 2<-n<-x 2 u~ogu du, and  tha t  the a sympto t i c  behav iou r  of U(x):= i2 ~-..v~,v. d u L ( u )  

can be given more  expl ic i t ly  depend ing  on the value  of c = lira x (log x) E(x)/L(x). In 
x ~ o o  

fact, five cases for the values of c were considered,  namely  c = oo, c > 0, c = 0, c < 0 and  
c = - oo. In  three  of these, U(x) can be simplified. F o r  example ,  if c > 0, one has  
U(x) ~ c-IL(x) ,  while if c < 0 or  c = - o% one has  U(x) ~ Z f(P)/P. 

P 

A p p r o p r i a t e  ana logues  of  (1.9) and  (1.10) m a y  also be o b t a i n e d  in the case r = 0, 
p rov ided  the co r r e spond ing  funct ion L(x) grows fast enough,  t ha t  is, if it satisfies 

(4.1) 2(x) = 2L(X) = X (log X) I2(x)/L(x) ~ + ~ ,  as x ~ oo.  

In  o rder  to avo id  repe t i t ion  of some of the a rguments  a l r eady  given above,  we only  s tate  
the resul t  and  give the ma in  idea  of the proof.  

Theorem 3. Let f(n) and F(n) be defined by (1.4) and (1.6) with Q = 0 respectively, with 
L(x) given by (1.5) and satisfying (4.1). Then, for x 7/12+~ _< h _< o(x), we have, as x -~ o G 

i L(u) (4.2) 52 f(n) = (1 + o(1)) h u~ogu du, 
x < n < x + h  

and the same estimate holds for ~ F(n). 
x < n ~ x + h  

We only  sketch the p r o o f  of (4.2). F i r s t  we write 

f ( n ) =  7, L(p) ( [ x  +~h~ - [ x ~  = 52 Z L(p) 
x < n < - x + h  p < x + h  \ L P A L P A /  m<-x x <x+h _ _ _ ~ < p = ~ -  

= 52~ + 522, 

where  in ~]1, we have m -__ x ~ and  in ~ 2 ,  x '  < m =< x. In  521 the cond i t ion  h => x 7/12+' 
ensures  tha t  

T h >= ~  . 
m 

Hence  we m a y  use (1.7) (with x and  h rep laced  by x/m and  h/m, respectively) to deduce  
tha t  the inner  sum in 52~ is equal  to 

L(x/m) . h/m 
(1 + o(1)) 

log(x/m) 

This  a l lows us to  wri te  

~ L(x/t) dt 
Z ~ = ( 1 + 0 ( 1 ) ) h  - - - ( l + o ( 1 ) ) h ( U ( x ) - U ( x  1-~)), 

2 t log(x/t) 

where  we pu t  

L(u) 
u(x) = u~(x)= ~ ~ogu du. 

2 
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Clearly U(x) --+ ~ as x ~ ~ ,  and by l 'H6pital 's  rule we obtain (0 < e < 1 is fixed) 

U(x) _ lim U'(x) : Jingo L(x) 
lim U(xl_~) (1 e) x - "  U'(x  1-") L (x  1-") x-*  oo x oo - -  

0 ( ,) = limo~ exp ~S-q(t)  t - i d  = exp \*lim~ ~i-~ ~ 2 ( 0  d 

> e x p  1 ( min 2(0) 
k,x oo x 1 - ~ <~ t --< x 

> exp ( J i m  (~ min~,_<~ 2(t)) �9 log & )  = oo, 

since 2(t) ~ ~ as t ~ 0% and q(t) = 2(t)/log t by (1.5) and (4.1). Hence U(x i -~) = o(U(x)) 
as x ~ ~ ,  and this proves that  

Z 1  = (1  "J- 0 ( 1 ) )  h U ( x )  ( x  ~.r o o ) .  

And finally, using (2.2), we obtain that  

~2  < Z L(x/m) ~ -- zc < 2h 
x~<m<_x x~<m<x m log(h/m) 

< h  Z L(x/m) ~ h U ( x  1 -~)=o(hU(x) ) ,  
~.<m<__,, m log(x/m) 

so that (4.2) is established. 

It is also interesting to note that, using a recent result of C. J. Mozzochi [7], namely 

~(x + h) - ~r(x) >> h/(logx), x C+~ <- h <- x ,  

with c - 2oil 3841 _ 0.5473958... , one can replace the estimates (1.9), (1.10), (1.11), (1.12) 
and (4.2) by lower bounds for the corresponding sums for a wider range of h = h(x). 
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