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The average prime divisor of an integer in short intervals

By

JEAN-MARIE DE KONINCK and ALEKSANDAR Ivi¢

1. Introduction. In [1] we defined two functions which may be called the average prime
divisor of an integer. They are, for n = 2,

B(n) B(n)
Pmy="—-, P'n=_-—, Bm=Xp Bn=3x ap,
* o(n) Q(n) pln plin
and as usual w(n) is the number of distinct prime factors of n, Q(n) is the total number
of prime factors of n, p* | n means that p* (p prime) exactly divides n. It was shown in [1]

that, for each fixed natural number m, there exist computable constants e, e,, ..., e,,
J1s [0 oS 0 < f; < ey, such that
(1.1) s Pm=x(-y 2 g o !
. =X v R
2imex ¢ logx log?x log™x log™*t1x
Ji P J 1
1.2 P*(n) = x? + e =4 0 .
(12 2§§§x () = x <logx log?x + log™x log"tlx

We also proved that an asymptotic formula similar to (1.1) and (1.2) holds also for sums
of f(n), B(n) and P(n) (the largest prime factor of n = 2). These questions were considered
in a general setting by De Koninck and Mercier [2], where under suitable conditions
asymptotic relations of the form

(1.3) 2<2< fPE) =1 +o0(1) 2% fn) (x—)

are established, and in fact both sums in (1.3) are evaluated asymptotically. Here f(n)
denotes a “large”, strongly additive arithmetic function defined by the relation

(14) Jn) =; p¢L(p)

for some ¢ > 0, and where L(x) is a slowly oscillating (or slowly varying) function. Slowly

oscillating functions (see E. Sencta [8] for a comprehensive account) are continuous for

X Z x4, and satisfy lim L(Kx)/L(x) = 1 for any fixed K > 0. For our purposes (similarly
X w

as in [2]), we shall consider positive slowly oscillating functions L(x) which are defined
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for x = 2 and may be written, for x = x4 = 2, as

?n(t)%), limn(f) =0, K>0.
t— o

X0

(1.5) Lx)=K exp<

Indeed, it was shown already by J. Karamata [5], who founded the theory of slowly
oscillating functions, that a general slowly oscillating function L(x) has a representation
of the form (1.5) where K is not a constant but a function K = K (x) which tends to a finite
limit as x — oo. Thus every slowly oscillating function is asymptotic to a function of the
form (1.5), and the latter have the advantage of being differentiable for x = x,. In analogy
with w(n), (n) and f(n), B(n) we define also the additive function F(n), which may be
thought of as the companion function of f(n). This is, for n = 2,

(1.6) F(n) = % P°L(p)  (@>0).

p*in
Our aim is to investigate the behaviour of f(n), F(n) and P, (n), P*(n) in “short” intervals
[x, x + h], where “short” means that & = o(x) as x —co. It will turn out that these
problems are in an intrinsic way connected to the problem of the range of validity of the
asymptotic relation

h
1.7 (x + h) — n(x) =1 + o(1)) @,

where as usual n(x) = 3 1 is the number of primes not exceeding x. This is one of the
PEX

most famous problems of prime number theory, and it is known e.g. that on the Lindel6f

hypothesis ({5 + it) < |[°) (1.7) holds for h = x'/2"*. We are interested in unconditional

results, and thus we can use (1.7) in the range
(1.8) x"2 log??x £ h< x.

This was proved by A. Ivic [3] (see also [4], Ch. 12), and in fact (1.8) was shown to hold
with & = x7/12 log?? °x with some 6 > 0. The constant % comes from I’% =1- %,
where C =12 is the currently best known constant (see Ch. 11 of [4]) for which the
zero-density estimate N(o, T) < T~ 1og?T (D = 0) holds. Here as usual N(s, T)
denotes the number of zeros ¢ = f + iy of {(s) for which § = ¢ 2 &, |7| £ T Itis not hard
to guess the behaviour of P, (n) and P*(n) in short intervals, although the difficulty in
dealing with them lies in the fact that they are neither additive nor multiplicative. Indeed,
from (1.1) we have by the mean value theorem

(x + h)? x2 x2 hx
P = — (0] =2 1) ——
x<n§x+h wn) = ey log(x + h) é1 log x * log?x @ey +o(1) logx
for
xP(x)

Sh=ox), if lim ¢(x)=o00, ¢(x)=o0(logx), (x->00)
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since (x/log x) = 2 x/logx — x/log? x. Naturally, the above range of % is very poor, and
a similar type of result could be obtained for f(n) and F(n) in short intervals by the main
term for > f(n) evaluated in [2] (the methods of [2] will also work for F(n) at the cost

n=sx

of some technical complications). It is the aim of this paper to obtain much better ranges
for h, by connecting these problems to (1.7) and (1.8). We shall prove

Theorem 1. Let f(n) and F(n) be defined by (1.4) and (1.6) respectively, with L(x) given
by (1.5). Then for x"*2 log?*x £ h < o(x) we have, as x - c0,

hx?L
19 S S =+ o)+ o) )
x<nZ=x+h ng
and
hxeL
(1.10) T F = +0)+ o) ’lcog:‘).

Note that for ¢ = 1, L(x) = 1 we obtain f(n) = (n), F(n) = B(n), hence Theorem 1 gives
the asymptotic behaviour of Y f(nyand Y  B(n).

x<ngx+h x<nZx+h
Our second result concerns the behaviour of P,(n) and P*(n) in short intervals. Our
method of approach certainly makes it possible to deal with more general arithmetic
functions than P, (n) and P*(n), but we wanted to single out these two because of their
arithmetic significance, since either of them may be thought of as the average prime
divisor of n.

Theorem 2. For x”/1? log**x < h £ o(x) we have, as x — o,

hx
(1.11) x<n§x+hP*(n) (2e, +0(1) Togx
and
hx
(1.12) Y Prm)=0Q2fi + 0(1))1*—,
x<nZx-+h ogx

where 0 < f, < e, are the constants appearing in (1.1) and (1.2), respectively.

2. Proof of Theorem 1. We shall give only the proof of the somewhat more complicated
relation (1.10), since both proofs are similar. Note that if R(x) = x¢L(x), then

R(x) = ox* ' L(x) + x*L(x) = x*" ' L(x) (¢ + n(x)) > 0

for x = x,, since lim #(x) = 0. Hence R(x) is increasing for x = x, and

F(n) = F(n) + > F(n)
x<n§x+h ) x<n§x+§P(n)§V; x<n<x+hPm>Vx

= Py F(n) + O(x****h),

x<n<x+h Pm>Vx
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since for x; < P(n) < \/);

F<{P*(n) L(P(n)) + 0()} T a={P(n) L(P(n) + O(1)} 2(n) < x?2**,

p*|in

because trivially 2(n) < logn, and it follows from (1.5) that L(x) < x* for any ¢ > 0. If ¢
denotes primes, then we have

F(n)= 2 PmL(Pm)+ X 2. kq°L(q)
x<ngx+h,Pn)>Vx x<n<x+h P@)>Vx x<n=x+h g*|n
Pm)>Vx g<P(n)
= 2 Pe(n) L(P(n)) + O(hx®?*9),

x<n§x+h,P(n)>V;
since g /x < g*Pm)<n=<x+h implies g=2 \/>_c, whence

(e+ €)

kqL(q) < x?

a || n,g<P(n)

Q(n) < x¥?*e,

Butifx<n§x+h,P(n)>\/;,thenn=pm,p=P(n)>\/;c,%<p§x h,andmis
an integer satisfying 1t Em < (x + h)/p £(x + B x 12 <2 \/;, P(m) < p. Hence

2.1) > Pe(n) L(P(n) = 2 > p*L(p)
x<n<x+hPm>Vx mE(x+hyx— /2 x<p§x+h o> P(m)
= X peL(p)+0< Y x'mTL2yx) X 1>,
m=M £<p§x+h M<m=2Vx E_,cxth

where M is a fixed, large integer. This procedure is necessary, since in the inner sum in
. h. .
the O-term in (2.1), s small when compared to %, hence we cannot use (1.7) in the range

(1.8). Instead we use the well-known inequality (e.g. see H. L. Montgomery [6])

2Y
(2:2) X +Y)—=nX) < X, Y=2
logY
to obtain
1< (E2m=Z2/x,x"2<h<x).
X pgxth M log x

Thus the error term in (2.1) is

23) 0<hx9M“9 Mx)).
log x

We will now use Lemma 1 stated in [2] and which essentially says that there exists a real
function ¢ satisfying lim ¢(x) = + oo and such that

2.4 L(x/m) =(1 + o(1)) L(x), uniformlyfor 1<n=<¢(x) as x— .

Hence from now on we assume that M < ¢(x).
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We shall use now (1.7) for the range b > x7/*% log?? ~°x w1th x and h replaced by ~and
7712
%respectively, 1 £m < M. We have <%) log?*~ ";:l —for x"1? log??x < h < o(x)

as x — oo. Hence in the last range

2 s ()0 G
E pcxth m m m m

_ x?h L(x)
- (1 + 0(1)) mg+1 10gX H

and a lower bound of the same form follows analogously. Thus we obtain

¢h
25) S L) = (1 + ot) )

s+h m?** logx

1=msM,x"?log??x £ h £ o(x), x > 0).

Zeps

Using (2.5) in (2.1) and keeping in mind (2.3) we obtain

P¢(n) L(P(n) = (1 + 0(1)) L) + 0<h e M0 L(x))

x<n<x+hPm>Vx w m? 1 logx log x
Lx L
— 1+ o() fo+ 1) hxe Z8) 4 o (hxepr-e LX)
logx logx)’
and thus .
> Fm=(e+1)+ol)+0M ) hxt L&) + O(hx¥?7%)
x<nZx+h IOgX

L(x)

= (e + 1)+ o(1) hx?
ogx

if0 < ¢ < /3 and M = ¢(x) — co. This finishes the proof of Theorem 1, with the remark
that the o(1)-terms in (1.9) and (1.10) could be improved if one used a sharper form of (1.7).

3. Proof of Theorem 2. We shall prove only (1.11), since the proof of (1.12) is analogous.
Using the method of proof of Theorem 1 we obtain

> Pm= > P (n) + O(hx'**%)
x<n=x+h x<n§x+h,P(n)>V_
B(n)
— + O(hx 1/2+¢
x<n<x+§P(n)>V w(n) ( )
P
— Z ﬂ_}_ O(h 1/2+s)

x<nzxtmPm>Vs ON)

Now if x<n<x+h Pn)>./x, then n=pm with p=Pn), oh =wim +1,

h
* <p= xth ,LAZEmE(x+hps2 \/;, P(m) < p. Similarly as in the proof of (2.1),
m
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with the error term given by (2.3), we have

Pl _

x<nsxthpm>Ve OM)  mseinx iz o(m) + 1 Z<psiit p>pom)

-y L5 p+0< hx >,

1<msm 0m) + 1 « Xth
mPET,

3.1)

where again M is a large, fixed integer M = ¢(x). We use (2.5) with g =1, L(x) =1 to
estimate the last sum in (3.1), and we obtain

3.2) 2 PO _ 4oy X v ! +0< hx )

nsxthPom>Ve ©(N) = logx 1<mem mz(cu(m) + 1) M logx

(3 _ 1 p) 2o > )
“Z wemen D) jogx T\ Miogx)"

Letting M = ¢(x) and x — oo we obtain {1.11) from (3.2), since analyzing the proof of (1.1)
given in [1] it is found that

| ® 1
LY . _065321....
“=3 X Reml)

The asymptotic relation (1.12) is established analogously, with

1 = 1

= — 0 = 0.64259 ...,
2 ,,El m*(Q(m) + 1)

Ji=
whence 0 < f; < e;. We thank J.-P. Massias (Limoges) who has kindly computed the
values of ¢, and f,.

4. Remarks. We first note that Theorem 2 could have been stated to deal with more
general arithmetic functions. In fact, we can prove for instance that, using the same
technique as in the proof of Theorem 2, if f is defined by (1.4) with ¢ > 0 and L satisfying
(1.5), then, for x7/*2 log??x < h < o(x),

fo hx?L(x)
x<nEx+h M - (CQ + 0(1)) logx ’
@ 1

with CQ =d§1 W

Throughout this paper, we have focused our attention on additive functions defined
by (1.4} and (1.6) where ¢ > 0. But one may also consider functions with correspond-
ing ¢ =0, which means dealing with “small” additive functions, such as w(n) and
€(n) (whereas for ¢ > 0, we had “large” additive functions). In the case of ¥ f(n),

2=n=x
this possibility was treated in detail in [2]. There, essentially, it was shown that if
f(n)=Y L(p), where L is a slowly oscillating function of the type (1.5), then

pln
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> fn)~ j L(u du and that the asymptotic behaviour of U(x):= [ —— L(u)
2<nsx Su logu

can be given more exphc1t1y depending on the value of ¢ = lim x (logx) L(x)/L(x). In

fact, five cases for the values of ¢ were considered, namely ¢ = c0,¢ > 0,¢ =0, ¢ < 0 and
¢ = —o0. In three of these, U(x) can be simplified. For example, if ¢ > 0, one has
U(x) ~ ¢~ * L(x), while if ¢ < 0 or ¢ = — o0, one has U(x) ~ 3 f(p)/p.

P
Appropriate analogues of (1.9) and (1.10) may also be obtained in the case ¢ = 0,
provided the corresponding function L(x) grows fast enough, that is, if it satisfies

4.1) Ax) = 2.(x) = x (logx) L(x)/L{x) > + o0, as x—0.

In order to avoid repetition of some of the arguments already given above, we only state
the result and give the main idea of the proof.

Theorem 3. Let f(n) and F(n) be defined by (1.4) and (1.6) with ¢ = 0 respectively, with
L(x) given by (1.5) and satisfying (4.1). Then, for x"*2** < h < o(x), we have, as x — 0,
f L(u)

(4.2) Y fm=0+o)h f

x<nEx+h

du,
u

and the same estimate holds for Y.  F(n).
x<nZx+h

We only sketch the proof of (4.2). First we write

h
T f= ¥ L ([x h ]— H) =Y ¥ L
x<nZx+h pEx+h 14 14 mEx x<p<m
= §:1'+ E:Za

where in > ;, we have m < x® and in },,, x* <m < x. In >, the condition 7 = x
ensures that

h x\7112 x\22
HENCHE
m m m

Hence we may use (1.7) (with x and & replaced by x/m and h/m, respectively) to deduce
that the inner sum in Y, is equal to

L(x/m) - h/m
log(x/m)

7/12+¢

(1 + o(1))
This allows us to write

=0+ (1»hI

where we put

L(X/ rdt

oz (/D = (1 +o(1) h(U(x) — U(x*"7),

x [
U = U0 = | &)

u logu
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Clearly U(x) » o0 as x — oo, and by 'Ho6pital’s rule we obtain (0 < ¢ < 1 is fixed)

i U(x) o U’ (x) o L(x)
e U e =8 x U(x 9 o L(x'9

lim exp( f () t‘ldt> :exp<lim f ﬁdt)

x— o - x—nx)xl»stlogt

exp(lim ( min i) | —2 >

x> x1"e51<x - £ logt

IV

v

1
exp| im ( min A(z) - log =00,
x— o xl-eZ1=x 1—¢

since A(t) — o0 as t — oo, and (t) = A(t)/log t by (1.5) and (4.1). Hence U(x* %) = o(U(x))
as x — o0, and this proves that

Si=0+0o1)rU(x) (x—>x).

And finally, using (2.2), we obtain that

S.< T L(x/m)<n<”h)—n<i)><zh 5 _LGim
m m

xE<mZx x<mzx M 10g(h/m)

L(s/m) N
<k Z miog(m MU= obUG),

so that (4.2} is established.
It is also interesting to note that, using a recent result of C.J. Mozzochi [7], namely
n(x + h) — n(x) > h/logx), xT*=<h<x,

withe =4 — 55z = 0.5473958..., one can replace the estimates (1.9), (1.10), (1.11), (1.12)

and (4.2) by lower bounds for the corresponding sums for a wider range of h = h(x).
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