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1. INTRODUCTION 

For an integer n 2 2, let P(n) be the largest prime factor of n. For an 
arbitrary strongly additive function f, let 

Alladi and Erdos Cl] proved that iff(n) =P(n) =Cpln p, then 

x2 x2 
AD(X) - BB(X) - - - 

12 logx’ 

The asymptotic expansion of A,(x) has been given by DeKoninck and 
Ivic [3]. 

Similar questions were considered for a quite large class of functions by 
DeKoninck and Mercier [S]. Namely, they proved that if f is a strongly 
additive function and f(p) = R(p), for each prime number p, where R(x) is 
a function of the form R(x) = xPL(x), with slowly oscillating L, then 

(i) in the case p > 0 

AAx) N Bf(x) ‘v 
xp+‘((p + 1) L(x) 

P+l log x’ 

(ii) while in the case p =O, (L’/L)(x)x log x + co, 

(1) 

They treated further cases as well and pointed out that in some of them the 
relation AAx) N B,(x) is no longer satisfied. 

In this paper we shall show that the summatory functions off(n) and of 
f(P(n)) are asymptotically equal under the conditions (i) and (ii), even if 
summation is taken over various subsets of integers, or integers contained 
in a short interval. In these general cases we are unable to give a simple 
asymptotic expression (like the second relation in (1 ), (2) for the corre- 
sponding sums). 

Throughout this paper, except in the remark following Theorem 5, we 
assume that R(x) = xpL(x), R: [l, co) 4 [ 1, 00) p 20, and L is a slowly 
oscillating function, i.e., such that 

(3) 
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furthermore that 

Case # 1: p > 0 or 

Case#2: p = 0 and L is differentiable and (L’/L)(x) x log x + GC is 
satisfied. 

Assume furthermore that f is a strongly additive function defined on the 
set of primes p by f(p) = R(p). We denote by 9 the set of functions .f 
satisfying the above requirements. 

2. SUMMING ON CERTAIN SEQUENCES OF INTEGERS 

Let &=(a, <a,< ... ) be an infinite sequence of natural numbers. Let 

and A(x) = # {a, GX). 

THEOREM 1. Let f E 9. Assume that there exist positive constants E, c, x0 
such that 

#{a,~x[P(a,)>x”‘+“)>cA(x) (4) 

holds ,for each x > x0. Then 

First we prove the following 

LEMMA 1. Let f E F and assume furthermore that case #2 holds. Then 
there is a constant c, that may depend on L, such that, for xy1j4 < y <x, 

max f(n) d C, L(y). 
Pi32 .I 

(6) 

Proof of Lemma 1. For an arbitrary K > 0 let UJK) be a constant such 
that n(u) 2 K whenever u > Q(K). The existence of u,Jlc) follows from the 
fact that lim,, m /z(x) = + co. Then, for UJK) < u < v. 

L(v) log-= 
s 

L’ l(t) dt,K *’ 
s 

dt log v 
L(u) Ut ’ 

-=Klog- 
u tlogt log 24’ 
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and so 
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L(v)> log v 

(3 

K 

L(u) log u . (7) 

In (7), set 1c=2, u= y41k, v = y, then, for each k EN such that y4’k > u,(2), 
we have 

Now take any positive integer n such that Z’(n) < y; then clearly we can 
write n =nr .n2, where P(nl) < u,(2) and each prime factor of n, is not less 
than u,(2). Using (8) and the fact that for each 4 <k EN one has 
P,(n) < xllk < y41k, 

f(n2)= C L(p)< C L(Y4’k) 
Pin 4<k<4logy/logur,(2) 

PhlhP41. 

QL(Y) c 
4<k<4logy/logu,,(2) 

$7 L(Y). 

Since max P(,,,j<uo(2)f(m) is bounded, it follows that (6) is true. u 

Proof of Theorem 1. Assume first that Case #2 holds. Let E be a small 
positive constant, and 

Sal= {a”~xJP(a”)dX”2+~‘2}, 

932= {a”Qxpya,)>x1’2+“‘2). 
(9) 

From Lemma 1 we have 

; f(a,) Q A(X)L(X1’2+q. 

If a, E a2, then a, = P(u,)b,, b, < x1”-“‘, consequently, f(u,) -f(P(u,)) 
= f(b,) $ L(x’/~-‘/~). So, we have 

VAX)- Uj(x)<<A(x)L(x~‘*+~‘Z). 

From (4) it is clear that 

UXX) s A(x) L(x”Z+E). 

Since L(x ‘/2+“+0(1)L( x”* +‘) holds for x --$ co, therefore (5) is true. 
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Assume now that Case # 1 holds. Since log R(y)/log y -+ p, then 

Y P-d~<R(y)<,yP+s~, 

with a suitable function 6,, 6,, -+ 0. Since the number d(n) of the divisors 
of n is 4 ns for each positive constant 6, then for an integer n = p1 . . p, 
(PI < ... < p,) we have 

f(n)=R(~,)+ . . . + R( p,) G R( p,) n”. 

Splitting d into two parts, @r and gJ, as above, and proceeding as in 
Case #2, we can deduce Theorem 1 in this case as well. 1 

Remarks. ( 1) 

#{n<x(P(d+ l)>.r’+“}>>x (10) 

holds for a suitable E > 0 as x + co. 

(2) Let I # 0 be an integer, p run over the whole set of primes. Then 

#{p~x~I(p+f)>x”‘+“)~~(?c) (11) 

holds for a suitable E > 0 as x -+ co. 

For the proof of (l)-(2) see Hooley [6 J. Since the inequalities (lo), (11) 
guarantee the fulfilment of (4) in Theorem 1, the following relations hold: 

.Lxy f(P + 4 - c f(P(P + I)), p < i 
c fV+ I)- c fVW+ 1)). 

n < x n < i 

(12) 

(13) 

3. ON min(f(n), f(n + 1 ), f(n + 2 )) 

THEOREM 2. For each f in 9, one has 

,l~ymin(f(n),f(n+ l),f(n+2)) 

-~~.~min(f(P(n)),f(P(n+ l)LfVYn+2))). 

LEMMA 2. Let tlk 1, 

(14) 
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Then, as x + co, 

(16) 

Proof. IE is counted on the right-hand side of (15) if it is of the form 
n = m .p, p > xa, m EN, n < x. Therefore 

xd,(x)= c 
X~<P<X 

which implies (16) immediately. 1 

z+oof of Theorem 2. First observe that log i> 3. Therefore there exist 
positive constants E, S such that 

d 1,2+ewG+~ (17) 

for each large x. 
Let 

9= {n~xx(P(n+j)>x”*+“,j=O, 1,2). 

For an n < x, let e(n) be the number of those integers among P(n), 
P(n i- l), P(n + 2) which are greater than xl’*+‘. It is clear that 

2 e(n)=3xd,,,+,(x)+O(l), 
n$.x 

which by (17) implies that 

(18) 

Consequently 

n;x e(n) b- (2 + 36)x + O(1). 

#(nGxIe(n)=3}>6x+O(l). (19) 

In other words 

(20) 

holds for each large x. From here on, the proof is essentially the same as 
that of Theorem 1; hence, we omit the details. 1 
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It seems plausible that the set of integers n with 

min P(n+j)>n’!2+E 
,=O....,k 

has a positive lower density. This would imply that 

C .min f(n+j)- C min f(P(n+j)). 
n<-c/=O . . . . . k n<-yj=O.....k 

We are unable to prove this even for k = 3. 

4. THE BEHAVIOLJR OF~(H)ON SEQUENCES OF k 
CONSECUTIVE INTEGERS 

THEOREM 3. Assume that f E 9;. Let k, G k, < . .. be a sequence of 
positive integers tending to infinity for n -+ CO and let furthermore 
k,,Jk, = 0( 1). Define 

k-l k-l 

v(n, k) = c f(n +A, Wn, k) = c f(P(n +A). (21) 
j=O J=o 

Then, there exists a sequence W of natural numbers having zero density such 
that, for all n E g = N \a, one has 

Un, k,) = (I+ 4 1)) U(n, k,). (22) 

We shall deduce Theorem 3 from Theorem 4, which is essentially due to 
J. B. Friedlander [S]. Since we shall need a modification of it and our 
proof is much simpler, we give its proof. 

THEOREM 4. Let a(n, k) = n(n + 1). . . (n + k - 1). Let 6, be positive 
tending to zero arbitrarily slowly, K, be a function taking on positive integer 
values K, + co as x -+ CC and K, <x. Let 

F(n, k) = F(n, k, x) = 1 log p. (23 1 
pla(n. k) 

p>.Y’/2+4 

Then 

IF@, K,)-$CJogx( =o(K,logx) (24) 

for ah but at most o(x) integers nE [x/2, x]. 
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Proof. Let 1 <k < log x, 6 = 6, and consider the set d of integers 
II E [x/2, x]. Let A(n, d) be the number of multiples of d in the interval 
In, n + k - 11, that is 

A(n,d)=[“+kd-‘I-[;]=$+O(l,. (25) 

Let furthermore A be von Mangoldt’s function. It is clear that 

log a@, k) = k log x + O(k) (26) 

and furthermore that 

log a(n, k) = c A(d)& d). 
d<2x 

(27) 

Let the right side of (27) be split into five parts: E,(n) + E,(n) + E,(n) + 
E,(n) + F(n, k). In El we sum over the powers of primes with exponent 
greater than 1. In E2, E3, E4, F we sum over primes p from the range 
p < k, k < p G &, XX -C p < x112 + ‘, p > xri2 + ‘, respectively, 

Using (25) we obtain successively 

.Zl:= c E,(n)<xk c ?4xk, 
fled P,O 

a>2 

(28) 

E,(n)=k c y + O(k) = k log k + O(k), 
p<k 

(29) 

and 

Z2 := c E,(n)= 1 1% P c 1 
ncd &<p<xl12+J Pl$“bk’ 

$kx 1 
1% P 
-4 6kx log x. 

J;,p<d12+a P 

(30) 

Now we estimate E,(n) by the Turan-Kubilius inequality. It is clear that 
A(n, p) = 0 or 1 if p > k. Let us consider the sums 

S,(k) := c G(n), S,(k) := 1 E:(n). 
nsd ned 

We shall prove that 

g(k) := c (E,(n) - kcc(k))’ << k(log x)~ x, (31) 
nsd 
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where a(k) =log(fi/k). Let B(p,, p2) be the number of those integers 
n E d for which p, , p2 1 a(n, k), k < pi < A. Then 

i 

xk 

B(PI, ~2) = 

?,+ O(k) if pl=p2=p, 

x k2 

yp + W2) if PIZpz 
I 

Furthermore, 

S,(k)= 1 (logp) c l=$a(k)+O(k), 
k<P<,/; nest 

pla(n.k) 

and 

(loi? PI )(log P2) 

PIP2 
+ O(k’x/(log x)“). (32) 

Since the last sum on the right-hand side of (32) equals a2(k) + 0( 1 ), we 
have 

On the other hand, 

g(k) = S,(k) - 2ka(k)S,(k) + (ka(k))’ z+ O(ka(k)), 

thus implying (3 1). 
Since F(n, k) = log a(n, k) - E,(n) - E,(n) - E,(n) - E,(n), we obtain by 

W)? 

F(n, k) - ; log x 

,< E,(n) + E,(n) + E,(n) + E,(n) -; log x + O(k). (33) 
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From (29), 

E,(n)+E,(n)-;logx <\E,(n)-ka(k)l+O(k). 

Using the Cauchy-Schwarz inequality and (3 1 ), we have 

c IE,(n) - ku(k)( -+ x Jit log x, 
nsd 

(34) 

(35) 

and so by (28) and (30) we have 

F(n,k)-;logx ~x~logx+6kxlogx+xk. (36) 

We now apply inequality (36) with k= [log K,], say. Since F(n, k) = 
O(k log x), then 

H-l 

~(n, K,) = C F(n + jk, k) + O(k log x), 
j=O 

Hz F , [ 1 
and so from (36) we obtain that 

+ -*,* z< 2x 1 Fh k) - ; log xi + ON log x) 
$dK,x log x + 

XK, log x 

JlogK, * 
(37) 

From (37), putting 6 = 6, + 0, we infer 

c ~F(n,Kx)-~logxj=o(xKxlogx) (x-+co) 
ne.d 

which implies (24) immediately. 1 

Proof of Theorem 3. Let us once more consider the integers 

nEd= (nine [x/2,x]). 

(38) 

We shall prove the theorem assuming that Case #2 holds. Case # 1 can 
be considered similarly. Let 

G = k [x/Z]. (39) 
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Then by (24), for all but o(x) integers n in s?‘, 

F(n, K,) > $& log x, 

and because of (39) we have 

F(n, k,) > ck, log x, 

for some positive constant c. For a non-exceptional n there exist at least 
ck, integers in 0 < j < k, such that P(n + j) > x112 + ‘,. Consequently 

U(n, k,) % k, L(x’l’+ “‘). (40) 

Furthermore, for each m E [x/2, x], P(m/P(m)) < x’j2, and so, by Lemma 1 

f(m) -f(W)) <Lb”‘), 

and thus 

V(n, k,) - U(n, k,) << k, L(x”*). (41) 

If 6, is chosen so that L(~“~)=o(l)L(x’/~+~~), then (40) and (41) imply 
that 

for all non-exceptional n. 1 

5. ON THE QuoTIENT~(~)/~(P(~)) 

In their paper 121, Alladi and Erdiis proved that 

(42) 

where /I?(n) = Cp,,, p, which by P(n) >/ P(n) implies that /?(n)/P(n) + 1 on a 

set of integers having density 1. Here we consider the expression 

Q(x) = Q,tx, ‘2’ ; 2 <Qz 
. . 

and prove: 

THEOREM 5. Let f~ 9, then Q(x) + 1 as x -+ co. 
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Proof: We concentrate our attention on Case # 2 (that is, when p = 0 
and A,(x) + + co). The treatment of Case # 1 is somewhat simpler and 
runs on similar lines. Let Y(x, y) be the number of integers n up to x for 
which P(n) G y. We shall use the known inequality 

u/(x, y)<c,xexp( -c$), 

valid uniformly in x, y > 2 with absolute positive constants c, c,. 
Starting from the formula 

L(w2) log-= - 
L(w, 1 I 

w* n(u) & 
w, u log u ’ 

WI < w2, 

and by using the monotonity of A., we obtain 

1% w2 
4Wl) 1% - < log 

Uw2) 1% w2 

1% Wl 
- < A(w,) log - 
L(w,) log w,’ 

that is 

log w2 ( > I(++?) p2) ~ 1% w2 -lCw2) - - 

1% Wl L(Wl) ( > logw, . 

(43) 

(44) 

In the sequel p and q run over the set of primes. It is clear that 

&f(n) f(4) 
*<~<,fo)=X+q~pfm y 2 p +O(l). ( > . . 

(45) 

Let 1 denote the sum CqcP on the right-hand side. We need to prove that 
c = o(x). 

From elementary 
immediately that 

estimations for the distribution of primes we obtain 

c uogPrg 1 

P>H P s(log H)” (46) 

and furthermore that 

c (1% 4)” Q (lois w  - - 
q<H 9 s ’ (47) 

uniformly in s 2 1, H > 2. 
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From (44) it is clear that 

(48) 

Let E be an arbitrary small positive constant and consider the contribution 
of couples p, q with q > .Y’ to the sum C. By (46) we have 

c (loi2 qPq) c 1 ~ c 1 

q z I’ 4 ,,,Pmg PP4’ q, ‘;i 444)’ 

and the sum on the right-hand side tends to zero, since A(q) 2 l(Y), 
A(x”) + co. 

Let now z be in the interval 2 < z <x and let 

where the summation is extended over those couples p, q for which 
q d z < p and p <x. Since the terms on the right-hand side can be bounded 
by 

L(q) L(z) 1 --- 
Uz) UP) PC?’ 

we have 

By (44) and (46) we obtain that the second sum is less than l/A(z). Since 
A(q) 2 1 for each large q, the first sum is less than 

O(l)+ c L !zEJ! 
( ) q<=q logz 

=0(l). 

We have 

uniformly in z. Hence we have 

c f(4) x +x -_ 
qQ;<p f(P)P4 A(=)’ 

(49) 
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Let us now choose first z = xE. We have 

c = Cl + o(x), 
where in x1 we sum over q, p with q < p < xe. We split x1 into two parts, 
x1 = CZ + & according to q < &, or & < q < p, respectively. 

Let 

* := [XE12’+‘, XE/27 (s=O, 1, 2, . ..). 

To estimate x2 and x3 we shall use inequality (43). For q < Y’~~+‘, p E Fs 
we have 

Y(~,p)*~eq3(-c~) 
$exp( -c((E,iyiIgx)) 
=; exp 

2" ( ) -c- . 
E 

Then 

c2 G E C’“‘, 
s=o 

where 

By (49) and (50) we have 

so 
-p << x 2" 

4x&/2~+‘)exP --c-g . ( > 

(50) 

(51) 

Observing that the sum on the right-hand side of (51) tends to zero as 
x--, co, we have 

c, = 4x). 
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To estimate x3 we observe that log q > 4 log p; consequently, 

with cl= c/2, say, 

where 

with 

c,=c l 
q<p<.~PP(log PVY” 

It is clear that 

c, 4 J-r u(log ;),q)+ I du e (log q)PY’. 

(52) 

(53) 

(54) 

Thus, using (54) in (53), we obtain 

CA4 1 q-lexp(-c’logx/logg) 
q < 9 

’ .r:’ u log u exp(Flog x/log U) 

5 

Elogx dv 
= 

log 2 u exp(c’ log x/u)’ 

Since the function v exp(c’ log x/v) is easily seen to be decreasing on the 
interval [log 2, E log x], it follows that this last integral is no larger than 

1 1 
(E log x - log 2) . 

E log x exp(c’ log X/E log x) 
<c 

exp(c’/a)’ 
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which tends to zero as E tends to zero. Thus CA = o( 1). Combining this 
with (52), we obtain x3 = o(x). This settles Case #2 and hence completes 
the proof of the theorem. 1 

Remark. It is interesting to consider the expression QAx) for other 
strongly additive functions f which do not belong to 9, namely, those j 
for which f(p) = L(p), where L is increasing, slowly oscillating and for 
which the corresponding function A(x) = A,(x) = x log xL’(x)/L(x) satisfies 
lim, + oo A(x) = 0. In this case, we show that 

(55) 

where 

The proof goes as follows. Let 

A(x)= c y, 
P $ -x 

L,(x)=,:-$+u, 

log L(x) = j; -$& du, *t A(u)>O, A(u)-,O, d(x)=+y-du. 
L,(x) 2 ulogu 

Then 

L(x) d(x)<---- - - 
L;(x) s 

x L(u) 
2 ulogu 

du = L(x) 
Ll(X)’ 

since L is monotonic. 
We shall prove that L(x)/L,(x) -0, i.e., d(x) + 0. Let 6 > 0 be an 

arbitrary constant. Then for large x, A.(u) < E if x6 < u <x, and so 

log-. w)<E x 1 log x 

u-f? I -du=clog-= 
aulogu Slogx 

E log( l/6). 

Then we have L(x)/L(x’) 6 (l/S)& which is equivalent to L(xs) > 6” L(x). 
Hence 

L1(x)a lx, u log u 
x “d)du2aZ(X)];&du=6’L(~)10g(l/c5), 

and so 

L(x) 1 & 1 
zyg - 0 6 log( l/6)’ 
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Since E > 0 can be chosen arbitrarily small if x > x0(&), we have 

1 
liy+sEP 4~)~,og(ljsj 

Since 6 > 0 is arbitrary, letting 6(x) -+ 0, we have d(x) -+ 0. 
From the Turin-Kubilius inequality, 

and since 

then 

Then q - 1/L2(x), 5 x s‘ (L2(u)/u log U) & and consequently 
2 

So we proved that 

Hence we get that 

f(n) 1 L’(X) -_ 
,;.,fvw A(x) .;.,.fo) = OCX) L(x) . 

Since A(X) w  L,(x) and CnGx l/f(P(n)) -x/L(x), then 

f(n) L’(X) 
“~,f(P(n)) = (l+ O(l)) L(x) 

This proves (55). 
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