
Aeta Math. Hung. 
52 (1--2) (1988), 37--43. 

SOME RANDOMLY SELECTED ARITHMETICAL SUMS 

J.-M. DE KONINCK (Qu6bec) and J. GALAMBOS (Philadelphia) 

1. Introduction 

Let pl(n)<p2(n)<... <p~,(n) be the sequence of distinct prime divisors of  n; 
that is, 

l l p  ( )  , n =  j n ,  n - - ~ 2  
j = l  

where co=co(n) is the number of  distinct prime divisors of n. 
Recently, several authors investigated the behavior of 

1 
Z - Rj(x) 2~,,~=~ pj(n) 

for some specific choices of j .  In particular, for j =  1, or whenever j is preassigned, 
it is not difficult to show that R~(x)~cjx with a computable constant cj. On the 
other hand, when j=co(n),  the problem of finding good approximations to Rj(x) 
becomes very difficult; by refining several earlier results, Ivi6 and Pomerance [5] 
found the best known approximation. Quite remarkably, the case of j = c o ( n ) - 1 ,  or 
j=co(n ) -k  with k fixed, shows no similarity to the case of j=co(n),  and asymptotic 
expressions are in fact known (Erd6s and Ivi6 [3]): 

x(log log x) k-~ Ic _-> 1, 
R,o-k(X) "~ ck 1ogx ' 

where ek is a constant. 
In order to obtain an "average type of information" on the magnitude of 

pj  (n), when j does not belong to the mentioned cases (i.e. either j is fixed or j =  co-  k 
with k fixed), we set up the following probabilistic approach. For every integer n<-x, 
pick one p(n) of its prime divisors pj(n) with equal probabilities (hence p(n)=pj(n) 
with probability 1/co(n)), and consider the sums 

(1) R ( x ) =  • 1 
2~_.~-~, p(n)" 

Here and in what follows we assume that x is an integer. Evidently, there are 
co (2) co (3) . . . co (x) sums of  the type in (1), and 

1 1 
<- R(x)<- 2 

2~_n~_x po~(n) 2~_,~_x px(n)" 
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It turns out that "almost all" sums in (1) are asymptotically equal to the same expres- 
sion, cx/log log x, indicating that _Rj(x ) does not vary much with j when j is not 
an extreme (constant or co -k  with k constant). 

This probabilistic approach to _Rj(x) led us to investigate several other arith- 
metical sums 

(2) O (x) = ~ r (n), 
n<~x 

where r(n) is one randomly selected member of a set A, associated with n. We estab- 
lish that Q(x) is asymptotically the same value for "almost all" selections of r(n). 
For example, if A, is the set of the reciprocals of the divisors of n, then it turns 
out that 

or(n) 
(3) Q(x) ~ .<_~ m(n) '  

where a(n) is the sum of the divisors of n, and z(n) is the number of divisors of n. 
On the other hand, if A. is the set of all divisors of n, then (again for almost all  
selections of r(n) in (2)), 

or(n) 
(4) O (x) ~ .<=~ 

(n)" Z 

These results, therefore, give a probabilistic meaning to the arithmetical sums on 
the right hand sides of (3) and (4), involving well known arithmetical functions. 

2. The sum of reciprocals of  random prime divisors of  n 

As in the introduction, pl(n)<p2(n)<...<p~(n) denote the distinct prime 
divisors of n, and we select one p (n) of these prime divisors at random (with equal 
probabilities). Set 

(s) R(x) = Z 1 
. = .  = x  p ( n )  " 

Note again the total number of sums of the form of (5) is co(2)co(3).., co(x). We 
shall say that a property holds for almost all sums in (5) if the number N(x) of the 
sums with the property in question satisfies 

a s  X - - ~ +  ~o. 

N(x)/co(2) co(3).., co(x) 1 

THEOREM 1. For almost all sums in (5), 

R(x) - elx ( x ) 
log log x + O (log log x) 2 

where c1=~ 1/1) 2, the summation being over all primes p. 
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The proof is based on the Chebyshev inequality stated below. 

LEMMA. Let A,={al,  a2, ..., ay(,)}, n=>l, be a sequence of finite sets. For every 
n>-l, pick one member r(n) of  An at random with equal probabilities (i.e. r(n)=aj 
with probability l / f  (n)), and set 

(6) O(x) = ~ r(n). 
n ~ x  

Then the number N~(x) of  sums in (6)for which 

where 

and 

satisfies 

]Q(x)-E] = > V 5/8 

1 f(n) 

V = ~ f@n)f_~l ) . _ _ _ ~  a j 2 -  _ j=IZ aj] 

No.(X) <= V-1/~f(1)f(2).. .f(x). 

PROOF. See Galambos [4]. 

PROOF OF THEOREM 1. With the notations of the lemma, 

(7) 

Clearly 

Hence 

1 1 1 
co(m)+l - co(prn) - co(m)" 

, 1 
co(pro------)- co(m---~ ~-0 

where the O(...) is uniform in m_->2. Therefore 

o (bm) co(-'O +o  ). p~_x P ln_x lp  p = x  F 2<=m~--xlP p _ x  F 2-m<=xlp fD(IT~) 2 

N o w  

(9) 1 1 1 x 
- V : Z T - :  Z 1 ~, co(m) - - Z  Z 1<= V~<p_~x P 2~=m~-xlp 1/x ~-~' m~/p 

= O (I/x- log log x) = O(x/(log log x)~). 
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We recall the estimates 

1 pc ((lo~ ~g x)Z) (10) ~_m~_~Z og(m--'-ff = loglog-----~ bO x 

and 

= 0 (  ~ ) 1 '(log f~ x) 2' (11) • o(m) 2 

proved in De Koninck [1]. Using (10), we have 

1 = , ~ 1  x/p ( x/p ) 
(12) v~-~Z lp 2_m_xlp~'~ (.o(m)' p<_t/x 19 log~ogix/p) +0 [(loglog(x/p))2) " 

But since, for p<=l/'~', 

l o g [ l -  !ogp ] = O(1), 
k log x J 

then 

(13) 
1 1 

log log (x/p) log log x + log [ 1 - log p ) 
log x) 

_ 1 [1+O 
log log x 

Using this in (12) yields 

1 1 
loglogx log(1 _ l~  

~, logx) 

log(1-1~ ]/ 
I, logx)  = 1 
log log x log log x 

1+ 
log log x 

1 
- -  +O (iloglogx)~). 

Since 

p~_l/~ 1 I 2Nm_x[p  X _ 

p~__~r -~=~-~q_O[~-~}=cl+O[-~), say, 

we finally obtain 

(14) ~ 1 ~ ,  1 
v~-r p 2~-,.-~Iv co(m) 

Also, using (11), we have 

X X 
- - - - C l  l o g l o g x  ~O( (1ogf~gx)2 : ) "  

(15) Z p 2-~m~_~/, co(m) 2'= 0 ~ "~ (loglog(x/p))2) -(logl~-gx) 2 , v-g; v- 

because of (13). 
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Now combining (14) and (15), and using once more (9), (8) becomes 

(16) 

Hence 

Z 1  Z 1 
p~_~ p ,.~_x/p ~(pm) 

x 

= cl log  log--------~ + O log l~g x) 2 " 

X 

E = c~ log log x - -  + 0 ('(log~ogx)~)" 

, By similar calculations, we get 

1 1 
v =  Z 

2<=n~=x 2_  _X 

C2X 

log log x" 

and thus the lemrna implies Theorem 1. 

3. Random sums related to the divisors of  n 

Let now dl<d2<...<d~ be the divisors of n, where dj=dj(n) and z=z(n)  
is the number of divisors of n. In addition, let a(n) be the sum of the divisors of n. 
Again, for each n~2 ,  we pick one r(n) of the divisors dj, and, with a given function 
h ( . ) ,  we define 

(17) a(x ) - -  Z h(r(n)). 
2~_n~x 

Because the number of sums in (17) is z(2)z(3). . .z(x),  we now say that a 
property holds for almost all sums in (17) if it holds for N* sums such that 
N*/z(2)z(3). . .z(x)~l as x - ~ + ~ .  

Although the basic idea of the computations is the same for a large variety of 
choices for h (u), we carry out the computations when h (u) is either 1/u or u. Their 
significance is that the major terms in the asymptotic expressions below are familiar 
arithmetical sums. 

THEOREM 2. For almost all sums in (17), 

1 a(n) eax ( x ) 
(i) "~ r ( n ) -  "~ nz(n) ~ - O ( x ~ / S ) - - - - + 0  2~,~, 2~-,~_~ l/log x (tog x) 3/2 ; 

and 

(ii) • r(n) = +O(xlS/s ) _ c , x ~  q-O (lo~-~)aN . 
2~=,~-~ ~<_,,=~ z~n) I/log x 

PROOF. We again use the Chebyshev inequality stated as Lemma in the previous 
section. 
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(i) The case of 1/r(n): 

1 1 

7 = 2 = n _ x  k )din 

1 n 1 
Z ,~(n) Z - T =  Z ,~(~)Zd= 

2<----n~x 2~n<=x din 

o'(n) 
z~ nz(n)" 2~n~_x 

An asymptotic expression for the last sum above can easily be obtained by using 
Dirichlet generating functions. As a matter of fact, since 

~=~ n~ = 11 1-~ p~ q p2~ ~- . . . .  (r 
P 

where R(s)=O(1) for Re (s )>  1 ,  we have that 

,~(n) _ R ( 1 ) x  

(18) ,~=~ nz(n) I/1--~gx - -  + O / , l o ? x . )  

Now, 

V = 

which can easily be seen to satisfy V= O(x) (more accurate computation is also 
possible, but this rough estimate suffices). Hence, Lemma concludes the proof of 
the statement in part (i). 

Turning to (ii), E takes the form 

1 a(n) 
E =  Z z(n) Z d=  Z z(n)'  

2~n~=x din 2~n~_x 

which, by partial summation in (18), yields the asymptotic formula of (ii) upon 
observing that the estimate V= O (x ~) is immediate. 

Let us conclude by mentioning that several other familiar arithmetical sums 
do have probabilistic meaning similar to the ones appearing in Theorem 2. For 
example, if we pick an exponent c~(n) at random in the prime factorization n=HpL 
then, for almost all choices of ~(n), 

Z ~ ( ' )  ~ v '  ~ ( " )  . ~  ~ _ ~  ~o (n)' 

where f2(n) is the total number of prime divisors of n. This latter sum has been 
investigated in much detail in De Koninck and Ivi6 [2], yielding 

Z ~(~) ~ x, 
n~__X 

for almost all sums on the left hand side. 
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