SOME RANDOMLY SELECTED ARITHMETICAL SUMS

J.-M. DE KONINCK (Québec) and J. GALAMBOS (Philadelphia)

1. Introduction

Let $p_{1}(n)<p_{2}(n)<\ldots<p_{\omega}(n)$ be the sequence of distinct prime divisors of n; that is,

$$
n=\prod_{j=1}^{\omega} p_{j}^{\alpha_{j}}(n), \quad n \geqq 2
$$

where $\omega=\omega(n)$ is the number of distinct prime divisors of n.
Recently, several authors investigated the behavior of

$$
\sum_{2 \equiv n \equiv x} \frac{1}{p_{j}(n)}=R_{j}(x)
$$

for some specific choices of j. In particular, for $j=1$, or whenever j is preassigned, it is not difficult to show that $R_{j}(x) \sim c_{j} x$ with a computable constant c_{j}. On the other hand, when $j=\omega(n)$, the problem of finding good approximations to $R_{j}(x)$ becomes very difficult; by refining several earlier results, Ivić and Pomerance [5] found the best known approximation. Quite remarkably, the case of $j=\omega(n)-1$, or $j=\omega(n)-k$ with k fixed, shows no similarity to the case of $j=\omega(n)$, and asymptotic expressions are in fact known (Erdős and Ivić [3]):

$$
R_{\omega-k}(x) \sim c_{k} \frac{x(\log \log x)^{k-1}}{\log x}, \quad k \geqq 1
$$

where c_{k} is a constant.
In order to obtain an "average type of information" on the magnitude of $p_{j}(n)$, when j does not belong to the mentioned cases (i.e. either j is fixed or $j=\omega-k$ with k fixed), we set up the following probabilistic approach. For every integer $n \leqq x$, pick one $p(n)$ of its prime divisors $p_{j}(n)$ with equal probabilities (hence $p(n)=p_{j}(n)$ with probability $1 / \omega(n)$), and consider the sums

$$
\begin{equation*}
R(x)=\sum_{2 \leqq n \leqq x} \frac{1}{p(n)} . \tag{1}
\end{equation*}
$$

Here and in what follows we assume that x is an integer. Evidently, there are $\omega(2) \omega(3) \ldots \omega(x)$ sums of the type in (1), and

$$
\sum_{2 \leqq n \leqq x} \frac{1}{p_{\omega}(n)} \leqq R(x) \leqq \sum_{2 \leqq n \leqq x} \frac{1}{p_{1}(n)}
$$

It turns out that "almost all" sums in (1) are asymptotically equal to the same expression, $c x / \log \log x$, indicating that $R_{j}(x)$ does not vary much with j when j is not an extreme (constant or $\omega-k$ with k constant).

This probabilistic approach to $R_{j}(x)$ led us to investigate several other arithmetical sums

$$
\begin{equation*}
Q(x)=\sum_{n \leq x} r(n) \tag{2}
\end{equation*}
$$

where $r(n)$ is one randomly selected member of a set A_{n} associated with n. We establish that $Q(x)$ is asymptotically the same value for "almost all" selections of $r(n)$. For example, if A_{n} is the set of the reciprocals of the divisors of n, then it turns out that

$$
\begin{equation*}
Q(x) \sim \sum_{n \leqq x} \frac{\sigma(n)}{n \tau(n)} \tag{3}
\end{equation*}
$$

where $\sigma(n)$ is the sum of the divisors of n, and $\tau(n)$ is the number of divisors of n. On the other hand, if A_{n} is the set of all divisors of n, then (again for almost all selections of $r(n)$ in (2)),

$$
\begin{equation*}
Q(x) \sim \sum_{n \leqq x} \frac{\sigma(n)}{\tau(n)} \tag{4}
\end{equation*}
$$

These results, therefore, give a probabilistic meaning to the arithmetical sums on the right hand sides of (3) and (4), involving well known arithmetical functions.

2. The sum of reciprocals of random prime divisors of n

As in the introduction, $p_{1}(n)<p_{2}(n)<\ldots<p_{\omega}(n)$ denote the distinct prime divisors of n, and we select one $p(n)$ of these prime divisors at random (with equal probabilities). Set

$$
\begin{equation*}
R(x)=\sum_{2 \leqq n \leqq x} \frac{1}{p(n)} \tag{5}
\end{equation*}
$$

Note again the total number of sums of the form of (5) is $\omega(2) \omega(3) \ldots \omega(x)$. We shall say that a property holds for almost all sums in (5) if the number $N(x)$ of the sums with the property in question satisfies

$$
N(x) / \omega(2) \omega(3) \ldots \omega(x) \rightarrow 1
$$

as $x \rightarrow+\infty$.
Theorem 1. For almost all sums in (5),

$$
R(x)=\frac{c_{1} x}{\log \log x}+O\left(\frac{x}{(\log \log x)^{2}}\right)
$$

where $c_{1}=\sum 1 / p^{2}$, the summation being over all primes p.

The proof is based on the Chebyshev inequality stated below.
LEMMA. Let $A_{n}=\left\{a_{1}, a_{2}, \ldots, a_{f(n)}\right\}, n \geqq 1$, be a sequence of finite sets. For every $n \geqq 1$, pick one member $r(n)$ of A_{n} at random with equal probabilities (i.e. $r(n)=a_{j}$ with probability $1 / f(n)$), and set

$$
\begin{equation*}
Q(x)=\sum_{n \leqq x} r(n) \tag{6}
\end{equation*}
$$

Then the number $N_{Q}(x)$ of sums in (6) for which
where

$$
|Q(x)-E| \geqq V^{5 / 8}
$$

$$
E=\sum_{n \leqq x} \frac{1}{f(n)} \sum_{j=1}^{f(n)} a_{j}
$$

and

$$
V=\sum_{n \leqq x} \frac{1}{f(n)} \sum_{j=1}^{f(n)} a_{j}^{2}-\sum_{n \leqq x}\left(\frac{1}{f(n)} \sum_{j=1}^{f(n)} a_{j}\right)^{2}
$$

satisfies

$$
N_{Q}(x) \leqq V^{-1 / 4} f(1) f(2) \ldots f(x)
$$

Proof. See Galambos [4].
Proof of Theorem 1. With the notations of the lemma,

$$
\begin{equation*}
E=\sum_{2 \leqq n \leqq x} \frac{1}{\omega(n)} \sum_{p l n} \frac{1}{p}=\sum_{p \leqq x} \frac{1}{p} \sum_{m \leqq x j p} \frac{1}{\omega(p m)} \tag{7}
\end{equation*}
$$

Clearly

$$
\frac{1}{\omega(m)+1} \leqq \frac{1}{\omega(p m)} \leqq \frac{1}{\omega(m)}
$$

Hence

$$
\frac{1}{\omega(p m)}=\frac{1}{\omega(m)}+O\left(\frac{1}{\omega(m)^{2}}\right)
$$

where the $O(\ldots)$ is uniform in $m \geqq 2$. Therefore

$$
\begin{equation*}
\sum_{p \leqq x} \frac{1}{p} \sum_{m \leqq x / p} \frac{1}{\omega(p m)}=\sum_{p \leqq x} \frac{1}{p} \sum_{2 \leqq m \leqq x / p} \frac{1}{\omega(m)}+O\left(\sum_{p \leqq x} \frac{1}{p} \sum_{2 \leqq m \leqq x / p} \frac{1}{\omega(m)^{2}}\right) \tag{8}
\end{equation*}
$$

Now

$$
\begin{gather*}
\sum_{\sqrt{x}<p \leqq x} \frac{1}{p} \sum_{2 \leqq m \leqq x / p} \frac{1}{\omega(m)} \leqq \frac{1}{\sqrt{x}} \sum_{p \leqq x} \sum_{m \leqq x / p} 1 \leqq \frac{1}{\sqrt{x}} \sum_{p \leqq x} \frac{x}{p}= \tag{9}\\
=O(\sqrt{x} \log \log x)=O\left(x /(\log \log x)^{2}\right)
\end{gather*}
$$

We recall the estimates

$$
\begin{equation*}
\sum_{2 \leqq m \leqq x} \frac{1}{\omega(m)}=\frac{x}{\log \log x}+O\left(\frac{x}{(\log \log x)^{2}}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{2 \leqq m \leqq x} \frac{1}{\omega(m)^{2}}=O\left(\frac{x}{(\log \log x)^{2}}\right) \tag{11}
\end{equation*}
$$

proved in De Koninck [1]. Using (10), we have

$$
\begin{equation*}
\sum_{p \leqq \sqrt{x}} \frac{1}{p} \sum_{2 \leqq m \leqq x / p} \frac{1}{\omega(m)}=\sum_{p \leqq \sqrt{x}} \frac{1}{p} \frac{x / p}{\log \log (x / p)}+O\left(\frac{x / p}{(\log \log (x / p))^{2}}\right) \tag{12}
\end{equation*}
$$

But since, for $p \leqq \sqrt{x}$,

$$
\log \left(1-\frac{\log p}{\log x}\right)=O(1)
$$

then

$$
\begin{align*}
& \frac{1}{\log \log (x / p)}=\frac{1}{\log \log x+\log \left(1-\frac{\log p}{\log x}\right)}=\frac{1}{\log \log x} \frac{1}{1+\frac{\log \left(1-\frac{\log p}{\log x}\right)}{\log \log x}}= \tag{13}\\
& =\frac{1}{\log \log x}\left(1+O\left(\frac{\log \left(1-\frac{\log p}{\log x}\right)}{\log \log x}\right)\right)=\frac{1}{\log \log x}+O\left(\frac{1}{(\log \log x)^{2}}\right) .
\end{align*}
$$

Using this in (12) yields

$$
\sum_{p \leqq \sqrt{x}} \frac{1}{p} \sum_{2 \leqq m \leqq x / p} \frac{1}{\omega(m)}=\frac{x}{\log \log x} \sum_{p \leqq \sqrt{x}} \frac{1}{p^{2}}+O\left(\frac{x}{(\log \log x)^{2}}\right)
$$

Since

$$
\sum_{p \leqq \sqrt{x}} \frac{1}{p^{2}}=\sum_{p} \frac{1}{p^{2}}+O\left(\frac{1}{\sqrt{x}}\right)=c_{1}+O\left(\frac{1}{\sqrt{x}}\right), \quad \text { say },
$$

we finally obtain

$$
\begin{equation*}
\sum_{p \leqq \sqrt{x}} \frac{1}{p} \sum_{2 \leqq m \leqq x / p} \frac{1}{\omega(m)}=c_{1} \frac{x}{\log \log x}+o\left(\frac{x}{(\log \log x)^{2}}\right) \tag{14}
\end{equation*}
$$

Also, using (11), we have

$$
\begin{equation*}
\sum_{p \leqq \sqrt{x}} \frac{1}{p} \sum_{2 \leqq m \leqq x / p} \frac{1}{\omega(m)^{2}}=O\left(\sum_{p \leqq \sqrt{x}} \frac{1}{p} \frac{x / p}{(\log \log (x / p))^{2}}\right)=O\left(\frac{x}{(\log \log x)^{2}}\right) \tag{15}
\end{equation*}
$$

because of (13).

Now combining (14) and (15), and using once more (9), (8) becomes

$$
\begin{equation*}
\sum_{p \leqq x} \frac{1}{p} \sum_{m \leqq x / p} \frac{1}{\omega(p m)}=c_{1} \frac{x}{\log \log x}+O\left(\frac{x}{(\log \log x)^{2}}\right) \tag{16}
\end{equation*}
$$

Hence

$$
E=c_{1} \frac{x}{\log \log x}+O\left(\frac{x}{(\log \log x)^{2}}\right)
$$

By similar calculations, we get

$$
V=\sum_{2 \leqq n \leqq x} \frac{1}{\omega(n)} \sum_{p \mid n} \frac{1}{p^{2}}-\sum_{2 \leqq n \leqq x}\left(\frac{1}{\omega(n)} \sum_{p \mid n} \frac{1}{p}\right)^{2} \leqq \frac{c_{2} x}{\log \log x},
$$

and thus the lemma implies Theorem 1.

3. Random sums related to the divisors of n

Let now $d_{1}<d_{2}<\ldots<d_{\tau}$ be the divisors of n, where $d_{j}=d_{j}(n)$ and $\tau=\tau(n)$ is the number of divisors of n. In addition, let $\sigma(n)$ be the sum of the divisors of n. Again, for each $n \geqq 2$, we pick one $r(n)$ of the divisors d_{j}, and, with a given function $h(\cdot)$, we define

$$
\begin{equation*}
Q(x)=\sum_{2 \leqq n \leqq x} h(r(n)) \tag{17}
\end{equation*}
$$

Because the number of sums in (17) is $\tau(2) \tau(3) \ldots \tau(x)$, we now say that a property holds for almost all sums in (17) if it holds for N^{*} sums such that $N^{*} / \tau(2) \tau(3) \ldots \tau(x) \rightarrow 1$ as $x \rightarrow+\infty$.

Although the basic idea of the computations is the same for a large variety of choices for $h(u)$, we carry out the computations when $h(u)$ is either $1 / u$ or u. Their significance is that the major terms in the asymptotic expressions below are familiar arithmetical sums.

Theorem 2. For almost all sums in (17),

$$
\begin{equation*}
\sum_{2 \leqq n \leq x} \frac{1}{r(n)}=\sum_{2 \leqq n \leqq x} \frac{\sigma(n)}{n \tau(n)}+O\left(x^{5 / 8}\right)=\frac{c_{3} x}{\sqrt{\log x}}+O\left(\frac{x}{(\log x)^{3 / 2}}\right) \tag{i}
\end{equation*}
$$

and
(ii)

$$
\sum_{2 \leqq n \leq x} r(n)=\sum_{2 \leqq n \leqq x} \frac{\sigma(n)}{\tau(n)}+O\left(x^{15 / 8}\right)=\frac{c_{4} x^{2}}{\sqrt{\log x}}+O\left(\frac{x^{2}}{(\log x)^{3 / 2}}\right) .
$$

Proof. We again use the Chebyshev inequality stated as Lemma in the previous section.
(i) The case of $1 / r(n)$:

$$
E=\sum_{2 \leqq n \leqq x} \frac{1}{\tau(n)} \sum_{d \mid n} \frac{1}{d}=\sum_{2 \leqq n \leqq x} \frac{1}{n \tau(n)} \sum_{d \mid n} \frac{n}{d}=\sum_{2 \leqq n \leqq x} \frac{1}{n \tau(n)} \sum_{d \mid n} d=\sum_{2 \leqq n \leqq x} \frac{\sigma(n)}{n \tau(n)} .
$$

An asymptotic expression for the last sum above can easily be obtained by using Dirichlet generating functions. As a matter of fact, since

$$
\sum_{n=1}^{+\infty} \frac{\sigma(n) / n \tau(n)}{n^{s}}=\prod_{p}\left(1+\frac{\frac{1}{2}(1+1 / p)}{p^{s}}+\frac{\frac{1}{3}\left(1+1 / p+1 / p^{2}\right)}{p^{2 s}}+\ldots\right)=(\zeta(s))^{1 / 2} R(s)
$$

where $R(s)=O(1)$ for $\operatorname{Re}(s)>\frac{1}{2}$, we have that

$$
\begin{equation*}
\sum_{n \leq x} \frac{\sigma(n)}{n \tau(n)}=\frac{R(1) x}{\sqrt{\log x}}+O\left(\frac{x}{(\log x)^{3 / 2}}\right) \tag{18}
\end{equation*}
$$

Now,

$$
V=\sum_{2 \leqq n \leqq x} \frac{1}{\tau(n)} \sum_{d \mid n} \frac{1}{d^{2}}-\sum_{2 \leqq n \leqq x} \frac{1}{\tau(n)}\left(\sum_{d \mid n} \frac{1}{d}\right)^{2}
$$

which can easily be seen to satisfy $V=O(x)$ (more accurate computation is also possible, but this rough estimate suffices). Hence, Lemma concludes the proof of the statement in part (i).

Turning to (ii), E takes the form

$$
E=\sum_{2 \leqq n \leqq x} \frac{1}{\tau(n)} \sum_{d \mid n} d=\sum_{2 \leqq n \leqq x} \frac{\sigma(n)}{\tau(n)}
$$

which, by partial summation in (18), yields the asymptotic formula of (ii) upon observing that the estimate $V=O\left(x^{3}\right)$ is immediate.

Let us conclude by mentioning that several other familiar arithmetical sums do have probabilistic meaning similar to the ones appearing in Theorem 2. For example, if we pick an exponent $\alpha(n)$ at random in the prime factorization $n=\Pi p^{\alpha}$, then, for almost all choices of $\alpha(n)$,

$$
\sum_{n \leqq x} \alpha(n) \sim \sum_{2 \leqq n \leq x} \frac{\Omega(n)}{\omega(n)},
$$

where $\Omega(n)$ is the total number of prime divisors of n. This latter sum has been investigated in much detail in De Koninck and Ivić [2], yielding

$$
\sum_{n \leqq x} \alpha(n) \sim x
$$

for almost all sums on the left hand side.

References

[1] J. M. De Koninck, On a certain class of arithmetical functions, Duke Math. J., 39 (1972), 807-818.
[2] J. M. De Koninck and A. Ivić, Topics in Arithmetical Functions, Notas de Matematica 72, North-Holland (Amsterdam, 1980).
[3] P. Erdős and A. Ivić, On sums involving reciprocals of certain arithmetical functions, Publs. Inst. Math. Belgrade, 32 (1982), 49-56.
[4] J. Galambos, Introductory Probability Theory, Marcel Dekker (New York, 1984).
[5] A. Ivić and C. Pomerance, Estimates of certain sums involving the largest prime factor of an integer, Coll. Math. Soc. J. Bolyai 34, Topics in classical number theory, NorthHolland, Amsterdam.
(Received April 1, 1985)
DÉPARTEMENT DE MATHÉMATIQUES
UNIVERSITÉ LAVAL
QUEBEC, CANADA G1K 7P4
DEPARTMENT OF MATHEMATICS
TEMPLE UNIVERSITY
PHILADELPHIA, PA 19122
U.S.A.

