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THE INTERMEDIATE PRIME DIVISORS OF INTEGERS 

J.-M. DE KONINCK AND J. GALAMBOS 

ABSTRACT. Let Pi < P2 < <p, be the distinct prime divisors of the integer 71. 

If ( = a() - + oo with ni, then p1 is called an intermediate prime divisor of n if 
both j and X - j tend to infinity with n. We show that log log p,, as j goes through 
the indices for which p, is intermediate, forms a limiting Poisson process in the 
sense of natural density. 

Let Pi < P2 < ...< p, be the distinct prime divisors of the integer n. Here, of 
course, p, = p1(n) and X = (cn). Our interest is to establish certain properties of 
the prime divisors pJ which are valid with positive density. Recall that density is 
defined as follows. Let vN( ... ) be the number of integers 1 < n < N for which the 
property stated in the dotted space holds. Set PN( ... ) N( ... )/N. Then the 
density d(A) of A is defined as 

d (A) = 'IM PN(A) (N -*+Xo). 

In particular, the simplest results of probabilistic number theory (see Elliott [2, 
Introduction]) imply that, with density one, c (n)/log log n is asymptotically one. 
Hence, with density one, we can distinguish three types of prime divisors: we call pJ 
small if j is bounded as n -* + so, pj large if o - j remains bounded, and all 
others intermediate. For the investigation of the small prime divisors, tools of 
elementary number theory suffice. Large prime divisors require special tools, but 
very old results (due to Dickman, see De Koninck and Ivic [1] for accurate 
statements and for asymptotic formulas involving large 'prime divisors) tell us that 
(log p, )/log n falls into the interval (a, b), 0 < a < b < 1, with positive density for 
j= o. Extensions are also known for all large prime divisors, and the results are 
similar in nature. This perhaps explains why it was 'necessary' and so successful in 
probabilistic number theory to truncate additive functions at r = r(N) with 
(log r)/log N -- 0: it simply cancels the effect of the large prime divisors (see Elliott 
[3], particularly Chapter 12). It indeed required a completely new method of attack 
when the truncation was abandoned and new types of results were obtained (once 
again, see [3]). The truncation methods, in which the intermediate prime divisors 
contributed all the influence for the validity of a statement, already show that the 
intermediate prime divisors behave asymptotically as independent random variables. 
The fact that this asymptotic independence is even stronger than what follows from 
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additive functions is the subject of the present paper. It is related to an earlier result 
of Galambos [4], stating that, for intermediate terms, log log p1 + 1 (n) - log log p1 ( n) 
are asymptotically unit exponential variables, that is, the density for which the just 
stated difference is smaller than a positive value z equals 1 - e-v. The remarkable 
part of this result is that the density does not depend on j. Maier [7] extended this 
result to showing that a finite set of the above differences are asymptotically 
independent in the sense of probability theory. We further generalize these results by 
proving the following statement. 

THEOREM 1. Let j = j(N) be a positive integer valued function tending to infinity 
with N. Assume that j is such that, with perhaps the exception of a set oJ density zero, 

pI(n) -> + so with N, and {log p(n)}/logN -> 0 as N -- + oc, where 1 < n < N. 
Then the points log log p, + k, k > 1, form a Poisson process in limit as N -> + oc. 

Before proceeding to the proof, let us comment on the restrictions on j. These are 
exactly for making sure that we deal with intermediate terms. As a matter of fact, 
p1 -, + oc excludes the small prime divisors, and, in view of Dickman's result, 
(log p, (n) } /log N -O 0 excludes the large ones. 

The proof relies on the following result which is of interest on its own. 

THEOREM 2. Let TN be a set of primes q such that if q E TN then q -- + oc with N, 
and for every fixed k, qk < N. Furthermore, we assume that there is a number 
0 < X < + oo such that 

(1) ? ---> as N + oo. 
qeTE q 

Then, if mN(n) denotes the number of (distinct) prime divisors of n from the set TN, 

we have for every r = 0, 1, 2, .. ., as N -+ o, 

(2) limPN(mN(n) = r) = ;re-x/r!. 

PROOF OF THEOREM 2. There is an elementary result in probability theory (see, for 
example, ?5.5 in [5]) which states that for the validity of (2) it suffices to show that, 
for every fixed k, Sk,N(TN) 

-> Aklk! as N -- + oc, where 

(3) SAhN(TN) = EPN(e,,(n) = e12(n) = = e,(n)= 

the summation being extended over all i1 < i2 < ...< ik with q, E TN and 

e(n) Iif q1jIn, 
{O otherwise. 

Now, clearly, the general term on the right-hand side of (3) equals 

I N 
N qlql ... ql, 

where [y] signifies the integer part of y. By our assumptions on TN, each expression 
above is positive, and the number of terms in the sum at (3) is o(N). Thus 

(4) SATN(TN) 1E 
I 

+ o(1), k > 1, 
ql1q,2 

. . 
I 
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where L is as in (3). Hence, (1) and (4) yield, as N + oo, 

(5) lim Sl N (TN) 

Next, observe that, for k > 2, 

(6) S1,N(TN)SAl1,N(TN) = kSk,N(TN) + O(QTSk-1,N(TN)) + o(Sk-1,N(TN)), 

where QT = l/q(T) with q(T) being the smallest member of TN. By assumption, 

QT -> 0 as N -- + oo. Thus, by induction, (5) and (6) yield the desired limit for 
SA N (TN). The proof is complete. 

PROOF OF THEOREM 1. Let us choose an arbitrary j = j(N) satisfying the 
conditions of the theorem. We fix this function, and loglogp1(n) serves as the 
starting point of the point process, to be shown to be Poisson in limit. Let 
(t,JlN t*N) 1 < m < M, M fixed, be a finite number of disjoint intervals such that, 
as N + oo, both tnlN and t,*N tend to some finite points t,, and t*, respectively, 
and the intervals (t, t,*), 1 < m < M, remain disjoint. We form the intervals 

(7) (log log pJ ( n)+ tnlN I log log p, (n) + t1*7 N) I < m < MI 

and count the number mN(M; t, t*) of k such that log log pj+k(n) falls into one of 
the intervals at (7). By the result of Renyi [8] it suffices to prove that the asymptotic 
distribution of mN(M; t, t*) is Poisson whose X-parameter is the sum of the 
X-parameters of the asymptotic (Poisson) distribution of the number of k's for the 
individual intervals at (7). However, this limiting result follows from Theorem 2 
upon observing that the inequalities 

loglogp1(n) + t,l N < log1logp+k(n) < loglogp1(n) + tni, N 

are equivalent to 

(8) ( n) <-P,+k(n) < ( p,(n))'t*' 

where we put Y,m, N = eN and Y,.*,N = et*,N. Thus, if we define TN as the set of all 
primes q such that log log q falls into one of the intervals at (7), mN (M; t, t *) 

becomes mN(n) of Theorem 2. Condition (1), as well as the required additivity of X 
over the intervals of (7), follows from the elementary asymptotic formula (see Hardy 
and Wright [6]) 

L = loglogN + C + o(1) 
q<N q 

in view of the relation of (7) to (8). All other conditions of Theorem 2 are satisfied 
by assumption, and, therefore, the theorem is established. 
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